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Abstract. This paper deals with a new data assimilation
algorithm, called Back and Forth Nudging. The standard
nudging technique consists in adding to the equations of the
model a relaxation term that is supposed to force the observa-
tions to the model. The BFN algorithm consists in repeatedly
performing forward and backward integrations of the model
with relaxation (or nudging) terms, using opposite signs in
the direct and inverse integrations, so as to make the back-
ward evolution numerically stable. This algorithm has first
been tested on the standard Lorenz model with discrete ob-
servations (perfect or noisy) and compared with the varia-
tional assimilation method. The same type of study has then
been performed on the viscous Burgers equation, compar-
ing again with the variational method and focusing on the
time evolution of the reconstruction error, i.e. the difference
between the reference trajectory and the identified one over
a time period composed of an assimilation period followed
by a prediction period. The possible use of the BFN algo-
rithm as an initialization for the variational method has also
been investigated. Finally the algorithm has been tested on a
layered quasi-geostrophic model with sea-surface height ob-
servations. The behaviours of the two algorithms have been
compared in the presence of perfect or noisy observations,
and also for imperfect models. This has allowed us to reach
a conclusion concerning the relative performances of the two
algorithms.

1 Introduction

Nudging is a data assimilation method that uses dynamical
relaxation to adjust a model towards observations. The stan-
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dard nudging algorithm consists in adding to the state equa-
tions of a dynamical system a feedback term proportional
to the difference between the observation and the equivalent
quantity computed by integration of the state equations. The
model then appears as a weak constraint, and the nudging
term forces the state variables to fit as well as possible to the
observations. This forcing term in the model dynamics has a
tunable coefficient that represents the relaxation time scale.
This coefficient is chosen by numerical experimentation so
as to keep the nudging terms small in comparison to the state
equations, and large enough to force the model to the obser-
vations. The nudging term can also be seen as a penalty term,
which penalizes the system if the model is too far from the
observations.

The nudging method is a flexible assimilation technique,
and computationally much more economical than variational
data assimilation methods. First used in meteorology (Hoke
and Anthes, 1976), the nudging method has been success-
fully introduced in oceanography in a quasi-geostrophic
model (Verron, 1990; Verron and Holland, 1989; Blayo et al.,
1994) and has been applied to a mesoscale model of the
atmosphere with synoptic-scale data (Stauffer and Seaman,
1990). The nudging coefficients can be optimized by a vari-
ational method (Stauffer and Bao, 1993; Zou et al., 1992),
where a parameter estimation approach is proposed to ob-
tain optimal nudging coefficients, in the sense that the differ-
ence between the model solution and the observations is as
small as possible. A comparison between optimal nudging
and Kalman filtering can be found inVidard et al. (2003). A
drawback of this optimal nudging technique is that it requires
the computation of the adjoint state of the model equations,
which is not necessary in the standard nudging method.

The backward nudging algorithm consists in solving back-
wards in time the state equations of the model, starting from
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the observation of the system state at the final time of the
assimilation period. A nudging term, with the opposite sign
compared to the standard nudging algorithm, is added to the
state equations, and the final state computed in the backward
integration is in fact an approximation of the initial state of
the system (Auroux, 2003).

The Back and Forth Nudging (BFN) algorithm, introduced
in Auroux and Blum (2005), consists in solving first the for-
ward nudging equation, and then the model equation back-
wards in time with a relaxation term (with the opposite sign
in comparison with the relaxation term introduced in the for-
ward equation). The initial condition of this backward in-
tegration is the final state obtained by the standard nudging
method. After integration of this backward equation, one ob-
tains an estimate of the initial state of the system. We then
repeat these forward and backward integrations (with the re-
laxation terms) until convergence of the algorithm. Such a
forward-backward assimilation technique had already been
introduced in Talagrand (1981a,b). In that algorithm, at each
observation time, the values predicted by the model for the
observed parameters were just replaced by the observed val-
ues. This corresponds to the particular case of our BFN al-
gorithm where the nudging coefficients go to infinity.

The BFN algorithm can be compared to the four-
dimensional variational algorithm (4D-VAR, see e.g.
Le Dimet and Talagrand, 1986), which also consists in a se-
quence of forward and backward integrations. In our algo-
rithm it is useless to linearize the system, even for nonlin-
ear problems, and the backward system is not the adjoint
equation but the model equations, with an extra feedback
term that stabilizes the numerical integration of this ill-posed
backward problem.

Let us finally mention another back and forth data assimi-
lation method, called the quasi-inverse method (Kalnay et al.,
2000). In that method, there are no nudging terms, and in
the backward integration, the sign of the dissipation terms is
changed for stability reasons. The idea of introducing relax-
ation (or nudging) terms in our algorithm enables us to keep
the dissipation terms with the correct sign in the backward
integration, as the nudging terms have a stabilizing role.

In Sect. 2 we first present the standard nudging algorithm
for a non-linear model, then the nudging algorithm applied to
the corresponding backward model, and finally we introduce
the back and forth nudging algorithm. The end of Sect. 2
discusses some theoretical considerations about the choice
of the nudging gain matrices, and some physical considera-
tions that motivate our algorithm. Section 3 is devoted to the
application of this algorithm to the Lorenz model, and to its
comparison with the classical variational method. In Sect. 4,
the one dimensional viscous Burgers’ equation is considered
and the two algorithms are again compared. In Sect. 5, we
consider a quasi-geostrophic model, and study the effect of
noisy observations and model errors. Finally, some conclu-
sions are given in Sect. 6.

