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SOLVING THE UNIFORM DENSITY CONSTRAINT IN A

STOCHASTIC DOWNSCALING MODEL

C. Chauvin1, S. A. Hirstoaga2, P. Kabelikova3, A. Rousseau4, F.

Bernardin5 and M. Bossy6

Abstract. The present work aims to contribute to the development of a numerical
method to compute small scale phenomena in atmospheric models, getting rid of any
mesh refinement. In a domain, typically a mesh of a numerical weather prediction
model, we simulate some particles that are moved thanks to a Stochastic Lagrangian
model adapted from the PDF methods proposed by S.B. Pope. We estimate the Eulerian
values of the required fields, thanks to the computation of a local mean value over an
ensemble of particles. We are thus using a stochastic particle method. At small scale,
our atmospheric model imposes that the mass density ρ is constant in the domain. As
a consequence, the particles have to be uniformly distributed at every time step of the
particle method. We aim to use D.P. Bertsekas Auction Algorithm in order to move
a given cloud of particles to a new position, which is also given in advance, and that
realizes the constraint ρ = cst. Naturally, the transport cost will have to be minimum.
This is a problem of 3D optimal transport, which is known to be difficult.

Résumé. Ce travail a pour cadre le développement d’une méthode de simulation
d’écoulement atmosphérique aux petites échelles, réalisant des calculs sous-maille sans
avoir besoin de raffiner le maillage. Dans un domaine, typiquement une maille d’un
modèle numérique d’écoulement géophysique, on simule un ensemble de particules dont
la dynamique suit un modèle stochastique lagrangien adapté des méthodes PDF pro-
posées par S.B. Pope. On estime les valeurs eulériennes en moyennant localement les
valeurs sur les particules. Il s’agit donc d’une méthode particulaire stochastique qui, on
l’espère, sera comparable ou même meilleure, à des méthodes plus classiques de raffine-
ment de maillage. Dans le domaine considéré, le modèle contraint la densité massique
à rester constante. Cette contrainte se reporte sur la position des particules dont la
distribution doit rester uniforme à chaque étape de la méthode particulaire. Le travaille
présenté ici consiste à mettre en place l’algorithme des enchères (Auction Algorithm)
développé par D.P. Bertsekas, pour permettre de déplacer les particules dans le domaine
de calcul, en conservant leur distribution uniforme et en minimisant le coût de transport.
Autrement dit, c’est un problème numérique de transport optimal 3D.
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Introduction

This work aims to contribute to the development of a numerical tool, called SDM (Stochastic

Downscaling Method), that was initially proposed in [19]. It consists in introducing a new method
for the simulation of the wind at small scales.
The large scale behavior of the ground wind is known to be of major importance for our society,
in particular in the context of global warming. But the local wind variability is also a key mecha-
nism, for instance when one wishes to build a bridge, or optimize the location of a wind turbine.
Ground winds also vary at small time and space scales, that are unfortunately far smaller than
those solved by classical weather/climate forecasting models. Thus, there is a need to imagine and
propose some new numerical techniques that would ensure a satisfying prediction of the wind at
sufficiently small scales: this is the general objective of the downscaling techniques.

Whereas deterministic refinement methods, based on a posteriori estimates [20], are already
well developed, some of the authors introduced SDM [19], an algorithm of a totally new type in the
framework of downscaling methods, based on a stochastic Lagrangian model, solved by a particle
method (see Section 1.1 below). Indeed, given the coarse prediction provided by a Numerical
Weather Prediction model, SDM simulates a set of fluid particles in a chosen domain of compu-
tation, in order to refine the numerical prediction over it. For the time being, the vertical size of
the SDM domain is sufficiently small to consider a constant mass density. This implies that the
numerical particles must satisfy the uniform density constraint in the domain. At each time step,
the rearrangement of the particles under minimal displacement is the most expensive procedure,
in term of number of operations. To this aim, we evaluate in this paper the performances of the
Auction Algorithm, introduced in [6], and its ability to be coupled with SDM.
At this time, SDM uses methods expected to be nearly optimal whereas the Auction Algorithm

is optimal. This tool will be our reference algorithm; in this paper, we validate the heuristic
parameters of Auction Algorithm, and test its complexity on several configurations of particles.

