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observation of the Earth for a better knowledge of the atmosphere and of the
ocean. The sequences of images that such satellites provideshow the evolution
of some large scale structures such as vortices and fronts. It is obvious that the
dynamic of these structures may have a strong predictive potential. Extracting
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geometric structures from image sequences of geophysical uid ow using three-
dimensional (3D) curvelet transform and total variation mi nimization. Numer-
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Extraction de structures spatio-temporelle et
d�ebruitage de s�equences d'image de uides

g�eophysiques �a l'aide de transform�ees de
courbelettes 3D

R�esum�e : Depuis quelques d�ec�enies de nombreux satellites d'observation de
la terre ont �et�e lanc�esa�n d'am�eliorer nos connaissanc es de l'atmosph�ere et de
l'oc�ean. Les s�equences d'image fournies par de tels satellites montrent l'�evolution
de structures grandes �echelles telles que les syclones et les fronts. Il est �evident
que la dynamique contenue dans ces structures peuvent avoirun fort potentiel
pr�edictif. Extraire ces structures et suivre leur �evolut ion de fa�con automa-
tique est donc essentiel pour les futurs syst�emes de pr�evision. Dans cet article
on consid�ere l'extraction de structures g�eometriques spatio-temporelles dans
des s�equences d'images de uides g�eophysiques en utilisant des transform�ees
en coubelettes 3D une minimisation de la variation totale. Des exp�eriences
num�eriques sur des images de uides g�eophysiques simul�ees et des donn�ees de
vid�eo r�eelles montrent la bonne performance de la m�ethode propos�ee en terme
de d�ebruitage et extraction de structure.

Mots-cl�es : Courbelettes 3D , extraction de caract�eristiques, Total Variation
3D, assimilation de donn�ees, video/s�equences d'image, t�el�edetection



3D curvelets for video processing 3

Figure 1: Image sequence over Europe provided by the METEOSAT satellite
(visible channel, source M�et�eo France).

Figure 2: Images of sea surface temperature of the Black Sea provided by the
AVHRR satellite (infra-red channel, source NOAA).

1 Introduction

1.1 Background

Current weather and ocean forecast systems assimilate [1, 2] in-situ or remote
measurements of the state variables of the modeled ow such as winds, pressure,
temperature, salinity,. . . in order to estimate initial con ditions. Since several
decades many satellites have been launched for the observation of the Earth for
a better knowledge of the atmosphere and of the ocean. Geostationary or polar
orbiting Earth observation satellites provide image sequences which clearly show
the evolution of large scale features such as fronts, edges shapes of vortices and
their trajectory (see Fig. 1 and 2).

Unfortunately, this kind of information are not yet taken in to account in a
quantitative way by the operational forecast centers. However the evolution of
these structures have a strong predictive potential because they may give some
information about the dynamic of the underlying physical system.

Extracting and tracking uid structures from geophysical i mage sequences
could prove very valuable in the framework of Image Sequences Assimilation
(ISA). Indeed, the later aim at improving forecast systems by taking into ac-
count dynamical informations contained in the structure evolution that satellite
images provide [24,3,23].

In the prior work [4], we applied curvelet transform [6, 7] to the detection
and tracking of characteristic deformable structures in some geophysical uid
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Figure 3: The elements of wavelets (left) and curvelets on various scales, direc-
tions and translations in the spatial domain (right).

ow images. In this paper we present extraction of spatio-temporal structures
from similar geophysical uid image sequences using 3D curvelet transform .

1.2 Motivation

Although applications of wavelets to extraction and analysis of geophysical uid
images have become increasingly popular (see e.g. [29,30,31,32,33,34] among lots
of literature), traditional wavelets ignore the geometric properties of structures
and do not exploit the regularity of edges : they are e�cient t o represent point
singularities only. Therefore, wavelet-based structure extraction and denoising
becomes computationally ine�cient for geometric features with 2D line and
3D surface singularities. Moreover discrete wavelet thresholding could lead to
oscillations along edges.