2 Description of the Back and Forth Nudging algorithm

2.1 Forward nudging

We assume that the model equations have been discretized
in space by a finite difference, finite element, or spectral dis-
cretization method. The time continuous model satisfies dy-
namical equations of the form:

dX

dt
= F(X), 0 < t < T, (1)

with an initial conditionX(0)=x0. We will denote byC the
observation operator, allowing us to compare the observa-
tionsXobs(t) with the correspondingC(X(t)), deduced from
the state vectorX(t). We do not particularly assume thatC

is a linear operator. If we apply nudging to the model (1), we
obtain






dX

dt
= F(X) + K(Xobs− C(X)), 0 < t < T,

X(0) = x0,

(2)

whereK is the nudging (or gain) matrix. The model then ap-
pears as a weak constraint, and the nudging term forces the
state variables to fit as well as possible to the observations.
In the linear case (whereF is a matrix, andC is a linear op-
erator), the forward nudging method is nothing else than the
Luenberger observer (Luenberger, 1966), also called asymp-
totic observer, where the matrixK can be chosen so that the
error goes to zero when time goes to infinity.

2.2 Backward nudging

We now assume that we have a final condition in Eq. (1)
instead of an initial condition. This leads to the following
backward equation:







dX̃

dt
= F(X̃), T > t > 0,

X̃(T ) = x̃T .

(3)

The backward nudging algorithm (Auroux, 2003) consists in
solving backwards in time the state equations of the model,
starting from the observation of the system state at the final
time. If we apply nudging to this backward model with a
feedback term of the opposite sign (in order to have a well
posed problem), we obtain







dX̃

dt
= F(X̃) − K ′(Xobs− C(X̃)), T > t > 0,

X̃(T ) = x̃T ,

(4)

whereK ′ is the backward nudging matrix.
The backward integration of this equation provides a state

vector at timet=0, which can be seen as an identified initial
condition for our data assimilation period.
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2.3 Back and Forth Nudging (BFN) algorithm

The back and forth nudging algorithm, introduced in Au-
roux and Blum (2005), consists in first solving the forward
nudging equation and then the backward nudging equation.
The initial condition of the backward integration is the final
state obtained after integration of the forward nudging equa-
tion. At the end of this process, one obtains an estimate of
the initial state of the system. We repeat these forward and
backward integrations (with the feedback terms) until con-
vergence of the algorithm:

k ≥ 1







dXk

dt
= F(Xk) + K(Xobs− C(Xk)),

Xk(0) = X̃k−1(0),

k ≥ 1







dX̃k

dt
= F(X̃k) − K ′(Xobs− C(X̃k)),

X̃k(T ) = Xk(T ),

(5)

with the notationX̃0(0)=x0. Then,X1(0)=x0, and an inte-
gration of the direct model givesX1(T ) and henceX̃1(T ).
An integration of the backward model givesX̃1(0), which is
equal toX2(0), and so on.

The reader is referred to Auroux and Blum (2005) for the
proof of convergence of this algorithm in a simple case (lin-
ear model and full observations). Moreover, if the obser-
vations are perfect (i.e.Xobs satisfies Eq. 1) and ifK=K ′

andF andK commute, then it is straightforward to see that
Xk(t)→Xobs(t) whenk→+∞.

If K=K ′ and if the forward and backward trajectories
Xk(t) and X̃k(t) converge towards the same limit trajec-
tory X∞(t), then it is clear by adding the two equations of
Eq. (5) thatX∞(t) also satifies the model Eq. (1), and that
K(Xobs−C(X∞))=0.

When the observations are discrete in time, i.e. the obser-
vation vectorXobs is only available at some times(ti)i=1...N ,
then the nudging term is only added at these time steps:

dX

dt
= F(X) +

N
∑

i=1

K(Xobs− C(X)) δ(t − ti). (6)

In the following numerical experiments, the observations are
not available at each time step, and hence we solve this dis-
crete nudging equation, instead of the continuous ones we
previously described.

2.4 Choice of the nudging matrices

2.4.1 Forward nudging matrixK , variational interpretation
of the nudging, and statistics of errors

The standard nudging method has been widely studied in the
past decades (Hoke and Anthes, 1976; Verron, 1990; Stauf-
fer and Seaman, 1990; Bao and Errico, 1997). Thus, there are
several ways to choose the nudging matrixK in the forward

part of the algorithm. One can for example consider the opti-
mal nudging matrixKopt, as discussed in Zou et al. (1992) or
Vidard et al. (2003). In such an approach, a variational data
assimilation scheme is used in a parameter-estimation mode
to determine the optimal nudging coefficients. This choice
provides theoretically the best results for the forward part of
the BFN scheme, but the computation of the optimal gain
matrix is costly.

WhenK=0, the forward nudging problem (2) simply be-
comes the direct model (1). On the other hand, setting
K=+∞ forces the state variables to be equal to the obser-
vations at discrete times, as is done in Talagrand (1981a,b).

In order to correctly choose the forward nudging matrix,
we can give a variational interpretation of the forward nudg-
ing. Let us assume that we know the statistics of errors on
observations, and denote byR the covariance matrix of ob-
servation errors, which is usually assumed to be symmetric
positive definite. We now set the nudging matrix to be

K = CT R−1, (7)

and we assume the direct model to be linear (or linearized).
We consider a temporal discretization of the forward nudging
problem (2), using for example an implicit scheme. If we
denote byXn the solution at timetn andXn+1 the solution at
time tn+1, and1t=tn+1−tn, Eq. (2) becomes

Xn+1 − Xn

1t
= FXn+1 + K(Xobs− CXn+1), (8)

whereF is assumed to be a symmetric linear model operator.
Then, it is straightforward to see thatXn+1 is solution of the
following optimization problem

min
X

[

1

2
〈X − Xn, X − Xn〉 −

1t

2
〈FX, X〉 (9)

+
1t

2
〈R−1(Xobs− CX), Xobs− CX〉

]

.