This article is organized as follows: we start in Section 1.1 with a general description of La-
grangian stochastic models, before introducing in 1.2 the constraint of uniform density, required
by the model. Then, in Section 2, we present the Auction Algorithm. Finally, Section 3 provides
some numerical results, and analyzes the claimed properties of the Auction Algorithm thanks to
different experiments.
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1. Framework of the Stochastic Downscaling Method

1.1. Stochastic Lagrangian Models

We now give a general description of Lagrangian stochastic models, in order to introduce the
specific problem tackled in this paper, that is the uniform density constraint. For more details,
the reader is referred to [16,17] and the related bibliography.

We are interested in the behavior of a turbulent incompressible fluid in an open set D of R
3,

with constant mass density ρ. In the statistical description of turbulence, all the physical fields
(here the velocity U and the pressure P) are considered as random fields: they can be written,
following the so-called Reynolds decomposition, as the sum of a deterministic part and a random
turbulent part, namely:

U(t, x, ω) = 〈U〉(t, x) + u(t, x, ω),

P(t, x, ω) = 〈P〉(t, x) + p(t, x, ω).

Applying the Reynolds operator to the incompressible Navier Stokes equations, we obtain the
so-called Reynolds Averaged Navier Stokes (RANS) equations:

∂t〈U
(i)〉(t, x) + (〈U〉(t, x).∇) 〈U (i)〉(t, x)

= ν△〈U (i)〉(t, x) −
1

ρ
∂xi

〈P〉(t, x) −
3∑

k=1

∂xk
〈u(i)u(k)〉(t, x), (1.1a)

∇ · 〈U〉(t, x) = 0, (1.1b)

where U (i) stands for the ith component of U , with i = 1..3, and 〈P〉 is solution of the following
Poisson equation:

−
1

ρ
∆x〈P〉 =

3∑

i,j=1

(
∂xj

〈U (i)〉∂xi
〈U (j)〉 + ∂2

xixj
〈u(i)u(j)〉

)
. (1.2)

The matrix {〈u(i)u(j)〉}1≤i,j≤3, called the Reynolds tensor, is defined by:

〈u(i)u(j)〉 = 〈U (i)U (j)〉 − 〈U (i)〉〈U (j)〉 ∀1 ≤ i, j ≤ 3.

The system (1.1) is not closed, and hence one needs to provide additional information on the
Reynolds tensor, in order to close the system and compute some solution. Different ways of closing
system (1.1) have been introduced over the years: for example k−ε closure, or second order Rotta
closure, etc. The interested reader is referred to [14] for further details on the closure of the RANS
equations. If we denote by fE(t, x; ·) the law of the random variable U(t, x, ω), it is to be noticed
that a closure on fE is equivalent to the RANS closure.

From 1985, S.B. Pope started to introduce some completely different way of closing the RANS
equations. His idea consists in describing the fluid as an ensemble of Lagrangian particles, intro-
ducing a stochastic model, whose state variable is (Xt,Ut, φt), that respectively correspond to the
position, the velocity and, possibly, some other physical quantities attached to a fluid particle,
such as a temperature or a turbulent frequency. The dynamics of the fluid particle is ruled by a
system of stochastic differential equations (SDEs) of the form

dXt = Utdt, (1.3a)

dUt = −
1

ρ
∇x〈P〉(t, Xt)dt + DU (t, Xt,Ut, φt)dt + BU (t, Xt,Ut, φt)dWt, (1.3b)

dφt = Dφ(t, Xt,Ut, φt)dt + Bφ(t, Xt,Ut, φt)dW̃t, (1.3c)
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where (Wt, t ∈ R
+) and (W̃t, t ∈ R

+) are two independent Brownian motions. The system (1.3)
intends to model fE and the laws governing the Eulerian fields U(t, x, ω) and φ(t, x, ω) in the sense
that Ut = U(t, Xt, ω) and φt = φ(t, Xt, ω).

