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Abstract. The problem of modelling geometry for video based render-
ing has been much studied in recent years, due to the growing interest in
‘free viewpoint’ video and similar applications. Common approaches fall
into two categories: those which approximate surfaces from dense depth
maps obtained by generalisations of stereopsis and those which employ
an explicit geometric representation such as a mesh. While the former
have generality with respect to geometry, they are limited in terms of
viewpoint; the latter, on the other hand, sacri�ce generality of geometry
for freedom to pick an arbitary viewpoint. The purpose of the work re-
ported here is to bridge this gap in object representation, by employing a
stochastic model of object structure: a multiresolution Gaussian mixture.
Estimation of the model and tracking it through time from multiple cam-
eras is achieved by a multiresolution stochastic simulation. After a brief
outline of the method, its use in modelling human motion using data
from local and other sources is presented to illustrate its e�ectiveness
compared to the current state of the art.

1 Introduction

The problem of modelling and tracking 3D objects from one or more video
sequences has received considerable attention over recent years, as computational
and capture costs have fallen. Techniques range from adaptation of stereo vision
algorithms, eg. [2] to meshes and visual hulls [1]. Although the former requires
no explicit model of the object to be tracked, it is restricted in viewing point
and the positioning of cameras. On the other hand, techniques based on meshes
inevitably make assumptions about the shapes of the objects and motions. The
problem is that, without such constraints, a mesh or voxel representation has too
many degrees of freedom to represent any plausible motion. What is needed is a
way of constraining the motion to conform to the sorts of movements that, for
example, dancers or similarly complex �gures might undergo, while retaining the

exibility to represent a variety of objects and their movements. This naturally
suggests a hierarchical model; such ideas have been explored, notably [1] and [3],
in which the motion of the trunk is used to constrain movements of limbs.

To tackle this, it is necessary to construct a model which is 
exible, yet
stable enough to track motion over time. The model uses a stochastic descrip-
tion which allows the modelling of arbitrary data densities undergoing motion:
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multiresolution Gaussian mixtures (MGM) [7]. We use the MGM model to repre-
sent objects in terms of a cloud of point measurements of their visual properties,
such as colour, texture and motion. The model provides structure in terms of
a hierarchy of mixture models. This hierarchical structure serves to reduce the
complexity of motion estimation and to constrain the degrees of freedom, with-
out being tied to a particular geometry, such as a mesh or voxel representation.
The approach has been tested on a number of sequences, both publicly available
ones, such as the Microsoft Research data [9], and some captured using a local
camera array, a studio with 48 �re-wire digital video cameras.

After a brief introduction to the MGMM approach and an outline of the
algorithms for constructing it and tracking it, we present a series of results
to show its use in modelling a number of sequences for video based rendering
applications. The model is capable of being used with arbitrary input data,
from point clouds to voxels, with appropriate attributes. Moreover, the resulting
motion estimates de�ne a smooth, dense motion �eld, which may be used to
animate arbitrary objects. These are features shared by no other representation
of which we are aware. The paper is concluded with a discussion of the potential
and limitations of the model.

2 MGM for Dynamic Scene Modelling

In [7], it was shown that a Gaussian mixture can be constructed in a top-down
fashion, starting with a single component and splitting components when their
�t to the data was poor, using a model-�t criterion, such as AIC or BIC. The
key features of the MGM representation were shown to be

{ Universality: the model is capable of approximating and arbitrary density to
a speci�ed level of accuracy.

{ Invariance to a�ne motions: the model representing a density transformed
by a smooth motion can be computed directly by an appropriate transfor-
mation of the original model. This follows because the Gaussian density is
completely determined by its mean, �, and covariance, �, which transform
under an a�ne motion de�ned by a linear transform, A, and translation, b,
according to

�0 = A�+ b (1)

and
�0 = A�AT (2)

where T denotes transpose and 0 denotes the transformed entity. In other
words, the model structure is preserved under a�ne motions and hence does
not need to be recomputed for each successive frame of a sequence.