The first two terms correspond exactly to the energy of the
discretized direct model, and the last term is the observation
part of the variational cost function. This variational princi-
ple shows that at each time step, the nudging state is a com-
promise between minimizing the energy of the system and
the distance to the observations. As a consequence, there
is no need to consider an additional term ensuring an initial
condition close to the background state like in variational al-
gorithms, neither for stabilizing or regularizing the problem,
nor from a physical point of view. One can simply initial-
ize the BFN scheme with the background state, without any
information on its statistics of errors. The nudging method
naturally provides a correction to the model equations from
the observations. The model equations are hence weak con-
straints in the BFN scheme. In some nonlinear cases, the
〈FX, X〉 term in Eq. (9) can be replaced by−G(X), where
G is the energy of the system at equilibrium.
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In the following sections, all numerical experiments have
been performed with an easy-to-implement nudging matrix:

K = CT (k.I) = kCT , (10)

wherek is a positive scalar gain, andI is the identity ma-
trix of the observation space. This choice is motivated by
the following remarks. First, the covariance matrix of ob-
servation errors is usually not well known (but if it is avail-
able, then one should consider Eq. (7) for the definition of
K ). Secondly, this choice does not require a costly numeri-
cal integration of a parameter estimation problem for the de-
termination of the optimal coefficients. ChoosingK=CT L ,
where L is a square matrix in the observation space, has
another interesting property: if the observations are not lo-
cated at a model grid point, or are a function of the model
state vector, i.e. if the observation operatorC involves in-
terpolation/extrapolation or some change of variables, then
the nudging matrixK will contain the adjoint operations,
i.e. some interpolation/extrapolation back to the model grid
points, or the inverse change of variable.

2.4.2 Backward nudging matrixK ′ and pole assignment
method

The goal of the backward nudging term is both to have a
backward data assimilation system and to stabilize the inte-
gration of the backward system (4), as this system is usu-
ally ill posed. The choice of the backward nudging matrix
is then imposed by this stability condition. If we consider a
linearized situation, in which the system and observation op-
erators (F andC, respectively) are linear, and if we make the
change of time variablet ′=T −t , then the backward equation
can be rewritten as

−
dX̃

dt ′
= FX̃ − K ′(Xobs− CX̃), (11)

and then the matrix to be stabilized is−F−K ′C, i.e. the
eigenvalues of this matrix should have negative real parts.

We now recall the pole assignment result (see e.g. Datta,
1987; Arnold and Datta, 1998; Bonnans and Rouchon, 2005;
Trélat, 2005): if(F, C) is an observable system, whereF is
a n×n matrix andC is a m×n matrix (heren is the size
of the control vectorX and m is the size of the observa-
tion vectorXobs), then there exists at least one matrixK ′

such that−F−K ′C is a Hurwitz matrix, i.e. all its eigen-
values are in the negative half-plane. We should also re-
call (see e.g.Arnold and Datta, 1998; Trélat, 2005) that
(F, C) is an observable system if and only if the rank of
[C, CF, . . . , CF n−1] is equal ton.

Hence, we can assume that there exists at least one matrix
K ′ such that the backward nudging system (4) is stable.

As in the forward part of the algorithm, for simplicity rea-
sons we make the following choice for the backward nudging
matrixK ′ in the next sections:

K ′ = k′CT I = k′CT , (12)

wherek′>0. The coefficientk′ is usually chosen to be the
smallest coefficient that makes the numerical backward inte-
gration stable.

2.5 Experimental approach

The same approach has been used for all the numerical
experiments presented in the next sections. This approach
consists in performing twin experiments with simulated data.
First, a reference experiment is run and the corresponding
data are extracted. From now on this reference trajectory will
be called the exact solution. Experimental data are supposed
to be obtained everynx gridpoints of the model, and everynt

time steps. The simulated data are then optionally noised
with a Gaussian white noise distribution, and provided as
observations to the assimilation scheme. The first guess of
the assimilation experiments is chosen to be either a constant
field or the reference model state some time before the be-
ginning of the assimilation period. Finally, the results of the
assimilation process are compared with the exact solution.

3 Convergence of BFN and comparison with variational
assimilation for the Lorenz equations

The BFN algorithm was first tested on Lorenz’ chaotic sys-
tem (Lorenz, 1963):






























dx

dt
= 10 (y − x),

dy

dt
= 28x − y − xz,

dz

dt
= −

8

3
z + xy.

(13)

3.1 Convergence of the BFN algorithm

We have performed twin experiments in order to prove the
numerical convergence of the BFN algorithm. In this sec-
tion, the assimilation period is[0, 3], the time step is 0.001
and data are extracted everynt=100 time steps (31 obser-
vations during the assimilation period). We assume that all
three variables are observed.

We assume in this subsection that data are unnoised. The
initialization of the BFN algorithm has been performed using
a randomly noised state.

Figure 1 shows that the BFN iterates at timet=0 nearly
converge towards the exact initial conditionXtrue in less than
10 iterations. Figure 2 shows that the successive BFN iterates
are almost equal after 10 iterations. These two figures prove
the numerical convergence of the BFN algorithm.

Figure 3 clearly shows that the BFN algorithm makes the
trajectory converge towards the observations.

In all these experiments, only 10 iterations are required to
reach convergence. Recall that one iteration consists in one
forward integration of the model (with a nudging term) and
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Fig. 1. Difference between the kth iterateXk(0) and the exact ini-
tial conditionXtrue for the 3 variables versus the number of BFN
iterations.

one backward integration of the same model (with an oppo-
site sign nudging term). Finally, the nudging matricesK and
K ′ are equal tokCT andk′CT respectively (see Sect. 2.4),
with k=50 andk′=100.

