Principal Component Analysis in CGAL

Abstract : Principal component analysis is a basic component of many geometric computing and processing algorithms. It is most commonly used on point sets, although applicable as well to sets of arbitrary primitives through the computation of covariance matrices. In this paper we provide closed form formulas of covariance matrices for sets of 2D and 3D geometric primitives such as segments, circles, triangles, iso rectangles, spheres, tetrahedra and iso cuboids. We also describe the method of deriving covariance matrices for their dimensional variants such as disks, balls etc. We finally discuss the flexibility and added value of the present approach by discussing its potential use in applications. Our implementation will be available through the next release of the CGAL library.
Type de document :
[Research Report] RR-6642, INRIA. 2008, pp.13
Liste complète des métadonnées
Contributeur : Pierre Alliez <>
Soumis le : mardi 7 octobre 2008 - 10:24:53
Dernière modification le : samedi 21 juillet 2018 - 14:12:01
Document(s) archivé(s) le : vendredi 4 juin 2010 - 12:16:58


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00327027, version 1



Ankit Gupta, Pierre Alliez, Sylvain Pion. Principal Component Analysis in CGAL. [Research Report] RR-6642, INRIA. 2008, pp.13. 〈inria-00327027〉



Consultations de la notice


Téléchargements de fichiers