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Abstract. This paper deals with a new data assimilation dard nudging algorithm consists in adding to the state equa-
algorithm, called Back and Forth Nudging. The standardtions of a dynamical system a feedback term proportional
nudging technique consists in adding to the equations of theéo the difference between the observation and the equivalent
model a relaxation term that is supposed to force the observaguantity computed by integration of the state equations. The
tions to the model. The BFN algorithm consists in repeatedlymodel then appears as a weak constraint, and the nudging
performing forward and backward integrations of the modelterm forces the state variables to fit as well as possible to the
with relaxation (or nudging) terms, using opposite signs inobservations. This forcing term in the model dynamics has a
the direct and inverse integrations, so as to make the backunable coefficient that represents the relaxation time scale.
ward evolution numerically stable. This algorithm has first This coefficient is chosen by numerical experimentation so
been tested on the standard Lorenz model with discrete obas to keep the nudging terms small in comparison to the state
servations (perfect or noisy) and compared with the varia-equations, and large enough to force the model to the obser-
tional assimilation method. The same type of study has thervations. The nudging term can also be seen as a penalty term,
been performed on the viscous Burgers equation, compamhich penalizes the system if the model is too far from the
ing again with the variational method and focusing on theobservations.

time evolution of the reconstruction error, i.e. the difference
between the reference trajectory and the identified one over
a time period composed of an assimilation period followed
by a prediction period. The possible use of the BFN algo-
rithm as an.initializat.ion for the varigtional method has alsofuIIy introduced in oceanography in a quasi-geostrophic
been mvestlg_ated. Fmally the algor!thm has been test_ed oN &odel (Verron, 1990; Verron and Holland, 1989; Blayo et al.,
Iayere_d quaS|-geostroph|c model with sea-sn_Jrface height Ob1994) and has been applied to a mesoscale model of the
servations. The behaviours of the two algor_|thms have pee'?atmosphere with synoptic-scale data (Stauffer and Seaman,
compared n the presence of perfect or noisy observatlonslggo)_ The nudging coefficients can be optimized by a vari-
and also for |mperfec't models. Th|s has allowed us to r(_:“"‘Ch%ltional method (Stauffer and Bao, 1993; Zou et al., 1992),
a conclusion concerning the relative performances of the tWQNhere a parameter estimation approach is proposed to ob-

algorithms. tain optimal nudging coefficients, in the sense that the differ-
ence between the model solution and the observations is as
small as possible. A comparison between optimal nudging
1 Introduction and Kalman filtering can be found Widard et al. (2003). A
drawback of this optimal nudging technique is that it requires
Nudging is a data assimilation method that uses dynamicajhe computation of the adjoint state of the model equations,
relaxation to adjust a model towards observations. The stanwhich is not necessary in the standard nudging method.

Correspondence to: D. Auroux The backward nudging algorithm consists in solving back-
(auroux@mip.ups-tise.fr) wards in time the state equations of the model, starting from

The nudging method is a flexible assimilation technique,
nd computationally much more economical than variational
data assimilation methods. First used in meteoroldtpke
and Anthes, 1976), the nudging method has been success-
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306 D. Auroux and J. Blum: The Back and Forth Nudging (BFN) algorithm

the observation of the system state at the final time of the2 Description of the Back and Forth Nudging algorithm
assimilation period. A nudging term, with the opposite sign
compared to the standard nudging algorithm, is added to th&.1 Forward nudging

state equations, and the final state computed in the backward _ _ _
integration is in fact an approximation of the initial state of We assume that the model equations have been discretized

the system (Auroux, 2003). in space by a finite difference, finite element, or spectral dis-

The Back and Forth Nudging (BFN) algorithm, introduced cretigation mef[hod. The time continuous model satisfies dy-
in Auroux and Blum (2005), consists in solving first the for- namical equations of the form:
ward nudging equation, and then the model equation backy x
wards in time with a relaxation term (with the opposite sign ——~ = F(X), O0<t<T, (1)
in comparison with the relaxation term introduced in the for-
ward equation). The initial condition of this backward in- With an initial conditionX (0)=xo. We will denote byC the
tegration is the final state obtained by the standard nudging@bservation operator, allowing us to compare the observa-
method. After integration of this backward equation, one ob-tions Xops(?) with the corresponding (X (1)), deduced from
tains an estimate of the initial state of the system. We therihe state vectoX (). We do not particularly assume that
repeat these forward and backward integrations (with the reis a linear operator. If we apply nudging to the model (1), we
laxation terms) until convergence of the algorithm. Such aobtain
forward-backward assimilation technique had already been
introduced in Talagrand (1981a,b). In that algorithm, ateach | —~ = F(X)+K(Xobs— C(X)), O0<i<T, @
observation time, the values predicted by the model for the
observed parameters were just replaced by the observed val X(0) = xo,

ues. This corresponds Fo the pa'rt'icular case of our BFN alihereK is the nudging (or gain) matrix. The model then ap-

gorithm where the nudging coefficients go to infinity. pears as a weak constraint, and the nudging term forces the
The BFN algorithm can be compared to the four- state variables to fit as well as possible to the observations.

dimensional variational algorithm (4D-VAR, see e.g. Inthe linear case (wherE is a matrix, and is a linear op-

Le Dimet and Talagrand, 1986), which also consists in a seerator), the forward nudging method is nothing else than the

quence of forward and backward integrations. In our algo-Luenberger observer (Luenberger, 1966), also called asymp-

rithm it is useless to linearize the system, even for nonlin-totic observer, where the matri can be chosen so that the

ear problems, and the backward system is not the adjoinérror goes to zero when time goes to infinity.