3.2 Comparison with the variational assimilation algorithm

We have compared the BFN and variational assimilation al-
gorithms. The variational assimilation (VAR) algorithm is
based on the minimization of a global cost function, which
measures the discrepancy between the observations and the
corresponding system states. The adjoint method allows one
to compute the gradient of the cost function in a single nu-
merical integration of the adjoint equation (see e.g. Le Dimet
and Talagrand, 1986). One iteration of the minimization pro-
cess consists then in one forward integration of the model
(in order to compute the cost function) and one backward
integration of the adjoint model (in order to compute its gra-
dient). The computational costs of one BFN iteration and
one VAR iteration are then nearly the same. We stopped
both algorithms before convergence, with a maximum of 10
iterations. We have used a limited memory quasi-Newton
technique (L-BFGS) for the minimization of the VAR cost
function (Nocedal, 1980).

Figure 4 shows the trajectories identified by the variational
(VAR) and BFN algorithms, using perfect observations (with
the same time distribution as in the previous subsection). The
reference trajectory is also shown for comparison. In order
to make the figure clearer, only the first Lorenz variablex is
represented. Recall that the assimilation period is[0, 3], and
[3, 6] is a forecast period (no observations). We can see that
the identified trajectories are very close to the reference tra-
jectory all over the assimilation period. After that, the VAR
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Fig. 2. Difference between two consecutive BFN iterates for the 3
variables versus the number of BFN iterations.
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Fig. 3. Mean square difference between the observations and the
BFN identified trajectory for the 3 variables versus the number of
BFN iterations.

trajectory becomes wrong before timet=4, whereas the BFN
trajectory becomes wrong neart=5.

We have also studied the influence of observation errors
on these algorithms. Figure 5 shows the same data as Fig. 4
in the case of 10%-noisy (Gaussian white noise) observa-
tions. The additional curve shows the perturbed trajectory
derived from the noisy observations of the system at time
t=0. Note that this curve diverges from the reference trajec-
tory before the end of the assimilation period (neart=2.5).
The conclusions concerning the difference between the VAR
and BFN algorithms are almost the same as in the previous
experiment (with perfect observations), even though the re-
sults are a little bit less accurate than before. It is clear that
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Fig. 4. Evolution in time of the reference trajectory (solid line), and
of the trajectories identified by the variational assimilation (dashed
line) and BFN (dash-dotted line) algorithms, in the case of perfect
observations and for the first Lorenz variablex.

for the same number of iterations, the BFN algorithm is in
this case slightly better than the variational method.

4 Convergence and comparison with the VAR algo-
rithm on the 1-D viscous Burgers’ equation

4.1 Physical model

We consider in this section a very simple nonlinear geophysi-
cal model. The evolution model is the viscous Burgers’ equa-
tion over a one-dimensional cyclic domain:

∂X

∂t
+

1

2

∂X2

∂s
− ν

∂2X

∂s2
= 0, (14)

whereX is the state variable,s represents the distance in
meters around the 45◦ N constant-latitude circle andt is the
time. The period of the domain is roughly 28.3×106 m.

The diffusion coefficientν is set to 105 m2 s
−1

(Fisher and
Courtier, 1995). The time step is one hour, and the assimila-
tion period is roughly one month (700 time steps). Data are
available everynx=5 gridpoints of the model, with a time
sampling of 10 h (everynt=10 time steps). This provides a
spatial density similar to the longitudinal distribution of the
mid-latitude radiosonde network. The observation noise dis-
tribution corresponds to a 5% root mean square (RMS) error.
The first guess of the assimilation experiments is chosen to
be a constant field (X=0 everywhere). Finally, in the follow-
ing experiments, the nudging matricesK andK ′ are set to
kCT andk′CT , respectively (see Sect. 2.4), withk=0.01 and
k′=0.02.

0 1 2 3 4 5 6
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Fig. 5. Evolution in time of the reference trajectory (solid line),
of the perturbed trajectory derived from the noisy observation at
time t=0 (dotted line), and of the trajectories identified by the VAR
(dashed line) and BFN (dash-dotted line) algorithms, in the case of
noisy observations (with a 10% Gaussian white noise) and for the
first Lorenz variablex.

4.2 Convergence of the BFN algorithm

We have first focused our interest on the numerical conver-
gence of the BFN algorithm we have proposed, because the
mathematical convergence result is currently only valid for
linear models.

Figure 6 shows the RMS (root mean square) relative
difference between two iterates of the BFN algorithm
‖Xk+1−Xk‖

‖Xk‖
versus the number of iterations. We can clearly

see that the relative difference between two iterates becomes
smaller than 1% in fewer than 5 iterations. The numeri-
cal convergence of the algorithm is then obvious, and very
quickly achieved.

We have then compared the BFN iterates with the exact
solution (or reference trajectory) with the aim of quantifying
the identification of the true initial state.

Figure 7a shows the RMS relative difference between the
BFN iterates at timet=0 and the exact initial condition
‖Xk(0)−Xtrue‖

‖Xtrue‖
versus the number of iterations. We again

observe convergence in fewer than 5 iterations. The identi-
fication error is nearly 12% at the end of the process. This
seems huge, but compared to some other data assimilation
techniques, the BFN algorithm is not supposed to identify
precisely the initial condition but rather the reference trajec-
tory as a whole. Figure 7b shows the RMS difference be-
tween the BFN iterates and the exact final condition (i.e. the
reference trajectory at the end of the assimilation period) ver-
sus the number of iterations. We can see that the relative
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Fig. 6. RMS relative difference between two consecutive iterates of
the BFN algorithm versus the number of iterations.

difference between the true final solution and the identified
final solution is about 5%.

4.3 Comparison with the VAR algorithm

In this subsection, we focus our interest on the evolution of
the system forecast after the assimilation period. This is the
most frequent application of data assimilation. We have con-
sidered on one hand the initial condition provided by the
BFN algorithm or the variational assimilation (VAR) algo-
rithm, and on the other hand an interpolation in the state
space of the first available observation (at timet=0). We
have used these states as initial conditions for the exact model
(14) and computed the corresponding trajectories over a 4
month time period, corresponding to the assimilation period
followed by a 3 month prediction period.