The design of the coefficients D∗ and B∗ (the subscript ∗ holds for U and φ) in equations (1.3b)
and (1.3c) determines the modelling context and its closure: for SDM, their expressions are given
in [3]; for engineering applications such as turbulent fluids in combustion, or models including the
temperature, see [10,11]. These coefficients D∗ and B∗ depend on statistics of the state variables
(Xt,Ut, φt) (for instance the mean velocity, the turbulent kinetic energy, the dissipation), according
to the model closure. Hence those coefficients D∗, B∗ are non linear in the sense of McKean [12].

Assume the existence of the density fL(t;x, V, θ) for the Lagrangian variables, then at each
time t, the measure fL(t;x, V, θ)dxdV dθ is the law of (Xt,Ut, φt) solution of (1.3). Considering an
incompressible fluid, with constant density ρ, then the link between fE(t, x;V, θ) and fL(t;x, V, θ)
(see e.g. [15] for details) is:

fE(t, x;V, θ) =
fL(t;x, V, θ)∫

R3×R3 fL(t;x, V, θ)dV dθ
, (1.4)

which allows to compute any mean fields required in D∗ and B∗ by the formula:

〈Q(U, φ)〉(t, x) =

∫

R3×R3

Q(V, θ)fE(t, x;V, θ)dV dθ.

Moreover, and to end this part, a fluid particle satisfying (1.3) and (1.2) also satisfies [8] :

∫

R3×R3

fL(t;x, V, θ) dV dθ = ρ, (1.5a)

∇x · 〈U〉(t, x) = 0. (1.5b)

The pressure term in (1.3b) produces these two equations (1.5). In SDM, we simulate the equations
(1.3) without the pressure term (prediction step), and then correct the fluid density and the mean
velocity according to (1.5). Since the coefficients D∗ and B∗ depend on the law governing the
fluid particle in a non-local way (mean field interaction), a stochastic particle method is required
to discretize (1.3). Next section firstly introduces the Particle in Cell method, and the splitting
scheme (prediction + correction). More particularly, the aim of this work is to present a method
to study and solve the constraint (1.5a), called the uniform density constraint.

1.2. Uniform Density Constraint

In a parallelepipedic domain D, we present the discretization scheme to solve the splitted
problem:

(1) The dynamics of each particle k is characterized at time tn = t0 + n∆t by the discrete
variables (Xn

k ,Un
k , φn

k ). The coefficients D∗ and B∗ are non-linear, and depend on each
particle k, and on the statistics given by the N particles.

(2) Prediction step: solve the discretized version of (1.3) without the pressure term
(3) Correction step: modify the state variables in order to satisfy (1.5).

In the context of building the numerical tool SDM that was mentioned above, we have to deal
with a parallelepipedic domain D.

In this domain, we describe equations (1.3) (without the pressure term) thanks to a system of
N interacting particles. The dynamics of each particle k is characterized at time tn = t0 + n∆t
by the discrete variables (Xn

k ,Un
k , φn

k ). The operators DU and BU of equation (1.3b) are then
determined at time tn by Dn

U = DU (tn, {Xn
k }, {U

n
k }, {φ

n
k}), Bn

U = BU (tn, {Xn
k }, {U

n
k }, {φ

n
k}); the

same holds for operators Dn
φ and Bn

φ of equation (1.3c). The discretized system at time tn+1 is
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the following :

