M. Arnold and B. N. Datta, Single-Input Eigenvalue Assignment Algorithms: A Close Look, SIAM Journal on Matrix Analysis and Applications, vol.19, issue.2, pp.444-467, 1998.
DOI : 10.1137/S0895479895294885

D. Auroux, Etude de différentes méthodes d'assimilation de données pour l'environnement, 2003.

D. Auroux and J. Blum, Data assimilation methods for an oceanographic problem XVI of Mathematics in Industry Series: Multidisciplinary methods for analysis, optimization and control of complex systems, pp.179-194, 2004.

D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems, Comptes Rendus Mathematique, vol.340, issue.12, pp.873-878, 2005.
DOI : 10.1016/j.crma.2005.05.006

URL : https://hal.archives-ouvertes.fr/inria-00189644

J. Bao and R. M. Errico, An Adjoint Examination of a Nudging Method for Data Assimilation, Monthly Weather Review, vol.125, issue.6, pp.1355-1373, 1997.
DOI : 10.1175/1520-0493(1997)125<1355:AAEOAN>2.0.CO;2

E. Blayo, J. Verron, and J. Molines, Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic, Journal of Geophysical Research, vol.81, issue.C12, pp.691-715, 1994.
DOI : 10.1029/94JC01644

K. Bonnans and P. Rouchon, Commande et optimisation de systèmes dynamiques, LesÉditionsLes´LesÉditions de l' ´ Ecole Polytechnique, 2005.

B. N. Datta, An algorithm to assign eigenvalues in a Hessenberg matrix: Single input case, IEEE Transactions on Automatic Control, vol.32, issue.5, pp.414-417, 1987.
DOI : 10.1109/TAC.1987.1104622

M. Fisher and P. Courtier, Estimating the covariance matrix of analysis and forecast error in variational data assimilation, 1995.

J. Gilbert and C. Lemaréchal, Some numerical experiments with variable-storage quasi-Newton algorithms, Mathematical Programming, vol.11, issue.2, pp.407-435, 1989.
DOI : 10.1007/BF01589113

J. Hoke and R. A. Anthes, The Initialization of Numerical Models by a Dynamic-Initialization Technique, Monthly Weather Review, vol.104, issue.12, pp.1551-1556, 1976.
DOI : 10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2

W. R. Holland, The Role of Mesoscale Eddies in the General Circulation of the Ocean???Numerical Experiments Using a Wind-Driven Quasi-Geostrophic Model, Journal of Physical Oceanography, vol.8, issue.3, pp.363-392, 1978.
DOI : 10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2

E. Kalnay, K. Park, S. Pu, Z. Gao, and J. , Application of the Quasi-Inverse Method to Data Assimilation, Monthly Weather Review, vol.128, issue.3, pp.864-875, 2000.
DOI : 10.1175/1520-0493(2000)128<0864:AOTQIM>2.0.CO;2

L. Dimet, F. Talagrand, and O. , Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, pp.97-110, 1986.
DOI : 10.1111/j.1600-0870.1986.tb00459.x

E. N. Lorenz, Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, vol.20, issue.2, pp.130-141, 1963.
DOI : 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

D. Luenberger, Observers for multivariable systems, IEEE Transactions on Automatic Control, vol.11, issue.2, pp.190-197, 1966.
DOI : 10.1109/TAC.1966.1098323

B. Luong, J. Blum, and J. Verron, A variational method for the resolution of a data assimilation problem in oceanography, Inverse Problems, vol.14, issue.4, pp.979-997, 1998.
DOI : 10.1088/0266-5611/14/4/014

J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation, vol.35, issue.151, pp.773-782, 1980.
DOI : 10.1090/S0025-5718-1980-0572855-7

C. Pires, R. Vautard, T. , and O. , On extending the limits of variational assimilation in nonlinear chaotic systems, pp.96-121, 1996.

D. R. Stauffer and J. W. Bao, Optimal determination of nudging coefficients using the adjoint equations, pp.358-369, 1993.

D. R. Stauffer and N. L. Seaman, Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model. Part I: Experiments with Synoptic-Scale Data, Monthly Weather Review, vol.118, issue.6, pp.1250-1277, 1990.
DOI : 10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2

O. Talagrand, A study of the dynamics of four-dimensional data assimilation, pp.43-60, 1981.

O. Talagrand, On the mathematics of data assimilation, pp.321-339, 1981.

E. Trélat, Contrôle optimal: théorie et applications, 2005.

J. Verron, Altimeter data assimilation into an ocean circulation model: Sensitivity to orbital parameters, Journal of Geophysical Research, vol.78, issue.1, pp.443-459, 1990.
DOI : 10.1029/JC095iC07p11443

J. Verron and W. R. Holland, Impact de données d'altimétrie satellitaire sur les simulations numériques des circulations générales océaniques aux latitudes moyennes, pp.31-46, 1989.

J. Verron, J. Molines, and E. Blayo, Assimilation of Geosat data into a quasigeostrophic model of the North Atlantic between 20 o N and 50 o N: preliminary results, Oceanol. Acta, vol.15, issue.5, pp.575-583, 1992.

P. Vidard, L. Dimet, F. Piacentini, and A. , Determination of optimal nudging coefficients, pp.1-15, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00325360

X. Zou, I. M. Navon, L. Dimet, and F. J. Roy, An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation, Quarterly Journal of the Royal Meteorological Society, vol.116, issue.508, pp.1163-1186, 1992.
DOI : 10.1002/qj.49711850808