We have first compared our algorithm with the standard
VAR algorithm in the case of perfect observations. The spa-
tial and time distributions of the observations remain un-
changed, and the VAR cost function is still minimized using
a limited-memory quasi-Newton algorithm (Nocedal, 1980).

Figure 8 shows the RMS (root mean square) relative dif-
ference between the reference trajectory and the identified
trajectories for the BFN (dotted line) and VAR (dash-dotted
line) algorithms. We recall that the assimilation period
[0, 700] is followed by a three times longer forecast pe-
riod ([700, 2800]). Both algorithms were initialized with the
same initial condition, corresponding to the true state vec-
tor at a previous time. Both algorithms were stopped after
at most 10 iterations, and therefore, probably before conver-
gence. One can see that at the beginning of the prediction
period (t=700), the identification error of the BFN algorithm
is smaller than 1%, whereas that of the VAR algorithm is

(a)

0 1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
 r

el
at

iv
e 

er
ro

r

BFN  iterations

(b)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BFN  iterations

R
M

S
 r

el
at

iv
e 

er
ro

r

Fig. 7. RMS relative difference between the BFN iterates and the
exact solution versus the number of iterations, at timet=0 (a) and
at timet=T (b).

greater than 2%, the difference being even more significant
at the end of the prediction period.

However, allowing a larger number of iterations before
stopping these algorithms does not affect much the output
of the BFN algorithm, as the convergence is nearly achieved
in fewer than 10 iterations, whereas the VAR algorithm pro-
vides a more accurate trajectory. It simply needs nearly 30
iterations (3 times more than for the BFN) to produce com-
parable results in this case.

We now consider noisy observations (using the same noise
distribution as in the previous subsections). Figure 9 shows
the RMS relative difference between the BFN trajectory
(computed using the last BFN state at timet=0 as an initial
condition) and the reference trajectory (dotted line), between
the VAR trajectory (computed using the last initial state pro-
duced by the minimization process) and the reference trajec-
tory (dash-dotted line), and between the perturbed trajectory
(derived from the noisy observations of the system at time
t=0) and the reference trajectory (solid line), versus time.
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Fig. 8. Evolution in time of the RMS difference between the ref-
erence trajectory and the identified trajectories for the BFN (dotted
line) and VAR (dash-dotted line) algorithms, in the case of perfect
observations.

The fourth curve (dashed line) will be discussed at the end of
this subsection.

We can see that the perturbed trajectory presents an error
of about 5% at the beginning of the assimilation period. The
stable modes of the model cause the error to decrease at first,
but after a few days (200 time steps, nearly 6 days) the unsta-
ble modes cause the error to increase over time (as observed
in Pires et al., 1996). If we consider the BFN trajectory, we
can see that at the beginning of the assimilation period (time
t=0), the error is much higher than for the perturbed trajec-
tory, nearly 9%, but after 500 time steps, the error is smaller
than 2%. Even after 4 months, the error is still smaller than
3%, whereas the error of the perturbed trajectory has nearly
reached 15% by that time. This clearly proves the efficiency
of the BFN algorithm, allowing one to identify a trajectory
over a 4 month period with an assimilation period of only one
month, with less than 2% RMS error using 5% noisy obser-
vations. The VAR trajectory produces quite a good approxi-
mation of the initial condition (much more accurate than the
BFN algorithm), but then, after a short decrease, the error
increases slightly and remains nearly constant all over the
prediction period, close to 4%. One should keep in mind
that both algorithms have been stopped after only 10 iter-
ations, and the convergence of the VAR algorithm has not
been reached.

It is particularly interesting to see that, at the end of the
assimilation period (or at the beginning of the prediction pe-
riod), after 700 time steps, the difference between the BFN
trajectory and the exact trajectory has nearly reached its min-
imum. This shows how efficient the BFN algorithm can be
for the prediction step, whereas the reconstruction of the ini-
tial state is not very efficient. Since the error on the BFN

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time steps

R
M

S
 r

el
at

iv
e 

er
ro

r

Perturbed
BFN
VAR
BFN + VAR

Fig. 9. Evolution in time of the RMS difference between the refer-
ence trajectory and the perturbed trajectory derived from the noisy
observations of the system at timet=0 (full line), and between
the reference trajectory and the identified trajectories for the BFN
(dotted line), VAR (dash-dotted line) and BFN-preprocessed VAR
(dashed line) algorithms, in the case of noisy observations (with a
5% RMS error).

trajectory decreases sharply and remains small afterwards,
one can say that the identified initial condition is part of the
stable manifold of the model, and the reconstruction error
on the unstable manifold is extremely small. This is due to
the fact that the BFN initial condition comes from a back-
ward integration of the model, at which point the trajectory
has been smoothed by the stable manifold of the backward
model, which is the unstable manifold of the forward model.

We have also studied the possibility of using the BFN algo-
rithm as a preprocessing tool for the VAR algorithm. For this
purpose, we stopped the BFN after only 5 iterations, and we
used the resulting initial state vector as an initialization vec-
tor for the VAR minimization process, which we also stopped
after 5 iterations. The computational cost is then the same as
for 10 iterations of the BFN or VAR algorithms alone. The
fourth curve (dashed line) of Fig. 9 shows the RMS relative
difference between the reference trajectory and the trajectory
identified by this BFN-preprocessed VAR algorithm. One
can see that the use of the BFN algorithm as a preconditioner
for the VAR algorithm gives a slightly better initial state, and
the error on the identified trajectory remains smaller than 2%
over the entire assimilation period, which is not the case for
either algorithm considered alone. During the prediction pe-
riod, the error remains nearly constant, and is smaller than
for the VAR algorithm, but a little bit larger than for the BFN
algorithm, even though at the end of the period it is exactly
of the same order.

