Griggs and Yeh's Conjecture and L(p,1)-labelings

Abstract : An L(p,1)-labeling of a graph is a function f from the vertex set to the positive integers such that |f(x) − f(y)| ≥ p if dist(x, y) = 1 and |f(x) − f(y)| ≥ 1 if dist(x, y) = 2, where dist(x,y) is the distance between the two vertices x and y in the graph. The span of an L(p,1)- labeling f is the difference between the largest and the smallest labels used by f. In 1992, Griggs and Yeh conjectured that every graph with maximum degree Δ ≥ 2 has an L(2, 1)-labeling with span at most Δ^2. We settle this conjecture for Δ sufficiently large. More generally, we show that for any positive integer p there exists a constant Δ_p such that every graph with maximum degree Δ ≥ Δ_p has an L(p,1)-labeling with span at most Δ^2. This yields that for each positive integer p, there is an integer C_p such that every graph with maximum degree Δ has an L(p,1)-labeling with span at most Δ^2 + C_p.
Type de document :
Article dans une revue
Siam Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2012, 26 (1), pp.145--168. <10.1137/090763998>
Liste complète des métadonnées


https://hal.inria.fr/inria-00327909
Contributeur : Jean-Sébastien Sereni <>
Soumis le : lundi 5 mars 2012 - 08:48:34
Dernière modification le : mercredi 12 octobre 2016 - 01:23:20
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 10:38:55

Fichier

HRS12.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Frédéric Havet, Bruce Reed, Jean-Sébastien Sereni. Griggs and Yeh's Conjecture and L(p,1)-labelings. Siam Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2012, 26 (1), pp.145--168. <10.1137/090763998>. <inria-00327909v2>

Partager

Métriques

Consultations de
la notice

292

Téléchargements du document

114