These properties are central to its use in describing dynamic scenes, such as
those found in video based rendering, where motions can be both complex and
compound and objects are often articulated and of varying number in any given
scene. A further di�erence between the present work and earlier uses of the model
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is that the hierarchical structure plays a crucial role in motion estimation. To
understand how this comes about, suppose that at some level, l, of the tree,
we have a component (l; i), with parameters �l;i;�l;i, whose (a�ne) motion we
estimate as Al;i; bl;i. Now we wish to estimate the motion of its ‘children’, ie.
the components fl�1; j; p(j) = ig, where p(i) is the parent of node i, that is, the
a�ne parameters, Al�1;j ; bl�1;j . We can use the estimates from (l; i) to de�ne a
more or less tight prior on the motion at l� 1; j; p(j) = i, which has the e�ect of
a soft constraint on the motion at level l � 1 and speeds up computation, since
the mean motion of the parent is a good initial guess for any component wholly
contained within that parent, as the components fl � 1; j; p(j) = ig are. This is
quite a di�erent approach to that described in [7], which did not use the tree
structure in the motion estimation. Moreover, the data in that work were 2D,
representing a single sequence.

3 Construction of the Model

A bottom-up process was used in constructing the model to provide greater con-
trol over both the number of levels in the tree and in the number of components
at each level, at the expense of a more complex method of choosing the priors
for the components at a given level.

Whatever the source of the object description, we assume that it can be
represented by a set of feature vectors, ff i 2 Rn; 1 � i � Ng, which are points
in Rn. The dimension, n, depends on the model, but might include any or all of
the position, orientation, colour and possibly motion of a 3D surface or volume
element. The data density is then approximated by a normal mixture with, say,
Ml components at level l, where 0 � l < L and Ml < Ml�1; M0 = N . At the
top level of the hierarchy, the number of components, ML, would usually be set
to one more than the number of objects in the scene, with one component for
the background. Below that level, each distinct object is represented by a tree,
in which the components at a given level, l, may be regarded as children of the
components at level l+ 1. Correspondingly, the components at level l constitute
the input data for the clustering algorithm at level l + 1 and the covariance of
the data assigned to any component is included in the clustering at the next
level of the tree.

A Bayesian clustering algorithm is used, based on the conjugate priors for
the Gaussian mixture problem, namely a Dirichlet prior on the mixture weights,
a normal on the means and a Wishart density on the covariances [8]. Although
conjugate priors can be restrictive in some settings, their role here is purely a
matter of computational convenience, allowing a Gibbs sampler to be used. The
complete algorithm is as follows [8]:
Initialise

1. l = 0, x0;i = f i; S0;i = �;1 � i � N,
2. Select L, Ml; 1 � l < L.
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where � is the measurement error covariance.
Loop over Scale:
For l = 1; L� 1

1. Simulate from the full conditionals:
For iter = 1; imax

� �D(��l ) (3)

��1
l;i �W (W �

l;i; r
�
l;i) (4)

�l;i �N(y�l;i; �
�
l;i�l;i) (5)

where

��l =�l + nl (6)
r�l;i =r + nl;i (7)

��l;i =
�l

�nl;i + 1
(8)

y�l;i =
�lnl;i�xl;i + yl;i
�lnl;i + 1

(9)

W �
l;i =

�
W�1

l;i + nl;iSl;i +
nl;i

�nl;i + 1
�
�xl;i � yl;i

� �
�xl;i � yl;i

�T
��1

(10)

�xl;i is the sample mean of the l; ith component, Sl;i the sample covariance and
nl;i is the number of data points assigned to it. W l;i, �l, rl, �l;i and yl;i are
parameters on the prior distributions for each component. D(�) is a Dirichlet
distribution with parameter � and W (V; n) is a Wishart distribution with
parameters V and n.

2. Derive the cluster assignments:
Assign the class label of the l; ith point, zl;j , randomly to one of the compo-
nents k 2 1::Ml proportionally to N(xl;j��l;k; �l;k) and update the sample
means �xl;k and covariances Sl;k according to

�xl;k =
1
nl;k

X

ijzl;i=k

�xl�1;i (11)

Sl;k =
1
nl;k

X

ijzl;i=k

(xl�1;i � �xl;k)(xl�1;i � �xl;k)T +
X

ijzl;i=k

nl�1;iSl�1;i (12)

3. When su�cient iterations have been run to achieve stationarity, assign data
to clusters to maximise the posterior

xl;k 2 �l;j if N(xl;k � �l;j ; �l;j) > N(xl;k � �l;m; �l;m); m 6= j (13)

where �l;i is the index set of the l; ith component in the model. Then the
data at level l are just the sample means

xl;k =
1
j�l;kj

X

i2�l;k

xl�1;k (14)
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and the sample covariances for the clusters, Sl;k, are similarly used at the
next level.