equation but the model equations, with an extra feedback

term that stabilizes the numerical integration of this ill-posed2.2 Backward nudging

backward problem.
Let us finally mention another back and forth data assimi-"V& Now assume that we have a final condition in Eq. (1)

lation method, called the quasi-inverse method (Kalnay et al.instead of an in?tial condition. This leads to the following
2000). In that method, there are no nudging terms, and iackward equation:

the backward integration, the sign of the dissipation terms is ~

changed for stability reasons. The idea of introducing relax- | == = F(X), T >t > 0,

ation (or nudging) terms in our algorithm enables us to keep | 4! . ©)
the dissipation terms with the correct sign in the backward X(T) =xr.

integration, as the nudging terms have a stabilizing role. The backward nudging algorithm (Auroux, 2003) consists in
In Sect. 2 we first present the standard nudging algorithmsolving backwards in time the state equations of the model,
for a non-linear model, then the nudging algorithm applied tostarting from the observation of the system state at the final
the corresponding backward model, and finally we introducetime. If we apply nudging to this backward model with a
the back and forth nudging algorithm. The end of Sect. 2feedback term of the opposite sign (in order to have a well
discusses some theoretical considerations about the choigsssed problem), we obtain
of the nudging gain matrices, and some physical considera-
tions that motivate our algorithm. Section 3 is devoted to the [ dX ~ , -
application of this algorithm to the Lorenz model, and to its { 7 — F(X) = K'(Xops— €(X)), T >1>0,
comparison with the classical variational method. In Sect. 4, | X(7) = 7,
the one dimensional viscous Burgers’ equation is considered
and the two algorithms are again compared. In Sect. 5, wevhereK’ is the backward nudging matrix.
consider a quasi-geostrophic model, and study the effect of The backward integration of this equation provides a state
noisy observations and model errors. Finally, some concluvector at time=0, which can be seen as an identified initial
sions are given in Sect. 6. condition for our data assimilation period.

(4)
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2.3 Back and Forth Nudging (BFN) algorithm part of the algorithm. One can for example consider the opti-
mal nudging matriX opt, as discussed in Zou et al. (1992) or
The back and forth nudging algorithm, introduced in Au- Vidard et al. (2003). In such an approach, a variational data
roux and Blum (2005), consists in first solving the forward assimilation scheme is used in a parameter-estimation mode
nudging equation and then the backward nudging equationio determine the optimal nudging coefficients. This choice
The initial condition of the backward integration is the final provides theoretically the best results for the forward part of
state obtained after integration of the forward nudging equathe BFN scheme, but the computation of the optimal gain
tion. At the end of this process, one obtains an estimate ofnatrix is costly.
the initial state of the system. We repeat these forward and \whenK =0, the forward nudging problem (2) simply be-
backward integrations (with the feedback terms) until con-comes the direct model (1). On the other hand, setting

vergence of the algorithm: K=+o0 forces the state variables to be equal to the obser-
dX, vations at discrete times, as is done in Talagrand (1981a,b).
K> 1 e F(Xi) + K(Xobs— C(Xk)), In order to correctly choose the forward nudging matrix,

we can give a variational interpretation of the forward nudg-
ing. Let us assume that we know the statistics of errors on
5 ) observations, and denote Bythe covariance matrix of ob-
dXy ~ , ~ . ! s .
— = F(X) — K'(Xobs— C (X)), servation errors, which is usually assumed to be symmetric

k=1 dt positive definite. We now set the nudging matrix to be
Xi(T) = Xp(T),

X (0) = X4—-1(0),

Tp-1
with the notationXo(0)=xo. Then,X1(0)=xo, and an inte- K=C"R™, (7)
gration of the direct model giveX1(7") and henceX1(T).  and we assume the direct model to be linear (or linearized).
An integration of the backward model givg(0), whichis  we consider atemporal discretization of the forward nudging
equal toX>(0), and so on. problem (2), using for example an implicit scheme. If we

The reader is referred to Auroux and Blum (2005) for the denote byX” the solution at time, and X"+ the solution at
proof of convergence of this algorithm in a simple case (lin-time, 1, andAr=t,,1—1,, Eq. (2) becomes
ear model and full observations). Moreover, if the obser-
vations are perfect (i.eXqps satisfies Eq. 1) and K=K’ X+l xn
and F andK commute, then it is straightforward to see that At
X (t)— Xobs(t) whenk— +o0.

If K=K’ and if the forward and backward trajectories
X (1) and X; (1) converge towards the same limit trajec- . A
tory X« (¢), then it is clear by adding the two equations of following optimization problem

= FX" ! 4 K(Xops— CX™H1, (8)

whereF is assumed to be a symmetric linear model operator.
Then, it is straightforward to see th&t*+1 is solution of the

Eqg. (5) thatX(¢) also satifies the model Eq. (1), and that . At

K (Xobs—C (X00))=0. min [§<X — X% X - X") - - (FX, X) €)
When the observations are discrete in time, i.e. the obser-

vation vectorXopsis only available at some timés); -1y, + £<R_1(Xobs_ CX), Xobs— CX)] .

then the nudging term is only added at these time steps: 2

dX N The first two terms correspond exactly to the energy of the

— =FX)+ Z K(Xobs— C(X))8(t — 1;). (6) discretized direct model, and the last term is the observation

dt i=1 part of the variational cost function. This variational princi-

In the following numerical experiments, the observations areple showts) t?\st at ea_ch_ tl_m_e sttehp, the nudg|fntghstate ,:S a corg-
not available at each time step, and hence we solve this giromise between minimizing the energy ot the system an

crete nudging equation, instead of the continuous ones Wéhe dlstar;c;a to thgdobserva:jt:thr?s. 'IAts a consequence, 'F?elre
previously described. is no need to consider an additional term ensuring an initia

condition close to the background state like in variational al-
2.4 Choice of the nudging matrices gorithms, neither for stabilizing or regularizing the problem,

nor from a physical point of view. One can simply initial-
2.4.1 Forward nudging matri, variational interpretation  ize the BEN scheme with the background state, without any

of the nudging, and statistics of errors information on its statistics of errors. The nudging method

naturally provides a correction to the model equations from
The standard nudging method has been widely studied in théhe observations. The model equations are hence weak con-
past decades (Hoke and Anthes, 1976; Verron, 1990; Staufstraints in the BFN scheme. In some nonlinear cases, the
fer and Seaman, 1990; Bao and Errico, 1997). Thus, there aréF' X, X) term in Eq. (9) can be replaced byG(X), where
several ways to choose the nudging makixn the forward G is the energy of the system at equilibrium.
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In the following sections, all numerical experiments have wherek’>0. The coefficient’ is usually chosen to be the
been performed with an easy-to-implement nudging matrix: smallest coefficient that makes the numerical backward inte-