We must finally mention that, after convergence, the VAR
algorithm usually identifies a better trajectory than the BFN
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algorithm, as can be seen in Fig. 10. However the VAR al-
gorithm needs many more iterations than the BFN scheme to
reach convergence. In this experiment for example, the num-
bers of iterations at convergence are 6 and 29 for the BFN
and VAR algorithms respectively. In nearly all the exper-
iments we performed, starting from the same initialization
state, the VAR algorithm needed at least four times more it-
erations than the BFN algorithm to reach convergence, but
most of the time, it identified a slightly better state, and hence
gave a better prediction. This also confirms that the BFN al-
gorithm is much more powerful in the very first iterations.

5 Convergence and comparison with 4D-VAR on a lay-
ered quasi-geostrophic ocean model

5.1 Quasi-geostrophic ocean model

We consider here a layered quasi-geostrophic ocean model
(Holland, 1978; Verron et al., 1992; Blayo et al., 1994). In
this model the ocean is supposed to be stratified inn lay-
ers, each of them having a constant fluid density. The quasi-
geostrophic model is obtained by taking a first order expan-
sion of the Navier-Stokes equation with respect to the Rossby
number. The model system is then composed ofn coupled
equations resulting from the conservation law of the potential
vorticity. The equations can be written as:

D1 (θ1(9) + f )

Dt
+ A4∇

691 = F1 in �×]0, T [, (15)

at the surface layer (k=1);

Dk (θk(9) + f )

Dt
+ A4∇

69k = 0 in �×]0, T [, (16)

at the intermediate layers (k=2, . . . , n−1);

Dn (θn(9) + f )

Dt
+ A119n + A4∇

69n = 0, (17)

in �×]0, T [, at the bottom layer (k=n).

The notations are as follows:

– � ⊂ R
2 is the circulation basin and]0, T [ is the time

interval;

– n is the number of layers;

– 9k is the stream function at layerk, 9 is the vector
(91, . . . , 9n)

T ;

– θk is the sum of the dynamical and thermal vorticities
at layerk:

θk(9) = 19k−(W9)k,
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Fig. 10.Evolution in time of the RMS difference between the refer-
ence trajectory and the perturbed trajectory derived from the noisy
observations of the system at timet=0 (solid line, same as solid line
in Fig. 9), and between the reference trajectory and the trajectories
identified by the BFN (dotted line, same as dotted line in Fig. 9) and
VAR (dash-dotted line) algorithms after convergence, in the case of
noisy observations (with a 5% RMS error).

with −(W9)k=
f 2

0 ρ

Hkg

(

9k+1−9k

ρk+1−ρk

−
9k−9k−1

ρk−ρk−1

)

,

1<k<n, and −(W9)1=
f 2

0 ρ

H1g

(

92−91

ρ2−ρ1

)

and

−(W9)n=
f 2

0 ρ

Hng

(

−
9n−9n−1

ρn−ρn−1

)

.

– f is the Coriolis force (f0 is the Coriolis force at the
reference latitude of the ocean).
In theβ-plane approximation, the Coriolis force varies
linearly with respect to the latitude.

– g represents the constant of gravity,ρk the fluid density
at layerk (andρ the average fluid density), andHk the
depth of thek-th layer;

–
Dk

Dt
is the Lagrangian particular derivative:

Dk

Dt
=

∂

∂t
+ J (9k, .),

whereJ is the Jacobian operator

J (f, g) =
∂f

∂x

∂g

∂y
−

∂f

∂y

∂g

∂x
.

– 19n represents the bottom friction dissipation,∇69k

represents the lateral friction (of biharmonic type)
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Fig. 11. RMS relative difference between two consecutive BFN
iterates(a) and between the BFN iterates and the exact solution(b)
versus the number of BFN iterations.

dissipation, andA1 andA4 are respectively the bottom
and lateral friction dissipation coefficients;

– andF1 is the forcing term, the wind stress applied to the
ocean surface.

The initial conditions9k(0) and some boundary conditions
resulting from the mass conservation law (Holland, 1978;
Luong et al., 1998; Auroux and Blum, 2004) complete the
equations of the direct model.

We suppose that the data we want to assimilate come from
satellite measurements of the sea-surface heighth, which
is directly related to the upper layer stream function91 by

h=
f0

g
91. Thus, we assume that we have an observational

stream function9obs
1 . These observations are only avail-

able at timesti , i=1 . . . N , over the data assimilation period
[0, T ], and are also discrete in space. We consider then that
the vector9obs

1 (ti) represents the set of available observa-
tions of the ocean surface at timeti .

The control vectoru (which has to be determined)
is the initial state of the stream functions at all layers
(9k(0))k=1...n.

The numerical experiments have been made on a three-
layered square ocean. The basin has horizontal dimensions
of 4000 km×4000 km and its depth is 5 km. The layers’
depths are 300 m for the surface layer, 700 m for the inter-
mediate layer, and 4000 m for the bottom layer. The ocean is

discretized by a Cartesian mesh of 200×200×3 grid points.
The time step is 1.5 h. The initial conditions are chosen equal
to zero for a six-year ocean spin-up phase, the final state of
which becoming the initial state of the data assimilation pe-
riod. Then the assimilation period starts (timet=0) with this
initial condition (9k(0)), and lasts 5 days (timet=T ), i.e.
80 time steps. Data are available everynx=5 gridpoints of
the model, with a time sampling of 7.5 h (i.e. everynt=5
time steps). The first guess of the assimilation experiments is
chosen to be the reference state of the ocean one year before
the beginning of the assimilation period. Finally, the nudging
matricesK andK ′ are set tokCT andk′CT , respectively (see
Sect. 2.4), wherek=1.8×10−6 andk′=7.4×10−6.