Xn+1
k = Xn

k + Un
k ∆t, (1.6a)

dUn+1
k = Dn

U dt + Bn
U dW, (1.6b)

dφn+1
k = Dn

φ dt + Bn
φ dW̃ , (1.6c)

where (Wt, t ∈ R
+) and (W̃t, t ∈ R

+) are two independent Brownian motions. The non-linear
coefficients Bn+1 and Dn+1 are determined by the solutions {Xn+1

k }, {Un+1
k }, {φn+1

k } and their
associated averaged Eulerian quantities 〈U〉n+1, 〈φ〉n+1. Without going into details, these quan-
tities are computed from the Lagrangian ones {Un+1

k }, {φn+1
k } using a local approximation, as in

the Particle in Cell (PIC) method, see [18].
Among the available PIC interpolations, we use the so-called Nearest Grid Point (NGP) method,
which consists in dividing the domain D into cells (see Figure 1), and in evaluating the Eulerian
quantities, as well as the fluid density, at a point x ∈ D by a Monte-Carlo approximation which
uses all the particles k belonging to the cell C, x ∈ C.

Figure 1. Fluid particles in different cells of D.

After proceeding to the advancement step (1.6), the equations (1.5) have to be fulfilled by the
system of particles. We focus here on the the uniform density constraint (1.5a), which consists in
ensuring that each cell of the discretized domain (see Figure 1) has the same number of particles.
To ensure a good convergence of the approximation in each cell, the number of particles in each
cell Npc has to be important (greater than 1000). That is, given a set of N particles of positions
(Xi)1≤i≤N , we have to move them to some new positions (Qj)1≤j≤N , such that every cell of the
domain contains Npc particles.
The choice of final positions (Qj)1≤j≤N is obviously not unique, but they have to follow the
uniform law: in SDM, the positions (Qj)1≤j≤N are constructed using the uniform law in each cell,
such that all the cells contain exactly Npc particles.

In addition, we use the physical properties of the Lagrangian particles (Uk, φk) to compute
the Eulerian fields (e.g. 〈U〉n) (see [19] and Equation (1.4) above). Consequently, the particles
should not move too far from their initial position during the transportation problem, in order to
maintain locally the physical information they transport.

That is why we need the transport cost from (Xi)1≤i≤N to (Qj)1≤j≤N to be minimum; if we
define the distance between an initial position and a final one:

dij = |Xi − Qj |
2,
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where | · | is the Euclidean norm of R
3, then we are faced with a classical problem of optimal

transport:

(P ) Find j ∈ SN such that
N∑

i=1

dij(i) = min
k∈SN

N∑

i=1

dik(i), (1.7)

where SN stands for the set of permutations over {1, . . . , N}. More explicitly, we want to find a
feasible assignment, i.e., a set of pairs {(X1, Qj(1)), . . . , (XN , Qj(N))} such that j(1), . . . , j(N) are

all distinct, that minimizes the overall cost

N∑

i=1

dij(i). This is an instance of the classical assignment

problem appearing in network optimization. Both from the continuous and discrete viewpoints,
the optimal transport problem in dimension 3 is known to be challenging (see [2,9,13]), whereas in
dimension 1, it simply consists (in the discrete case) to sort the particles [2], with a computational
cost of O(N log(N)), where N is the number of particles.
The assignment problem (P ) can be understood as a search, among all the N ! permutations, of
one permutation (possibly not unique) satisfying (1.7). Obviously, the aim is to solve the problem
using a method with an efficient computational cost rather than factorial. In this direction, several
algorithms have been developed and the general upper bound O(N3) for the complexity was shown
(see the simplex method of [1] or the so-called Hungarian method).

The method we use to reach the solution of our particular assignment problem is the Auction

Algorithm developed by D.P. Bertsekas, since its practical performance is competitive with state-
of-the-art codes (see [6] for a short presentation). The aim of this work is to study the Auction

Algorithm in our case and its complexity (we call complexity the total number of unitary assign-
ments (Xi, Qj) during the auction process), and to see in which conditions it is an interesting
algorithm for our application.

2. Correction of Particle Positions

In this section, we present the Auction Algorithm and some of its improvements, introduced by
Bertsekas.