K=cl&l)=kcT, (10) gration stable.

wherek is a positive scalar gain, ardis the identity ma- 2.5 Experimental approach

trix of the observation space. This choice is motivated by )
the following remarks. First, the covariance matrix of ob- The same approach has been used for all the numerical
servation errors is usually not well known (but if it is avail- €Xperiments presented in the next sections. This approach
able, then one should consider Eq. (7) for the definition of€ONSists in performing twin experiments with simulated data.
K). Secondly, this choice does not require a costly numeri-First, & reference experiment is run and the corresponding
cal integration of a parameter estimation problem for the de-data are extracted. From now on th_ls reference trajectory will
termination of the optimal coefficients. Choosikg=C7'L, be called t_he exact squpon._Expenmental data are supposed
whereL is a square matrix in the observation space, hag© be obtained every, gridpoints of the model, and eveny
another interesting property: if the observations are not loime steps. The simulated data are then optionally noised
cated at a model grid point, or are a function of the modelWith & Gaussian white noise distribution, and provided as
state vector, i.e. if the observation operatinvolves in- ~ Observations to the assimilation scheme. The first guess of

terpolation/extrapolation or some change of variables, therih€ assimilation experiments is chosen to be either a constant
the nudging matrixK will contain the adjoint operations, field or the reference model state some time before the be-

i.e. some interpolation/extrapolation back to the model grid9inning of the assimilation period. Finally, the results of the
points, or the inverse change of variable. assimilation process are compared with the exact solution.

2.4.2 Backward nudging matriK’ and pole assignment . ) o
method 3 Convergence of BFN and comparison with variational

assimilation for the Lorenz equations
The goal of the backward nudging term is both to have a
backward data assimilation system and to stabilize the inteThe BFN algorithm was first tested on Lorenz’ chaotic sys-
gration of the backward system (4), as this system is usuteém (Lorenz, 1963):
ally ill posed. The choice of the backward nudging matrix ;.
is then imposed by this stability condition. If we consider a 7 10(y —x),
linearized situation, in which the system and observation op- d
erators ¢ andC, respectively) are linear, and if we make the Y o8y — y —xz, (13)
change of time variablé=T —¢, then the backward equation !
can be rewritten as d_z

t

8
= —5 Z+xy.
179.4 ~ ~
- W =FX— K/(Xobs— cX), (11)

. . : P
and theln the fr?ﬁtrlx t? .be r?ta?dlllrz]ed HF_'?. ¢ "el' thet We have performed twin experiments in order to prove the
eljgenvalues of this matrix snould have negative real parts. ,,merica) convergence of the BFN algorithm. In this sec-

We now recall the pole assignment result (see e.g. Dattation, the assimilation period i®, 3], the time step is @01

1987; Arnold and Datta, 1998; Bonnans and Rouchon, 2005; .
’ . . ’ ! and data are extracted every=100 time steps (31 obser-
Trélat, 2005): if(F, C) is an observable system, whefds = ps (

; . . . ; vations during the assimilation period). We assume that all
anxn matrix andC is amxn.matrlx (heren is the size three variables are observed.
ggrghseg?or}t;ol \sgecttr?e?ri ,;ne? é" eljistths ea?IIZ:ag': :)rrlwee ?ﬁ;ﬁ&’a' _ We assume in this subsec.tion that data are unnoised._ The
obs, " ; o S initialization of the BFN algorithm has been performed using
such that— F—K’C is a Hurwitz matrix, i.e. all its eigen-

alues are in the negative half-plane. We should also rea randomly noised state.
valul ! gativ P ' u Figure 1 shows that the BFN iterates at time0 nearly

call (see e.gArnold and Datta, 1998; ®lat, 2005) that converge towards the exact initial conditi@ie in less than

Eg g;'s anCo}l?:?{}/?sblee Sgﬁfnm if-and only if the rank of 10 iterations. Figure 2 shows that the successive BFN iterates
C N : . are almost equal after 10 iterations. These two figures prove
Hence, we can assume that there exists at least one matrH<1e numerical convergence of the BFN algorithm
, : . .
K sugh that the backward nudging system (4? IS Sft&.‘ble' Figure 3 clearly shows that the BFN algorithm makes the
As in the forward part of the algorithm, for simplicity rea- . .
sons we make the following choice for the backward nudgin trajectory converge towards the observations.
9 9ng all these experiments, only 10 iterations are required to

matrix K’ in the next sections: . . T
reach convergence. Recall that one iteration consists in one
K =k'cTl =kcT, (12)  forward integration of the model (with a nudging term) and

3.1 Convergence of the BFN algorithm

Nonlin. Processes Geophys., 15, 305-319, 2008 www.nonlin-processes-geophys.net/15/305/2008/
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Fig. 1. Difference between the kth iterai, (0) and the exact ini- Fig. 2. Difference between two consecutive BFN iterates for the 3
tial condition X¢rue for the 3 variables versus the number of BEN Variables versus the number of BFN iterations.
iterations.