5.2 Convergence of the BFN algorithm in the case of per-
fect observations

We first focus our interest on the numerical convergence of
the BFN algorithm. In this part, we have used the exact (i.e.
unnoised) observations.

Figure11 shows the evolution of the difference between
two consecutive BFN iterates (a), and that of the difference
between the BFN iterates and the exact solution (b), versus
the number of iterations of the BFN scheme. We can see that
after 20 iterations, the successive iterates are almost equal
to each other, and they nearly converge towards the exact
initial condition. This proves the numerical convergence of
the BFN algorithm in this case.

5.3 Comparison with 4D-VAR in the case of perfect obser-
vations

The 4D-VAR algorithm requires the computation of the ad-
joint state, which consists inn vectors (heren=3), represent-
ing the components of the adjoint state in each layer. The
gradient of the cost function is itself made ofn components,
representing the derivatives of the cost function with respect
to the initial state of the stream function at each layer. Each
of these components is computed from the value of the ad-
joint state at timet=0 (final time of the backward integration
of the adjoint equations). The detailed expressions of then

components of the gradient of the cost function are given in
Luong et al. (1998); Auroux and Blum (2004). The 4D-VAR
functional contains both a regularization term, depending on
the potential vorticity, and an observation term, quantifying
the difference between the observations and the state func-
tion (see e.g. Luong et al., 1998). In all the following discus-
sion, we only refer to the observation part of the cost func-
tion and its gradients. The minimization of the cost func-
tion is performed using a limited-memory BFGS algorithm
(M1QN3 routine, from the MODULOPT library: Gilbert and
Lemaŕechal, 1989).

In this section, we have compared the BFN and 4D-VAR
algorithms. Figure 12 shows the true initial state (a), the ini-
tialization vector used for both 4D-VAR and BFN algorithms
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(a) (b)

(c) (d)

Fig. 12. Upper layer of: true initial state(a), initialization (or background) state for both 4D-VAR and BFN algorithms(b), and initial states
identified by the BFN(c) and 4D-VAR(d) algorithms.

(b), and the initial states identified by the BFN (c) and 4D-
VAR (d) algorithms respectively. Only the first (uppermost)
of the three layers is represented.

In order to quantify these results, Fig. 13 shows the evo-
lution of the 4D-VAR cost function and the 3 components

of its gradient versus the number of iterations for the BFN
(a) and 4D-VAR (b) algorithms. It can be seen that both the
cost function and its gradients decrease more rapidly with
successive iterations using the BFN scheme than using 4D-
VAR. Recall that the computational cost of a BFN iteration is
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Fig. 13. Evolution of the 4D-VAR cost function and of the 3 gradi-
ents of the cost function in the 3 ocean layers for the BFN iterates
versus the number of iterations(a) and for the 4D-VAR iterates ver-
sus the number of iterations(b).

almost equivalent to the cost of a 4D-VAR iteration, as both
algorithms consist in a forward model integration and a back-
ward model integration (and the models involved have the
same sizes). In 20 iterations, the cost function has been di-
vided by 4 orders with the 4D-VAR, and by 6 orders with the
BFN. From this, we can conclude that the BFN algorithm is
more efficient than the 4D-VAR algorithm in minimizing, in
the same computing time, the quadratic difference between
the observations and the corresponding state variables. This
is all the more remarkable as, unlike the case of 4D-VAR,
this is not the primary goal of the BFN scheme. The next
point will be to check if these findings remain valid when the
observations are noisy.

5.4 Convergence and comparison with 4D-VAR in the case
of noisy observations

We now consider noisy observations (see previous subsec-
tions for details about the noise distribution). We have per-
formed the same experiments as in the previous subsections
and first studied the convergence of the BFN algorithm, and
then compared it with the 4D-VAR algorithm.

Figure14 shows the evolution of the relative difference be-
tween two consecutive BFN iterates (a) and of the difference
between the BFN iterates and the exact solution (b), versus
the number of iterations in the case of noisy observations.
We can see that after 20 iterations, the successive iterates are
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Fig. 14. RMS relative difference between two consecutive BFN it-
erates(a) and between the BFN iterates and the exact solution(b)
versus the number of BFN iterations in the case of noisy observa-
tions.

nearly equal, and they are relatively close to the exact initial
condition. Even if the convergence is a little bit less obvious
than in the case of perfect observations, these two figures
show that the BFN algorithm converges.

As in the previous subsections in the case of perfect ob-
servations, we have compared the BFN and 4D-VAR algo-
rithms. Figure 15 shows the evolution of the 4D-VAR cost
function and gradients for the BFN (a) and 4D-VAR (b) al-
gorithms. We still observe a decrease of both the cost func-
tion and its gradients with the BFN iterates, but contrary to
the previous case (perfect observations), the decrease is al-
most the same as with the 4D-VAR algorithm, even though
after 10 iterations the BFN provides better results. The 4D-
VAR algorithm seems more efficient at smoothing the obser-
vations (Gaussian white noise) than the BFN algorithm, but
this is highly related to the choice of the regularization term
in the 4D-VAR cost function.

Figure 16 shows, for each of the three layers, the RMS rel-
ative difference between the BFN trajectory (computed using
the last BFN state at timet=0 as initial condition) and the
reference trajectory as a solid line, and between the 4D-VAR
trajectory (computed using the last initial state produced by
the minimization process) and the reference trajectory as a
dotted line, versus time. The first 5 days correspond to the
assimilation period, and the next 15 days correspond to the
forecast period.