2.1. Naive Auction Algorithm

Having the form of a maximization problem, the classical assignment problem deals with benefits
rather than costs. More precisely, there are N persons and N objects that we have to match on
a one-to-one basis supposing that there is a benefit aij for matching person i with object j. The
aim is to assign persons to objects so as to maximize the total benefit (see [6]). Mathematically,
the problem is:

find j ∈ SN such that

N∑

i=1

aij(i) = max
k∈SN

N∑

i=1

aik(i). (2.1)

Setting by dij = −aij , i.e., passing from benefits to costs, the assignment problem (2.1) is equiva-
lent to our problem (1.7).

Suppose that position Qj has a price pj in the sense that we must pay pj so as one particle can
acquire this position. Thus, we define the total cost for moving one particle from initial position
Xi to final position Qj as

pj + dij , (2.2)

where dij is the transport cost. The algorithm seeks to assign each Xi to some Qj(i) with minimum
total cost, i.e.,

for every i ∈ {1, . . . , N} find j(i) ∈ {1, . . . , N}

such that pj(i) + dij(i) = min
k∈{1,...,N}

(
pk + dik

)
. (2.3)
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The algorithm starts with the empty assignment and the zero price vector. At the beginning
of each iteration there are a partial assignment and a price vector. The algorithm is applied until
all (Xi)1≤i≤N become assigned.

Algorithm 2.1.

Step 1. Select randomly an unassigned initial position Xi.

Step 2. Find a position Qj(i) which offers minimum cost for Xi, i.e.,

find j(i) ∈ {1, . . . , N} such that j(i) ∈ Argmin
k∈{1,...,N}

(
pk + dik

)
.

Step 3. Compute the bidding increment

γi = −vi + wi (2.4)

where

vi = min
k∈{1,...,N}

(pk + dik

)
and wi = min

k∈{1,...,N},k 6=j(i)
(pk + dik

)
. (2.5)

Step 4. Increase the price of position Qj(i) by γi and assign Qj(i) to Xi.

Step 5. The initial position that were assigned to Qj(i) at Step 2 becomes unassigned and then go

to Step 1.

Each iteration of the algorithm can be seen as a real auction where the bidder Xi searches for
his preferred object Qj(i) and the second best object. Then Xi raises the price of Qj(i) by γi since
at this stage Qj(i) rests his preferred object but it becomes less attractive to the others bidders.

2.2. Auction Process

Unfortunately, as shown in [5, 6], the Naive Auction Algorithm (Algorithm 2.1) does not work
when two or more final positions offer the same total cost for some given particle Xi. In this case,
the bidding increment γi is zero, thereby creating a never ending cycle (see [5, Section 1.3.3]).
To break such cycles, a perturbation mechanism is needed. Precisely, for a given small ε > 0,
we will not look for fulfilling the conditions (2.3) any more, but the weaker ones, the so-called
ε-complementary slackness,

for every i ∈ {1, . . . , N} find j(i) ∈ {1, . . . , N}

such that pj(i) + dij(i) ≤ min
k∈{1,...,N}

(
pk + dik

)
+ ε. (2.6)

The Auction Algorithm is the same as the Naive Auction Algorithm, except that the bidding
increment is

γi = −vi + wi + ε, (2.7)

rather than γi = −vi + wi as in (2.4).

Remark 2.2. To make the connection with the assignment problem and the auction algorithm
as they are presented in [6], we recall that we pass from our formulation to the classical one by
taking aij = −dij .

• The cost formula (2.2) corresponds to the net value of object j for person i.
• The min-equation in (2.3) is exactly [6, Equation (1)].
• The costs defined in (2.5) correspond respectively to the best object value vi and second

best object value wi introduced in [6, Equation (5)&(6)]. Precisely,

vi = −vi and wi = −wi.

Therefore, the increment γi in (2.7) is equal to that in [6, Equation (8)].



104 ESAIM: PROCEEDINGS

• The condition in (2.6) is equivalent to its classical counterpart [6, Equation (7)].

The next result establishes the finite convergence of the Auction Algorithm (Algorithm 2.1 with
(2.7) instead of (2.4)) to an approximate solution of problem (1.7).