2500

one backward integration of the same model (with an oppo-

site sign nudging term). Finally, the nudging matriéeand 2000 Y
K’ are equal tacCT andk’'CT respectively (see Sect. 2.4),
with k=50 andk’=100. B1s00]
x
3.2 Comparison with the variational assimilation algorithm g

1000}
We have compared the BFN and variational assimilation al-
gorithms. The variational assimilation (VAR) algorithm is
based on the minimization of a global cost function, which
measures the discrepancy between the observations and tr
corresponding system states. The adjoint method allows one 0
to compute the gradient of the cost function in a single nu-
merical integration of the adjoint equation (see e.g. Le Dimet
and Talagrand, 1986). One iteration of the minimization pro-

cess consists then in one forward integration of the mOde|:ig. 3. Mean square difference between the observations and the

(in order to compute the cost function) and one backwardgpy igentified trajectory for the 3 variables versus the number of
integration of the adjoint model (in order to compute its gra- gen iterations.

dient). The computational costs of one BFN iteration and
one VAR iteration are then nearly the same. We stopped
both algorithms before convergence, with a maximum of 10trajectory becomes wrong before time4, whereas the BFN
iterations. We have used a limited memory quasi-Newtontrajectory becomes wrong neas5b.
technigue (L-BFGS) for the minimization of the VAR cost  We have also studied the influence of observation errors
function (Nocedal, 1980). on these algorithms. Figure 5 shows the same data as Fig. 4
Figure 4 shows the trajectories identified by the variationalin the case of 10%-noisy (Gaussian white noise) observa-
(VAR) and BFN algorithms, using perfect observations (with tions. The additional curve shows the perturbed trajectory
the same time distribution as in the previous subsection). Thelerived from the noisy observations of the system at time
reference trajectory is also shown for comparison. In orderr=0. Note that this curve diverges from the reference trajec-
to make the figure clearer, only the first Lorenz variabie tory before the end of the assimilation period (nea.5).
represented. Recall that the assimilation perid®,8], and The conclusions concerning the difference between the VAR
[3, 6] is a forecast period (no observations). We can see thaaind BFN algorithms are almost the same as in the previous
the identified trajectories are very close to the reference traexperiment (with perfect observations), even though the re-
jectory all over the assimilation period. After that, the VAR sults are a little bit less accurate than before. It is clear that

500 -

10 15 20 25 30 35 40
BFN iterations
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20 T

True
Perturbed
— — BFN
— — — VAR

151

101

-10}

-15}

Fig. 4. Evolution in time of the reference trajectory (solid line), and Fig. 5. Evolution in time of the reference trajectory (solid line),
of the trajectories identified by the variational assimilation (dashedof the perturbed trajectory derived from the noisy observation at
line) and BFN (dash-dotted line) algorithms, in the case of perfecttime r=0 (dotted line), and of the trajectories identified by the VAR
observations and for the first Lorenz variable (dashed line) and BFN (dash-dotted line) algorithms, in the case of
noisy observations (with a 10% Gaussian white noise) and for the
first Lorenz variablex.
for the same number of iterations, the BFN algorithm is in
this case slightly better than the variational method.
4.2 Convergence of the BFN algorithm

4 Convergence and comparison with the VAR algo- We have first focused our interest on the numerical conver-

rithm on the 1-D viscous Burgers’ equation gence of the BFN algorithm we have proposed, because the
mathematical convergence result is currently only valid for
4.1 Physical model linear models.

Figure 6 shows the RMS (root mean square) relative

We consider in this section a very simple nonlinear geophysiifference between two iterates of the BFN algorithm

cal model. The evolution model is the viscous Burgers’ equa- || Xx+1— Xk . .
9 qua- 1 Xe+1 =Xl versus the number of iterations. We can clearly

tion over a one-dimensional cyclic domain: 1 Xkl
see that the relative difference between two iterates becomes
X 19x2 RED'¢ smaller than 1% in fewer than 5 iterations. The numeri-

(14) cal convergence of the algorithm is then obvious, and very

quickly achieved.
We have then compared the BFN iterates with the exact
solution (or reference trajectory) with the aim of quantifying

- _y—Z— =0,
dt 2 0s l)8s2

where X is the state variabley represents the distance in
meters around the 4™ constant-latitude circle andis the
time. The period of the domain is roughly .3& 1Pm. the identification of the true initial state.

e - . 2 1
The diffusion coefficient is set to 16m?s " (Fisher and Figure 7a shows the RMS relative difference between the
Courtier, 1995). The time step is one hour, and the assimilagep iterates at time—0 and the exact initial condition

tion period is roughly one month (700 time steps). Data are|| X (0)— Xiruell . . .
available every:,=5 gridpoints of the model, with a time || Xl versus the number of iterations. We again
sampling of 10 h (every,=10 time steps). This provides a observe convergence in fewer than 5 iterations. The identi-
spatial density similar to the longitudinal distribution of the fication error is nearly 12% at the end of the process. This
mid-latitude radiosonde network. The observation noise disseems huge, but compared to some other data assimilation
tribution corresponds to a 5% root mean square (RMS) errortechniques, the BFN algorithm is not supposed to identify
The first guess of the assimilation experiments is chosen tgrecisely the initial condition but rather the reference trajec-
be a constant field{=0 everywhere). Finally, in the follow- tory as a whole. Figure 7b shows the RMS difference be-
ing experiments, the nudging matricksandK’ are set to  tween the BFN iterates and the exact final condition (i.e. the
kCT andk’CT, respectively (see Sect. 2.4), wite-0.01 and  reference trajectory at the end of the assimilation period) ver-
k'=0.02. sus the number of iterations. We can see that the relative