The curvelet transform was proposed by Cand�eset al. [5, 6, 7, 8]. It
is a new geometric wavelet transform. The 2D curvelet transform allows an
optimal sparse representation of objects with C2-singularities. In compari-
son with wavelets, curvelets show better performances for the analysis of line-
singularities. Thus curvelet seems to be more adapted to extract edges and
then structures. For a smooth objectf with discontinuities along C2-continuous
curves, the bestm-term approximation ~f m by curvelet thresholding obeys the
inequality kf � ~f m k2

2 � Cm� 2 (log m)3, while for wavelets the decay rate is only
m� 1. Surprising performance has been shown in �elds of image processing, see
e.g. [10, 11, 12, 13, 14]. Recently, the 3D curvelet transform was presented by
Ying et al. [9,8]. Unlike the isotropic elements of wavelets, the needle-shaped el-
ements of this transform possess very high directional sensitivity and anisotropy
(see Fig. 1 for 2D case). Such an element is very e�cient for representing vortex
edges of geophysical uids images.

In a previous work [4], 2D curvelet transforms have been applied to the de-
tection and tracking of some characteristic deformable structures of geophysical
uid in sea surface temperature satellite image sequences (from NOAA Ad-
vanced Very High Resolution Radiometerimage). However such detection do
not take into account temporal consistency between successive frames. In this
paper, we apply a 3D curvelet transform to uid ow image sequences in or-

INRIA



3D curvelets for video processing 5

der to extract the evolution of spatio-temporal structures. Then a new curvelet
reconstruction by combining the 3D curvelet transform with total variation min-
imization [18,13,14] is presented to further suppress the artifacts resulting from
classical thresholding.

The paper is organized as follow : part II is devoted to the description of 3D
curvelet transform and some classical threshold operations; part III describes
the TV minimization technique and its combination with 3D cu rvelet transform:
this forms the original part of this paper. Some numerical experiments showing
applications of the later method to geophysical uid ow ima ge sequences are
presented in part IV.

2 3D curvelet transform and thresholding

2.1 2D curvelet transform

In 1999, an anisotropic geometric wavelet calledridgelet was proposed by E.
Cand�es and D. Donoho [5]. It is optimal at representing straight-line singu-
larities. However its application is limited to objects wit h global straight-line
singularities. In order to take into account images with local line or curve sin-
gularities, the so-called �rst generation of Curvelet transform [6] was developed
using ridgelet transforms applied on sub-partitions of theimage. A second gen-
eration of curvelet transform based on a frequency partition technique was in-
troduced by the same authors in 2004 [7]. A 2D discrete curvelet transform was
implemented in 2004 [8]: it is freely available athttp://www.curvelet.org .

The 2D continuous curvelet transform can be de�ned as follow. Let W :
[1=2; 2] 7! R and V : [� 1; 1] 7! R be respectively aradial and an angular
windows { in the spatial domain {, supported on [1=2; 2] and [� 1; 1] respectively
and obeying the admissibility condition

�1X

l = �1

V 2(t � l ) = 1 ; t 2 R; (1)

�1X

l = �1

W 2(2� j r ) = 1 ; r > 0: (2)

For instance, the following Meyer windows [13] satisfy the above conditions:

V(t) =

8
<

:

1 jt j � 1=3;
cos[�2 � (3jt j � 1)] 1=3 � j t j � 2=3;
0 else:

(3)

W (r ) = min
n

cos(
�
2

� (5 � 6r )) ; cos(
�
2

� (3r � 4))
o

(4)

where � is a smooth function satisfying for all x 2 R :

� (x) =
�

0 x � 0;
1 x � 1;

and � (x) + � (1 � x) = 1 : (5)

� (x) =

8
<

:

0 x � 0;
1
2 (sin[ �

2 (2x � 1)] + 1) x � 1;
1 else:

(6)
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Figure 4: Frequency domain windowU0 (a) and its support (b).