The number of iterations, imax, is chosen to ensure stationarity in the
Markov Chain. Note that by using cluster means and covariances in place of the
raw data at levels above l = 0, a huge saving in computation can be achieved
with minimal impact on the quality of the approximation.

4 Tracking the Model

The model is tracked over time using an estimator whose form depends on the
relationship between the data and the model state. Since the data in this case
are surface elements projected onto a set of cameras, the relationship is non-
linear; correspondingly, a particle �lter was chosen for the problem. This is a
sequential, Bayesian approach, both in time and in terms of the ‘scale’ hierarchy
in the MGM model (cf. eqns (1)-(5)), where the estimate for level l is used in
de�ning the prior for level l � 1. Because of the hierarchical nature of the rep-
resentation, it is su�cient to employ a rigid motion model for each component,
requiring estimation of a 6-parameter vector � per component. As noted above,
this both simpli�es computations and constrains the motions. Estimation is done
by maximising the posterior over the unknown position and orientation,

P (�l;ijY j ; j 2 �l;i) /
Z

�l+1;p(i)

d�
Y

j2�l;i

P (Y j j�l;i�)P (�l;ij�) (15)

where Y k are the data, which in the experiments consisted of the average colour
in each of a set of S patches selected at random from the set associated with
component (l; i). Direct elimination of the ‘nuisance’ variable �l+1;p(i) is imprac-
tical, but can be avoided by using the MAP estimate �̂l+1;p(i). At the top level
of the MGM tree, the prior is derived instead from the estimate at the previous
time. The particle �lter employs a Gaussian approximation to the posterior and
used the prior as the importance density, simplifying the computations [10]. A
summary of the main steps in the algorithm is:

For levels L > l � 0,

1. Sample from importance density, P (�l;ij�̂l�1;p(i)), to get weights wl;i; 1 �
i �Ml.

2. Compute likelihoods at current estimate �l;i, P (Yj j�l;i).
3. Use weighted likelihoods to estimate posterior mean and covariance.

Using the prior derived from the level above as the importance density both
simpli�es the computation and provides a good initialisation of the particle �lter.
This simply amounts to a rotation and translation of the mean and a rotation
applied to the covariance in the obvious way, eqns (1)-(5). To understand how
the motion �eld is constructed from the Gaussian components, note that at
the �nest level, we have a motion for each component (0; i), consisting of two
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elements: a translation vector t0;i and a rotation matrix R0;i. Now, given an
arbitary point in 3D, x, say, there are corresponding probabilities P (ijx) that it
belongs to the ith component,

P (ijx) = wiN(x� �i;�i)=
X

j

wjN(x� �i;�i) (16)

where N(:; :) is the 3D normal density with parameters �i;�i for the ith compo-
nent and wi is a weight representing the population of the ith component. Where
the MGM model uses additional data, such as colour or velocity, the projection
onto the three spatial dimensions remains Gaussian. Now the translation at x is
simply the conditional mean

t(x) =
X

i

P (ijx)ti (17)

and the rotation may be similarly interpolated, in common axes, using the ex-
ponential form

R(x) =
Y

i

RP (ijx)
i (18)

These are used to update the positions of the individual data elements from the
estimated motion at the highest resolution in the MGM tree.

5 Experiments

Experiments were carried out on a number of sequences captured in the De-
partment’s studio, as well as two from the Microsoft Research site [9]. All were
captured at 1024 � 768 pixel resolution; the Microsoft sequences are at 15 fps,
the others at 30 fps. Unlike the Microsoft camera arrangement, which has eight
cameras arrayed in a line, with a maximum disparity between adjacent cameras
of 150 pixels, the Department cameras are arranged to provide full coverage of
the room in a non-uniform way: 32 cameras are arranged in a recatngular ar-
ray on one wall and the remainder in the corners and mid-points of each of the
remaining three walls, with one in the ceiling space. The overlap between cam-
eras is at most 50%, resulting in disparities of up to 500 pixels. Consequently,
accurate modelling and rendering is a far more challenging problem for these
data.