Nonlin. Processes Geophys., 15, 305-319, 2008 www.nonlin-processes-geophys.net/15/305/2008/
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Fig. 6. RMS relative difference between two consecutive iterates of 06l
the BFN algorithm versus the number of iterations. '
505
b5
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difference between the true final solution and the identified k-
final solution is about 5%. g 0.31
_ . . T 02h
4.3 Comparison with the VAR algorithm
0.1
In this subsection, we focus our interest on the evolution of 0 : : ‘ ‘ : :
0 1 2 3 4 5 6 7 8

the system forecast after the assimilation period. This is the BFN iterations

most frequent application of data assimilation. We have con-

sidered on one hand the initial condition provided by the

BFN algorithm or the variational assimilation (VAR) algo- Fig. 7. RM$ relative difference beth_een the BFN i_terates and the
rithm, and on the other hand an interpolation in the stateex"’?Ct solution versus the number of iterations, at tim8 (a) and
space of the first available observation (at tireed). We attimer=T (b).

have used these states as initial conditions for the exact model

(14) and computed the corresponding trajectories over a 4

month time period, corresponding to the assimilation perioddreater than 2%, the difference being even more significant
followed by a 3 month prediction period. at the end of the prediction period.

We have first compared our algorithm with the standard However, allowing a larger number of iterations before
VAR algorithm in the case of perfect observations. The spa-stopping these algorithms does not affect much the output
tial and time distributions of the observations remain un-of the BFN algorithm, as the convergence is nearly achieved
changed, and the VAR cost function is still minimized using in fewer than 10 iterations, whereas the VAR algorithm pro-
a limited-memory quasi-Newton algorithm (Nocedal, 1980). vides a more accurate trajectory. It simply needs nearly 30

Figure 8 shows the RMS (root mean square) relative dif-iterations (3 times more than for the BFN) to produce com-
ference between the reference trajectory and the identifie@arable results in this case.
trajectories for the BFN (dotted line) and VAR (dash-dotted We now consider noisy observations (using the same noise
line) algorithms. We recall that the assimilation period distribution as in the previous subsections). Figure 9 shows
[0, 70Q] is followed by a three times longer forecast pe- the RMS relative difference between the BFN trajectory
riod ([700, 2800). Both algorithms were initialized with the (computed using the last BFN state at time€0 as an initial
same initial condition, corresponding to the true state vec-condition) and the reference trajectory (dotted line), between
tor at a previous time. Both algorithms were stopped afterthe VAR trajectory (computed using the last initial state pro-
at most 10 iterations, and therefore, probably before converduced by the minimization process) and the reference trajec-
gence. One can see that at the beginning of the predictiotory (dash-dotted line), and between the perturbed trajectory
period ¢=700), the identification error of the BFN algorithm (derived from the noisy observations of the system at time
is smaller than 1%, whereas that of the VAR algorithm is t=0) and the reference trajectory (solid line), versus time.
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Fig. 8. Evolution in time of the RMS difference between the ref- Fig. 9. Evolution in time of the RMS difference between the refer-
erence trajectory and the identified trajectories for the BFN (dottedence trajectory and the perturbed trajectory derived from the noisy
line) and VAR (dash-dotted line) algorithms, in the case of perfectobservations of the system at time-O (full line), and between
observations. the reference trajectory and the identified trajectories for the BFN
(dotted line), VAR (dash-dotted line) and BFN-preprocessed VAR
(dashed line) algorithms, in the case of noisy observations (with a
The fourth curve (dashed line) will be discussed at the end 06% RMS error).
this subsection.
We can see that the perturbed trajectory presents an error
of about 5% at the beginning of the assimilation period. Thetrajectory decreases sharply and remains small afterwards,
stable modes of the model cause the error to decrease at fir§iie can say that the identified initial condition is part of the
but after a few days (200 time steps, nearly 6 days) the unstastable manifold of the model, and the reconstruction error
ble modes cause the error to increase over time (as observédh the unstable manifold is extremely small. This is due to
in Pires et al., 1996). If we consider the BFN trajectory, we the fact that the BFN initial condition comes from a back-
can see that at the beginning of the assimilation period (timévard integration of the model, at which point the trajectory
1=0), the error is much higher than for the perturbed trajec-has been smoothed by the stable manifold of the backward
tory, near|y 9%, but after 500 time Steps, the error is Sma"erandEL which is the unstable manifold of the forward model.
than 2%. Even after 4 months, the error is still smaller than We have also studied the possibility of using the BFN algo-
3%, whereas the error of the perturbed trajectory has nearlyithm as a preprocessing tool for the VAR algorithm. For this
reached 15% by that time. This clearly proves the efficiencypurpose, we stopped the BFN after only 5 iterations, and we
of the BFN algorithm, allowing one to identify a trajectory used the resulting initial State vector as an initialization vec-
over a 4 month period with an assimilation period of only one tor for the VAR minimization process, which we also stopped
month, with less than 2% RMS error using 5% noisy obser-after 5 iterations. The computational cost is then the same as
vations. The VAR trajectory produces quite a good approxi-for 10 iterations of the BFN or VAR algorithms alone. The
mation of the initial condition (much more accurate than thefourth curve (dashed line) of Fig. 9 shows the RMS relative
BFN algorithm), but then, after a short decrease, the errodifference between the reference trajectory and the trajectory
increases slightly and remains nearly constant all over thadentified by this BFN-preprocessed VAR algorithm. One
prediction period, close to 4%. One should keep in mindcan see that the use of the BFN algorithm as a preconditioner
that both algorithms have been stopped after only 10 iterfor the VAR algorithm gives a slightly better initial state, and
ations, and the convergence of the VAR algorithm has nothe error on the identified trajectory remains smaller than 2%
been reached. over the entire assimilation period, which is not the case for
It is particularly interesting to see that, at the end of the either algorithm considered alone. During the prediction pe-
assimilation period (or at the beginning of the prediction pe-riod, the error remains nearly constant, and is smaller than
riod), after 700 time steps, the difference between the BFNfor the VAR algorithm, but a little bit larger than for the BFN
trajectory and the exact trajectory has nearly reached its minalgorithm, even though at the end of the period it is exactly
imum. This shows how efficient the BFN algorithm can be of the same order.
for the prediction step, whereas the reconstruction of the ini- We must finally mention that, after convergence, the VAR
tial state is not very efficient. Since the error on the BFN algorithm usually identifies a better trajectory than the BFN
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algorithm, as can be seen in Fig. 10. However the VAR al- 0.6 \
gorithm needs many more iterations than the BFN scheme tc ;ﬁﬁ‘””’ec’
reach convergence. In this experiment for example, the num- %[ ~ — VAR
bers of iterations at convergence are 6 and 29 for the BFN
and VAR algorithms respectively. In nearly all the exper-
iments we performed, starting from the same initialization
state, the VAR algorithm needed at least four times more it- |
erations than the BFN algorithm to reach convergence, butg
most of the time, it identified a slightly better state, and hence £
gave a better prediction. This also confirms that the BFN al- *