Proposition 2.3. The Auction Algorithm terminates in a finite number of iterations with a feasi-

ble assignment and a price vector that satisfy the ε-complementary slackness (2.6). Moreover, the

overall cost of this assignment is within Nε of being optimal, i.e., if {(X1, Qj(1)), . . . , (XN , Qj(N))}

is the final assignment of the algorithm and D∗ = min
k∈SN

N∑

i=1

dik(i) is the optimal cost, then

D∗ ≤

N∑

i=1

dij(i) ≤ D∗ + Nε. (2.8)

Proof. By Remark 2.2, Algorithm 2.1 with (2.7) instead of (2.4) takes the form of the auction
process described in [6]. Then, it suffices to apply [5, Proposition 7.1], [5, Proposition 1.4], and [5,
Proposition 7.2]. �

Remark 2.4. Suppose that the costs dij are all integers. In this case, if

ε <
1

N
, (2.9)

it follows from (2.8) that the assignment obtained at the end of the Auction Algorithm is optimal,
i.e., it is the solution of problem (1.7).

2.3. An Improved Algorithm : the ε-Scaling

As explained in [5], one can improve the complexity of the Auction Algorithm by introducing
the ε-scaling: rather than applying the algorithm for a fixed ε, one starts with a large value ε0 and
then successively reduce it up to some final εK+1, sufficiently small (like that in (2.9) for example).
In addition, for each k ∈ {1, . . . ,K}, successive auctions with ε = εk are done for N −Nk particles
among the N such that (Nk)k is decreasing until 0.

Algorithm 2.5.

Step 0. All the particles are unassigned, the price vector is zero, ε0 and θ > 1 are fixed. Let k = 1.

Step 1. Evaluate the number of particles to be assigned : N − Nk, where Nk =

[
N

θk

]
.

Step 2. Use the Auction Algorithm with εk =
ε0

θk
, until N − Nk particles are assigned.

Step 3. Keep the price vector {pk
j }1≤j≤N−Nk

associated to the set of N − Nk assignments among

the N . These prices are used as input of iteration k + 1. While Nk > 0 go to Step 1.

Setting θ > 1, let K > 0 be the greatest integer such that θK ≤ N . Hence there exists q ∈ N

such that q < θK+1 − θK and

N = θK + q. (2.10)

Then, it is easy to see that Algorithm 2.5 stops at iteration K +1 and that (the overall cost of) the
final assignment is optimal within NεK+1. Therefore, the optimal solution is found for εK+1 < 1

N

in the case of integer costs dij (see Remark 2.4). The case of real distances will be discussed in
Section 3.

The main idea of the ε-scaling algorithm is to find an approximated solution for a coarse ε0

(for which the prices increase rapidly at the beginning of the algorithm), and then to successively
refine the solution with new (smaller) values of εk. The final assignment, obtained with εK , is
exactly the same with or without considering the ε-scaling algorithm. But the claim is that the
new algorithm should lower the total number of computational operations.
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(1,1,1)
(10,1,1)

(1,10,1) (10,10,10)

(11,1,1)
(20,1,1)

(11,10,1) (20,10,10)

Figure 2. Test case 1. Both input set (Xi)1≤i≤N and output set (Qj)1≤j≤N are
uniform, for 1000 particles. (Qj)1≤j≤N is the result of a shift of (Xi)1≤i≤Nalong
the x−coordinates by 10.

Figure 3. Test case 1: For several N , values of ε0 and θ leading to the optimal
solution. Integer K corresponds to the exponent in (2.10). Points in blue (K = 1)
correspond to θ ≤ N < θ2, points in green (K = 2) correspond to θ2 ≤ N < θ3.

3. Numerical experiments

Thanks to the forthcoming numerical experiments, we aim to study the influence of the following
parameters, that have been introduced in Section 2:

• ε which leads to the optimality condition (2.8). One can easily check that ε < 1/N is
sufficient to obtain an optimal assignment in the case of integer distances dij , but we need
to investigate the case of real distances.