As in wavelet theory, we also introduce a low-pass windowWj 0 , j 0 � 0 which
satis�es : for all r 2 R

Wj 0 (r )2 +
X

j>j 0

W 2(2� j r ) = 1 : (7)

Finally, let us denote by f̂ the Fourier transform of an elementf of L 2(R) : it is
a function of the frequency variables� = ( � 1; � 2) with polar coordinates (r; � ).

Curvelets are indexed by three integersj , k and l which respectively stand
for scale, location and orientation .
Curvelets at the coarsest scale j = j 0 are de�ned through their Fourier
transform by

' j 0 ;0;k (x) = ' j 0 (x � 2� j 0 k); k = Z2; (8)

where
'̂ j 0 (� ) = 2 � j 0 Wj 0 (2� j 0 j� j): (9)

At this scale, curvelets are then isotropic.
Curvelets at the �nest scales . For each scalej > j 0, we de�ne a window Uj

in the frequency domain for all � = ( � 1; � 2) with polar coordinates (r; � ) by

Uj (� ) = 2 � 3j= 4W (2� j r )V

 
2bj= 2c

�
2�

!

; (10)

whereb�cdenotes the integer part operator. The support ofUj is a polar 'wedge'
determined by supp(r 7! W (2� j r )) = [2 j � 1; 2j +1 ] and supp(� 7! V (2bj= 2c � )) =
[� 2�b j= 2c; 2�b j= 2c ]. Figure 4 shows the �rst window U0 in the frequency domain
when the radial and angular windows are de�ned by (3) and (4) respectively
and when � given by (6) [12]. We consider a uniform discretisation of the angle
coordinate � 2 [0; 2� [

� l = 2 � � l � 2�b j= 2c; 0 � l < 2bj= 2c; (11)

and the rotation by � radians matrix

R� =
�

cos� sin �
� sin � cos�

�
: (12)

INRIA
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� 2j =2

� 2j

Figure 5: Frequency plane partition. The shaded area shows an example of a
\wedge"on which a curvelet is supported in the frequency plane. At scale j ,
this wedge has a width of order 2j and a length of order 2j= 2.

Note that the number of discrete orientations � l depends on the scale indexj
: this number is doubled when scale change from an odd index 2j + 1 to the
larger next even one 2j + 2. It is unchanged when scale index is changing from
2j to 2j + 1 (see Fig. 5). At the �nest scales j > j 0, curvelets are de�ned for
all x 2 R2 by

' j;k;l (x) = ' j

�
R� (x � x( j;l )

k )
�

(13)

where the waveform' j is the inverse Fourier transform of the frequency window
Uj and the translation vector x( j;l )

k , k = ( k1; k2) 2 Z2 is de�ned by

x( j;l )
k = R� 1

� l
(2� j k1; 2� j= 2k2): (14)

It can be proved [7] that the above family of curvelets de�nes a tight frame
(see [28] for a detailed de�nition of this term): for all f 2 L 2(R2) we have
(Parseval equality) X

j;k;l

jhf; ' j;k;l ij 2 = kf k2
L 2 (R2 ) ; (15)

and the reconstruction formula

f =
X

j;k;l

h' j;k;l ; f i ' j;k;l ; (16)

where h�; �i is the usual inner product in L 2(R2): hf; g i =
R

R2
�fg .

Remarks:

ˆ Curvelet coe�cients in (16) are determined by

cj;k;l := h' j;k;l ; f i =
1

(2� )2

Z
f̂ (� )Uj (R� l � )ei hx ( j;l )

k ;� i d� (17)

ˆ In practice we use Discrete Curvelet Transform (DCT) which is designed
for f de�ned on a Cartesian grid f (n1; n2) 2 N; 0 � n1; n2 < n 2 Ng.
Digital coe�cients are de�ned

cD
j;k;l =

X

n 1 ;n 2

f (n1; n2)' D
j;k;l (n1; n2) (18)
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where the construction of the digital curvelet waveforms' D is an adapta-
tion of the above continuous transform for Cartesian grids.This lead to a
non uniform discretisation of the orientations. For more details and C++
implementation see below and [8].