0.121

0.1r

Ive error

t

0.08

0.06 -

gorithm is much more powerful in the very first iterations. 0.04
0.02P .
5 Convergence and comparison with 4D-VAR on a lay- T D T
ered quasi-geostrophic ocean model % 500 1000 1500 2000 2500 3000
Time steps

5.1 Quasi-geostrophic ocean model

We consider here a layered quasi-geostrophic ocean modé&ig. 10. Evolution in time of the RMS difference between the refer-
(Holland, 1978; Verron et al., 1992; Blayo et al., 1994). In €nce trajectory and the perturbed trajectory derived from the noisy
this model the ocean is supposed to be stratified Iay- pbsgrvations of the system at time0 (solidiline, same as soliq line .
ers, each of them having a constant fluid density. The quasi! F'9: ). and between the reference trajectory and the trajectories
geostrophic model is obtained by taking a first order eXpan_ldentlfled by the BEN (dotted_llne, same as dotted line in Fig. 9) and
. . . . VAR (dash-dotted line) algorithms after convergence, in the case of
sion of the Navier-Stokes equ_atlon with respect to the Rossby.oisy observations (with a 5% RMS error).
number. The model system is then composed obupled

equations resulting from the conservation law of the potential

.. . . 2
. : . Wii1—Wr  Wp—Vi
vorticity. The equations can be written as with —(W‘I’)kZZOp < 1= Wk Wi 1),
D1 (61(W) + f) 6 , k8 \ Pk+1—Pk  Pk—Pk-1
2L 4 Ay = F1 inQx]0, T, (15 2p (Wp—W
Dt AR B l<k<n, and —(Ww)=J0" ( 2 1) and
at the surface layek&1); ) Hig \ p2—p1
Dy (0,(U —(WW) _fOp (_\pn_anl)
W + A4VO¥, =0 inQx]0, T[, (16) " Hig \ pu—pa-1
atthe intermediate layers£2, ..., n—1); — f is the Coriolis force fp is the Coriolis force at the
D, 6,(¥) + f) reference latitude of the ocean).
- nDt + A1AW, + A4V0W, =0, 17 In the B-plane approximation, the Coriolis force varies

in 210, T[, at the bottom layerkn). linearly with respect to the latitude.

— g represents the constant of gravipy, the fluid density
at layerk (andp the average fluid density), arfd; the
— Q c R?is the circulation basin ani, T is the time depth of thek-th layer;
interval;

The notations are as follows:

Dy . . . L
— Zisthe Lagrangian particular derivative:
— n is the number of layers; Dt

Dy d

. . . _=_+J(‘Ijk5')7

— W is the stream function at laydr, ¥ is the vector Dt ot

(U1, W) . .

whereJ is the Jacobian operator

— 6 is the sum of the dynamical and thermal vorticities I(f.g) = df og  of dg

at layerk: ’ dx dy 9y dx’

— AV, represents the bottom friction dissipatiov®w;
O (V) = AV —(WW)y, represents the lateral friction (of biharmonic type)
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discretized by a Cartesian mesh of 2D0x 3 grid points.
0.14 \ \ \ The time step is B h. The initial conditions are chosen equal

% 0.12 to zero for a six-year ocean spin-up phase, the final state of
g oif which becoming the initial state of the data assimilation pe-
S o008} riod. Then the assimilation period starts (tim€0) with this
@ § ool initial condition (W (0)), and lasts 5 days (time=T), i.e.
% 0.04 | 80 time steps. Data are available every=5 gridpoints of
2 ool the model, with a time sampling ofh (i.e. everyn,=5
0 ‘ ‘ ‘ time steps). The first guess of the assimilation experiments is
0 5 10 15 x chosen to be the reference state of the ocean one year before
0.16 _ BFNiterations the beginning of the assimilation period. Finally, the nudging
_ o014l matricesK andK’ are sett&C” andk’CT, respectively (see
e o1zt Sect. 2.4), wheré=1.8x10-5 andk’=7.4x107C.
o 0.1t
(b) % 0.08 ¢ 5.2 Convergence of the BFN algorithm in the case of per-
g 006 fect observations
T 004t
0.02¢ We first focus our interest on the numerical convergence of
% 5 10 15 2 the BFN algorithm. In this part, we have used the exact (i.e.
BFN iterations unnoised) observations.

Figure 11 shows the evolution of the difference between
two consecutive BFN iterates (a), and that of the difference
between the BFN iterates and the exact solution (b), versus
the number of iterations of the BFN scheme. We can see that
after 20 iterations, the successive iterates are almost equal
to each other, and they nearly converge towards the exact

dissipation, andi; and A4 are respectively the bottom initial condition. This proves the numerical convergence of
and lateral friction dissipation coefficients; the BFN algorithm in this case.