• θ which is heuristic: is there a domain in R
2 of couples (θ, ε0) for which the transport cost

is minimum, leading to the solution of the assignment problem? Several criteria will be
presented here through some experiments on integer and real data.

Other properties that have to be considered are the complexity of the algorithm and its CPU
cost (e.g. its computational cost on a workstation). For such an algorithm, which is strongly
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dependent on data configuration, we talk about the worse-case complexity: an upper bound for
the complexity, obtained for bad-conditioned data. There is no theoretical study available so far,
but it was evidenced (see e.g. [4,7]), that the worse-case complexity of the Auction Algorithm with
ε-scaling and integer data is O(N3 log(NC)), where

C = max
i,j=1,...,N

dij .

Hereafter, we present the complexity study of our specific configuration, and then conclude on the
efficiency and possible improvements of this algorithm.

3.1. Validation of heuristic parameters

3.1.1. The case of integer distances

The configurations of initial and final positions, called Test case 1, and shown in Figure 2, are
the following: the initial particles are located at points (i, j, k) ∈ N

3 with 1 ≤ i, j, k ≤ 10, and the
final one are translated by the vector (10, 0, 0). The assignment with minimal transport cost is
then {((i, j, k), (i + 10, j, k))}i,j,k=1,2,...,10.
In the configuration Test Case 1, we look for the couples (ε0, θ) leading to the optimal assignment.
The results are given in Figure 3. This is done by running the Auction Algorithm on several
number of particles N , and several couples (ε0, θ). If the numerical solution is exactly the optimal
one, then a point is added in Figure 3.
These points are classified with respect to colors, representing several values of K. The same N
may appear several times, for instance N = 642 can also be written N = 84. Several parameters
may then possibly lead to the optimal solution, and the aim is to find an interval in which we are
sure the optimal solution is always found.

As discussed in [5], a sufficient condition to reach the optimal assignment in the case of integer
distances dij = |Xi − Qj |

2 is ε0 < 1 (see Remark 2.4 and Equation (2.10)). This condition is not
necessary, as can be seen in Figure 3.

According to [5], the choice of θ is heuristic (for integer distances as well as for real distances):
4 ≤ θ ≤ 10. For large N (e.g. for large K), the points are located in the interval 0 < θ ≤ 10,
which means that for biggest θ, the algorithm did not find the optimal solution. In our tests, we
thus found that the interval 4 ≤ θ ≤ 10 is not really well adapted: 4 ≤ θ ≤ 6 seems to be a more
confident interval.

3.1.2. The case of real distances

The ε-scaling version of the Auction Algorithm aims only at accelerating the convergence of the
algorithm, and does not change the optimality criterion of the solution. That is why we only deal
in this part with the initial auction process for fixed ε (see Section 2.2 above).

This behavior is experimented in the configuration Test case 2, presented in Figure 4. The goal
of this part is to find a link between N and the largest ε < 1 leading to the smallest transport
cost. The interval 4 ≤ θ ≤ 6 previously deduced from the integer distances is also validated here,
and in the following we take θ = 4.

Since we want to understand precisely the behavior of the algorithm in function of the disorder
of the configuration, we only change the initial positions from Test case 1, taking initial random
positions.

We first define an approximated optimal solution, using the following algorithm:

(1) Choose a value for N .
(2) Consider a finite set of values of ε, compute the ε-optimal solution for each of them; we

obtain a set of assignments Sε indexed by ε.

(3) For each assignment Sε, compute the associated transport cost Dε =
N∑

i=1

dij(i).

(4) Look for the minimal cost D̃∗ = min
ε

Dε. This minimal cost is such that D̃∗ ≥ D∗.
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(0,0,0)
(1,0,0)

(0,1,0) (1,1,1)

(0,0,0)
(1,0,0)

(0,1,0) (1,1,1)

Figure 4. Test case 2. Input set (Xi)1≤i≤N is randomly generated, whereas the
output set (Qj)1≤j≤N is uniform, for 1000 particles. This configuration is similar
to the one met in the SDM calculations.