The first point is that the BFN and 4D-VAR reconstruction
errors have similar global behaviours: first decreasing at the
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Fig. 15. Evolution of the 4D-VAR cost function and of the 3 gradi-
ents of the cost function in the 3 ocean layers for the BFN iterates
versus the number of BFN iterations(a) and for the 4D-VAR iter-
ates versus the number of 4D-VAR iterations(b) in the case of noisy
observations.

beginning, during the assimilation period, and then increas-
ing over the forecast period (see e.g. Pires et al., 1996, for a
detailed study of the 4D-VAR estimation error). Even if the
reconstruction error on the initial condition is much higher
with the BFN algorithm than with 4D-VAR, the BFN error
decreases much more steeply and for a longer time than the
4D-VAR one, and increases less quickly at the end of the
forecast period. This remark should be compared with the
last paragraphs of Sect. 4.3, describing the same behaviour of
the BFN algorithm on Burgers’ equation. The quality of the
initial condition reconstruction is better using the 4D-VAR
algorithm, but the BFN algorithm provides a comparable fi-
nal estimation, and even a better forecast. Another interest-
ing point is that, even if only surface observations are assimi-
lated, the identification of the intermediate and bottom layers
is quite good. The 4D-VAR algorithm was already known
to propagate surface information to all layers (Luong et al.,
1998), but it is also the case for the BFN algorithm, even if
this algorithm is less efficient on the bottom layer.

5.5 Comparison with 4D-VAR in the case of an imperfect
model

In this subsection, we have performed twin experiments with
the aim of identifying the initial condition using observations
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Fig. 16. Evolution in time of the RMS relative difference between
the reference trajectory and the identified trajectories for the BFN
(solid line) and 4D-VAR (dotted line) algorithms, versus time, for
each layer: from surface(a) to bottom(c).

generated by a different model than the one used for the as-
similation. There are no more observation errors in this ex-
periment. We still have the same exact initial condition as
previously, and an experiment is run with a biased model
(with a 2% model error), from which surface data are ex-
tracted every 5 grid points of the model and every 5 time
steps. These simulated data are not noised. The model error
enables us to generate observations derived from a different
model, corrected by some a priori estimations of neglected
effects in the theoretical model. From now on, we forget the
model error, and we want to identify the initial condition us-
ing the assimilating model (without any additional term) and
the data we have extracted from the reference (biased) model.
Assimilating these observations, generated by the reference
model, in the assimilating model allows us to study the im-
pact of an imperfect model on the BFN scheme.
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Fig. 17. RMS relative difference between two consecutive BFN
iterates(a) and between the BFN iterates and the exact solution(b)
versus the number of BFN iterations in the case of an imperfect
model.

Figures 17 and 18 are the analogues of Figs. 14 and 15
for this new experiment. The BFN algorithm still converges
quite well. Although the decrease of the gradients of the cost
function is faster with 4D-VAR than with BFN, the cost func-
tion itself decreases more rapidly with BFN, and after 20 it-
erations, it is 10 times smaller than with the 4D-VAR algo-
rithm.

The 4D-VAR algorithm used in this experiment does not
take into account any model error term (which exists in real-
ity), and then gives worse results than the BFN. The slower
decrease of the gradients can be easily explained by the fact
that the goal of the BFN algorithm is not to minimize the
cost function and its gradients, but to identify a trajectory,
whereas the 4D-VAR algorithm explicitly aims to decrease
the gradients of the cost function. On the other hand, the
BFN algorithm is taking advantage of the feedback terms di-
rectly added into the model equations, and these additional
terms can consequently be considered as a corrective term
in the model, and thus as a model error term: the nudging
method implicitly uses the observations in the partial recon-
struction of the model error.

6 Conclusions

The BFN algorithm appears to be a very promising data assi-
milation method. It is extremely easy to implement: no lin-
earization of the model equations, no computation of the ad-
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Fig. 18. Evolution of the 4D-VAR cost function and of the 3 gradi-
ents of the cost function in the 3 ocean layers for the BFN iterates
versus the number of iterations(a) and for the 4D-VAR iterates ver-
sus the number of iterations(b) in the case of an imperfect model.

joint state, no optimization algorithm. The only necessary
work is to add a relaxation term to the model equations. The
key point in the backward integration is that the nudging term
(with the opposite sign to the forward integration one) makes
it numerically stable. Hence the nudging (or relaxation) term
has a double role: it forces the model to the observations and
it stabilizes the numerical integration. It is simultaneously a
penalization and regularization term.

The BFN algorithm has been compared with the vari-
ational method on several types of non-linear systems:
Lorenz, Burgers, quasi-geostrophic model. The conclusion
of the various experiments performed in Sects. 3 to 5 is that
the BFN algorithm is better than the variational method for
the same number of iterations (and hence for the same com-
puting time). It converges in a small number of iterations.
Of course the initial condition is usually poorly identified by
the BFN scheme, but on the other hand, the final state of the
assimilation period is much better identified by the BFN al-
gorithm than by the variational assimilation algorithm, which
is a key point for the prediction phase that starts at the end of
the assimilation period. Hence the prediction phase is usually
better when it comes after an assimilation period treated by
the BFN algorithm, rather than by a variational assimilation
method.

The two algorithms can be combined, in the sense that one
can perform several BFN iterations before switching to the
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variational method and this will considerably accelerate the
convergence of the variational method. Finally the BFN al-
gorithm enables one to consider the problem of imperfect
models at no additional cost, as the model equations are not
strong constraints in this nudging method (as they are usually
in a variational method) and the relaxation term can be seen
as a model error term.

The determination of the nudging coefficients (or matri-
ces) should still be improved, particularly by a numerical
stability study of the backward integration, which will give
the optimal nudging coefficients that make the backward in-
tegration stable. Moreover the algorithm will be tested on
more sophisticated models (shallow-water, primitive equa-
tions, . . . ) with various types of observations (satellite mea-
surements, in situ data, . . . ), in order to determine whether
this algorithm can be used in more realistic conditions.
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