The MGM models were built with either two or three levels, with respec-
tively M1 = 50; M2 = 5 and M1 = 250; M2 = 50; M3 = 5 components,
an arrangement that was chosen empirically, given the roughly 100000 points
sampled from the 48 camera array. It was found that the Gibbs sampler for
the clustering converged after 200 iterations and this was chosen for the esti-
mation. The prior weights were set to �l = Ml�1=Ml; rl = 8; �l = 1 and Wl;i
was diagonal, with variances based on the spatial and colour variances, after
extensive experimentation. The MGM approach was compared to publicly avail-
able K-means and hierarchical clustering algorithms, both in terms of model �t,
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measured by squared error and computation times on di�erent data sets. The
results are summarised in Table 1, showing that MGM signi�cantly outperforms
the other methods in terms of both error and computation. The appearance of
the induced clusters is illustrated in �gure 3, which shows the cluster centres in
colour for two sequences.

Motion estimation was only practicable for the locally captured sequences.
The Gaussian particle �lter used 10000 particles and the likelihoods were cal-
culated using a set of at most 2000 patches for each component. The MGM
model and motion estimator were reinitialised every 25-30 frames, to prevent
error accumulation, using the visual hull. These choices were arrived at after ex-
perimentation and were found to give good results across the whole set of data.
To validate the algorithms, a ‘ground truth’ sequence was obtained by manually
tracking a �nger in the ‘Kate’ sequence. The average error over 30 frames was
of the order of 15mm, comparing favourably with the best results reported to
date (�gure 1). To demonstrate the estimator’s ability to produce a dense mo-
tion �eld, it was used to animate a manually initialised skeleton, as shown in
�gure 3. Despite having no constraints on joint angles, the results were quite
compelling. Finally, views synthesised for the ‘Kate’ and ‘Breakdance’ sequences
are shown in �gures 4 and 5. The reconstructions contain a few rendering arte-
facts, which result in signal-noise ratios of the order of 25-30dB, somehat worse
than the �gures obtained by disparity based warping [2], as might be expected.
Figure 2 shows the reconstruction peak-rms SNR for both sequences, based on a
‘leave-one-out’ test, in which a known view is reconstructed from the remaining
data. Of course, this is hardly the aim of free viewpoint video, but it does pro-
vide a quantitative means of comparison. Overall, the results demonstrate the
e�ectiveness of a Bayesian approach within the MGM model framework.

6 Conclusions

This paper has provided an overview of a general model of dynamic scenes, us-
ing an MGM model of the data and motion estimators derived directly from
that model, for use in multi-camera video. It is capable of modelling complex
motions, while providing a set of constraints through the use of a hierarchical
Bayesian motion estimator, speeding up computation and preventing the prob-
lem from becoming ill-posed. The motion estimates can be interpolated using the
mixture model to animate arbitrary objects with motions derived from a given
sequence. Although not real time in terms of computation, it has been observed
that both the model construction and the particle �ltering converge relatively
quickly because of the strong priors, so that typically a few hundred iterations
are su�cient to obtain satisfactory results. Moreover, the methods provide real
time rendering of novel views. While more restrictive models will yield better
results for particular applications, the MGM approach is powerful and general.
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K-Means Hierarchical Clustering MGMM
‘Kate’ sequence 327(789) 394(7839) 131(106)

‘Hamutal’ sequence 179(177) 200(802) 119(56)
‘Breakdancers’ sequence 132(121) 124(340) 73(24)

‘Ballet’ sequence 117(30) 113(14) 66(20)

Table 1. Energy (computation time in sec) of the �nal clustering in thousands; lower
values indicate a bet ter �t.

Fig. 1. Plot of the error in position vs frame number for the tracked index �nger in
‘Kate’
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Fig. 2. Plot of the PSNR vs. frame number for the synthesised views.
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(a) Skeleton at time 0 (b) Skeleton at time 80

Fig. 3. Skeleton, animated using motion �eld from ‘Kate’.



10 M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion

(a) Coloured centroids for the
breakdancers sequence

(b) Coloured centroids for the
‘Kate’ sequence

(c) The clustering of ‘break-
dance’ at t=0.

(d) The clustering of ‘Kate’ at
t=0.

Fig. 4. Clustering the ‘Breakdancers’ and ‘Kate’ data sets using uniform and seeded
priors.
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(a) Frame 0 (b) Frame 15

(c) Frame 30 (d) Frame 45

(e) Frame 60 (f) Frame 75

Fig. 5. Synthesised views of the ‘Kate’ sequence at half second intervals.
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(a) Frame 15 (b) Frame 30

(c) Frame 45 (d) Frame 60

(e) Frame 75 (f) Frame 90

Fig. 6. Synthesised views of the ‘Ballet’ sequence at one second intervals.