(5) Compare each Dε to D̃∗ and keep the values of ε that realize Dε = D̃∗. We denote by
ε̃ = ε̃(N) the largest one.
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Figure 5. Number of particles N versus the maximum ε̃ leading to the smaller cost.

Figure 5 describes the behavior of ε̃, for a special configuration of the data: the final positions are
contained in a cubic or almost cubic configuration (like Figure 4). Each value of ε̃ of Figure 5 is a
mean of ten realizations for a given N . For a given N , most of the ε̃ are equal, and the confident
interval is O(ε̃). In this case, ε̃ seems to follow a law like ε̃ = O( 1

N
), which is the same behavior

found in the integer case (see Remark 2.4).
Compared to figure 3, several remarks have to be made: first, in the case of integer distances,

the optimal configuration is found even for high ε0, because of the simplicity of our test case.
Second, the configuration of Test Case 2, which contains more disorder, implies lower values for
ε̃. Finally, it is not sure at all that for all ε′0 < ε0, the algorithm reaches the optimal solution.
In figure 5, ε̃ is the largest one found, ensuring that for all ε taken lower than it, the optimal
configuration is found.
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3.2. Complexity and CPU time

The worse-case complexity for the Auction Algorithm (with ε-scaling, in the case of integer
data) is said to be in O(N3 log(NC)) [4, 7]. Surprisingly, Figure 6 shows a better result for Test
case 2: the complexity in our case (according to ε̃, for a fixed θ), tends to be ruled by a law in
O(N2).

It is noteworthy that, in our application, the configuration and the regularity of the final
positions of Test case 2 (shown in Figure 4) may improve the prefactor appearing in front of
O(N2). Indeed, taking a random repartition of the final positions rather than the regular one in
Test Case 2 leads to the same behavior of the complexity, except that the prefactor is higher.

Figure 6. Complexity of the algorithm in the configuration of Figure 4.

The implementation of the Auction Algorithm uses efficient structures, but the time of execution
in a sequential processor remains high: 3 min for 104 particles. The main limitation appears in
the Step 2. of Algorithm 2.5: for large N , and a given number N − Nk of particles to assign,
the number of unassigned particles is not strictly decreasing, but can remain constant during
numerous iterations of the loop 2.1. The reasons of such a phenomena are not well understood
now, and we expect that some modifications (introduction of virtual source and well, for instance)
may improve the Auction Algorithm.

Conclusion and forecast

After introducing the framework of the Stochastic Downscaling Method, we have presented an
algorithm that corrects the particle positions. This algorithm, introduced by D.P. Bertsekas, is
based on an auction process, and on an ε-scaling refinement; it contains several parameters. Our
aim was to understand this algorithm, and use it as a reference method for the optimal transport
problem.
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We have proposed a way to characterize the optimality of the solution in the space of parame-
ters, and a criterion on parameters ε0 and θ which ensures to find a quasi-optimal solution in the
case of real distances: 4 ≤ θ ≤ 6, and ε = O( 1

N
). It is noteworthy that, even if the algorithm does

not necessarily provide the optimal solution, Equation (2.8) provides a control of the optimality
error with the parameter ε.

There is no theoretical result available on the complexity of the algorithm, since its efficiency is
strongly dependent on the data. However, in our case, the complexity is surprisingly low: O(N2).
Although the complexity behaves rather goodly, some work has to be done to bring down the CPU
time, using improvements of the Auction Algorithm proposed in [4].

As a conclusion, this work validates the Auction Algorithm as a powerful tool for optimal
transport problem in dimension three. This algorithm will be the reference method, that will be
compared to other cheaper strategies solving the uniform density constraint, as the one proposed in
[19]. Our future work thus consists in coupling SDM with the Auction Algorithm, and in adapting
the Auction Algorithm to our application. Indeed, the resolution of the stochastic Lagrangian
model is based on a Particle in Cell method, and this specific structure of cells should be integrated
in the Auction Algorithm. This could lead to a cheaper solution in term of number of operations,
and a more adapted solution, according to our physical requirements.
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