Fig. 11. RMS relative difference between two consecutive BFN
iterateg(a) and between the BFN iterates and the exact solytipn
versus the number of BFN iterations.

5.3 Comparison with 4D-VAR in the case of perfect obser-
— andF; is the forcing term, the wind stress applied to the vations

ocean surface.
The 4D-VAR algorithm requires the computation of the ad-

The initial conditions¥; (0) and some boundary conditions joint state, which consists invectors (hera=3), represent-
resulting from the mass conservation law (Holland, 1978;ing the components of the adjoint state in each layer. The
Luong et al., 1998; Auroux and Blum, 2004) complete the gradient of the cost function is itself maderotomponents,
equations of the direct model. representing the derivatives of the cost function with respect
We suppose that the data we want to assimilate come fronto the initial state of the stream function at each layer. Each
satellite measurements of the sea-surface heighwhich of these components is computed from the value of the ad-
is directly related to the upper layer stream functibp by joint state at time=0 (final time of the backward integration
h:éwl. Thus, we assume that we have an observationan the adjoint equations)_. The detailed exprgssions o_fzthe_
g components of the gradient of the cost function are given in
stream function\yi’bs. These observations are only avail- Luong et al. (1998); Auroux and Blum (2004). The 4D-VAR
able at times;, i=1... N, over the data assimilation period functional contains both a regularization term, depending on
[0, T], and are also discrete in space. We consider then thathe potential vorticity, and an observation term, quantifying
the vector\lffbs(t,-) represents the set of available observa-the difference between the observations and the state func-
tions of the ocean surface at time tion (see e.g. Luong et al., 1998). In all the following discus-
The control vectoru (which has to be determined) sion, we only refer to the observation part of the cost func-
is the initial state of the stream functions at all layers tion and its gradients. The minimization of the cost func-
(Y (0)j=1 n- tion is performed using a limited-memory BFGS algorithm
The numerical experiments have been made on a threefM1QN3 routine, from the MODULOPT library: Gilbert and
layered square ocean. The basin has horizontal dimensiorlsemachal, 1989).
of 4000 kmx4000km and its depth is 5km. The layers’ In this section, we have compared the BFN and 4D-VAR
depths are 300 m for the surface layer, 700 m for the inter-algorithms. Figure 12 shows the true initial state (a), the ini-
mediate layer, and 4000 m for the bottom layer. The ocean idialization vector used for both 4D-VAR and BFN algorithms
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© (d)

Fig. 12. Upper layer of: true initial staté), initialization (or background) state for both 4D-VAR and BFN algorith(ins and initial states
identified by the BFNc) and 4D-VAR(d) algorithms.

(b), and the initial states identified by the BFN (c) and 4D- of its gradient versus the number of iterations for the BFN
VAR (d) algorithms respectively. Only the first (uppermost) (a) and 4D-VAR (b) algorithms. It can be seen that both the
of the three layers is represented. cost function and its gradients decrease more rapidly with
In order to quantify these results, Fig. 13 shows the evo-successive iterations using the BFN scheme than using 4D-
lution of the 4D-VAR cost function and the 3 components VAR. Recall that the computational cost of a BFN iteration is

www.nonlin-processes-geophys.net/15/305/2008/ Nonlin. Processes Geophys., 15, 305-319, 2008



316 D. Auroux and J. Blum: The Back and Forth Nudging (BFN) algorithm

le+14f
le+12}
1e+10

(@)

(@) 1e+08}

RMS relative difference

le+06 -

10000 -

0 5 10 15 2C
BFN iterations

0 5 10 15 2C
BFN iterations 0.16

le+14
le+12p-
Let+10

(b)

()  1e+08

RMS relative error

1le+06

10000

L L L 0 5 10 15 20
0 5 10 15 2C BFN iterations
4D-VAR iterations

Fig. 14. RMS relative difference between two consecutive BFN it-
Fig. 13. Evolution of the 4D-VAR cost function and of the 3 gradi- eratega) and between the BFN iterates and the exact solytiyn
ents of the cost function in the 3 ocean layers for the BFN iteratesversus the number of BFN iterations in the case of noisy observa-
versus the number of iteratio) and for the 4D-VAR iterates ver-  tions.
sus the number of iteratiorib).

nearly equal, and they are relatively close to the exact initial
almost equivalent to the cost of a 4D-VAR iteration, as bothcondition. Even if the convergence is a little bit less obvious
algorithms consist in a forward model integration and a back-than in the case of perfect observations, these two figures
ward model integration (and the models involved have theshow that the BFN algorithm converges.
same sizes). In 20 iterations, the cost function has been di- As in the previous subsections in the case of perfect ob-
vided by 4 orders with the 4D-VAR, and by 6 orders with the servations, we have compared the BFN and 4D-VAR algo-
BFN. From this, we can conclude that the BFN algorithm is rithms. Figure 15 shows the evolution of the 4D-VAR cost
more efficient than the 4D-VAR algorithm in minimizing, in function and gradients for the BFN (a) and 4D-VAR (b) al-
the same computing time, the quadratic difference betweegorithms. We still observe a decrease of both the cost func-
the observations and the corresponding state variables. Thign and its gradients with the BFN iterates, but contrary to
is all the more remarkable as, unlike the case of 4D-VAR,the previous case (perfect observations), the decrease is al-
this is not the primary goal of the BFN scheme. The nextmost the same as with the 4D-VAR algorithm, even though
point will be to check if these findings remain valid when the after 10 iterations the BFN provides better results. The 4D-
observations are noisy. VAR algorithm seems more efficient at smoothing the obser-
vations (Gaussian white noise) than the BFN algorithm, but
5.4 Convergence and comparison with 4D-VAR in the casethis is highly related to the choice of the regularization term
of noisy observations in the 4D-VAR cost function.
Figure 16 shows, for each of the three layers, the RMS rel-
We now consider noisy observations (see previous subseative difference between the BFN trajectory (computed using
tions for details about the noise distribution). We have per-the last BFN state at time=0 as initial condition) and the
formed the same experiments as in the previous subsectiongference trajectory as a solid line, and between the 4D-VAR
and first studied the convergence of the BFN algorithm, andrajectory (computed using the last initial state produced by
then compared it with the 4D-VAR algorithm. the minimization process) and the reference trajectory as a
Figure14 shows the evolution of the relative difference be- dotted line, versus time. The first 5 days correspond to the
tween two consecutive BFN iterates (a) and of the differenceassimilation period, and the next 15 days correspond to the
between the BFN iterates and the exact solution (b), versuforecast period.
the number of iterations in the case of noisy observations. The first point is that the BFN and 4D-VAR reconstruction
We can see that after 20 iterations, the successive iterates aegrors have similar global behaviours: first decreasing at the
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Time (days)
beginning, during the assimilation period, and then increas-
ing over the forecast period (see e.g. Pires et al., 1996, for a
detailed study of the 4D-VAR estimation error). Even if the Fig. 16. Evolution in time of the RMS relative difference between
reconstruction error on the initial condition is much higher the reference trajectory and the identified trajectories for the BFN
with the BFN algorithm than with 4D-VAR, the BFN error (solid line) and 4D-VAR (dotted line) algorithms, versus time, for
decreases much more steeply and for a longer time than th&2Ch layer: from surfac) to bottom(c).
4D-VAR one, and increases less quickly at the end of the
forecast period. This remark should be compared with the
last paragraphs of Sect. 4.3, describing the same behaviour
the BFN algorithm on Burgers’ equation. The quality of the __ . : - e
initial condition reconstruction is better using the 4D-VAR periment. We still have the same exact initial condition as

: : ; . previously, and an experiment is run with a biased model
algorithm, but the BFN algorithm provides a compar_able fi- (with a 2% model error), from which surface data are ex-

R’racted every 5 grid points of the model and every 5 time

ing pointis that, even if only surface observations are ass'm"steps. These simulated data are not noised. The model error

lated, the identification of the intermediate and bottom layers : . .
. : : enables us to generate observations derived from a different
is quite good. The 4D-VAR algorithm was already known g

. . model, corrected by some a priori estimations of neglected
to propagaf[e_surface information to all layers (!_uong et al_"effects in the theoretical model. From now on, we forget the
1998)’ bu.t I IS also t“e."?se for the BFN algorithm, even Ifmodel error, and we want to identify the initial condition us-
this algorithm s less efficient on the bottom layer. ing the assimilating model (without any additional term) and
) ) ) ) the data we have extracted from the reference (biased) model.
5.5 Comparison with 4D-VAR in the case of an imperfect assimilating these observations, generated by the reference

model model, in the assimilating model allows us to study the im-

pact of an imperfect model on the BFN scheme.
In this subsection, we have performed twin experiments with

the aim of identifying the initial condition using observations

nerated by a different model than the one used for the as-
milation. There are no more observation errors in this ex-
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Fig. 17. RMS relative difference between two consecutive BFN

iterateg(a) and between the BFN iterates and the exact solybpn

versus the number of BFN iterations in the case of an imperfect™i9- 18. Evolution of the 4D-VAR cost function and of the 3 gradi-
model. ents of the cost function in the 3 ocean layers for the BFN iterates

versus the number of iteratiofe) and for the 4D-VAR iterates ver-
sus the number of iteratiorfb) in the case of an imperfect model.

Figures 17 and 18 are the analogues of Figs. 14 and 15
for this new experiment. The BFN algorithm still converges
quite well. Although the decrease of the gradients of the costoint state, no optimization algorithm. The only necessary
function is faster with 4D-VAR than with BFN, the cost func- Work is to add a relaxation term to the model equations. The
tion itself decreases more rapidly with BEN, and after 20 it- key pointin the backward integration is that the nudging term

erations, it is 10 times smaller than with the 4D-VAR algo- (With the opposite sign to the forward integration one) makes
rithm. it numerically stable. Hence the nudging (or relaxation) term

The 4D-VAR algorithm used in this experiment does not has a double role: it forces the model to the observations and
take into account any model error term (which exists in real-it stab_ilizc_as the numericgl in_tegration. It is simultaneously a
ity), and then gives worse results than the BFN. The sloweP€enalization and regularization term.
decrease of the gradients can be easily explained by the fact The BFN algorithm has been compared with the vari-
that the goal of the BFN algorithm is not to minimize the ational method on several types of non-linear systems:
cost function and its gradients, but to identify a trajectory, Lorenz, Burgers, quasi-geostrophic model. The conclusion
whereas the 4D-VAR algorithm explicitly aims to decrease Of the various experiments performed in Sects. 3to 5 is that
the gradients of the cost function. On the other hand, thdhe BFEN algorithm is better than the variational method for
BFN algorithm is taking advantage of the feedback terms di-the same number of iterations (and hence for the same com-
rectly added into the model equations, and these additionaputing time). It converges in a small number of iterations.
terms can consequently be considered as a corrective terff course the initial condition is usually poorly identified by
in the model, and thus as a model error term: the nudgindhe BFN Scheme, but on the other hand, the final state of the
method implicitly uses the observations in the partial recon-assimilation period is much better identified by the BFN al-
struction of the model error. gorithm than by the variational assimilation algorithm, which

is a key point for the prediction phase that starts at the end of
the assimilation period. Hence the prediction phase is usually
6 Conclusions better when it comes after an assimilation period treated by
the BFN algorithm, rather than by a variational assimilation
The BFN algorithm appears to be a very promising data assimethod.
milation method. It is extremely easy to implement: no lin-  The two algorithms can be combined, in the sense that one
earization of the model equations, no computation of the adcan perform several BFN iterations before switching to the
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