2.2 3D curvelet transform

The 3D curvelet transform was proposed by Yinget al. [9]. A fast application
of the 3D curvelet transform to 3D turbulent ows has been presented by Maet
al. [15]. The so-called second-generation curvelet discrete transform used in this
paper is based on a frequency partition technique. Similar to 2D problems, we
de�ne V (t) and W (r ) to be a pair of smooth, non-negative real-valued window
functions, which are called angular window and radial window, respectively. V is
supported on [� 1; 1] and W on [1

2 ; 2]. The windows should satisfy admissibility
conditions described in [8]. Without loss of generality, weintroduce the lowpass
window W0 for the coarsest scale, which satis�es the condition

W0(r )2 +
X

j> 0

W (2� j r )2 = 1 : (19)

For example, these conditions are satis�ed by taking the scaled Meyer win-
dows (3) and (4) [13]. For eachj > 0, the radial window W (2� j r ) smoothly
extracts the frequency content inside the dyadic corona 2j � 1 � r � 2j +1 . The
angular windows partition of R3 into trapezoidal regions obeying frequency
parabolic scaling (thickness� lengh2) [9]. For j � 0, de�ne the window Uj (� ),
� = ( � 1; � 2; � 3) 2 R3 in frequency domain as

Uj (� ) = 2 � 3j= 4 W (2� j j� j) V (2bj= 2c� ); � 2 R3; (20)

where (j� j; � ) denotes the polar coordinates corresponding to� . The support
of Uj is a 3D polar wedge shape, i.e., a half circular cone (see Fig.3 in [9]).

The system of curvelets is now indexed by three parameters (j; l; k ) where j
denotes scale,l denotes orientation, andk = ( k1; k2; k3) denotes spatial location.
De�ne the curvelets as

' j;l;k (x) := ' j (R� j;l (x � x( j;l )
k )) ; x = ( x1; x2; x3) 2 R3 (21)

where b' j (� ) := Uj (� ), i.e., Uj is the Fourier transform of ' j , R� j;l denotes
the rotation matrix with angle � j;l . Figure 6 shows an element of 3D curvelets.
Observe that in the spatial domain, ' j;l;k is of plate-like shape, which rapidly
decays away from a 2� j by 2� j= 2 cross-section rectangle with centerx( j;l )

k and
orientation � j;l with respect to the vertical axis in x. The element is smooth
within the plate but exhibits oscillating decay in the norma l direction of the
plate. It obeys a parabolic scaling law between the thickness and length (thick-
ness� lengh2) and directional sensitivity (Orientations = 1 =

p
scale).

Let � = ( j; l; k ) be the collection of the triple index again. The curvelet
coe�cients are given by

c� (f ) : = hf; ' � i =
Z

R3
f̂ (� ) '̂ � (� )d�

=
Z

R3
f̂ (� ) Uj (R� j;l � ) ei hx ( j;l )

k ;� i d�: (22)
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(a) (b) (c)

(d) (e) (f)

Figure 6: An element of 3D curvelets at a coarse scale (upper row) and �ne
scale (lower row) is shown in three cross-sections (left column) and isosurface
(middle column). The right column shows their frequency support. It can be
clearly seen that the element with high resolution in the space domain has low
resolution ion in the frequency domain. But the supports in space and frequency
domain are both local.

In order to have Cartesian coronae, which is based on concentric cubes in-
stead of sphere, the authors of [9, 8] applied a pseudo-polargrid by a modi�ed
window of the form

fW0(� ) = � 0(� ); fWj (� ) =
q

� 2
j +1 (� ) � � 2

j (� ); j > 0; (23)

where � j (� 1; � 2; � 3) = � (2� j � 1) �� (2� j � 2) �� (2� j � 3), the one-dimensional window
� satisfying 0 � � � 1, supp� � [� 2; 2] and � (r ) = 1 for r 2 [� 1=2; 1=2]. As
before, � can be taken to be a scaled Meyer window. The angular window for
the l-th wedge can be rede�ned as

eVj;l (� ) = V (2j= 2 �
� 2 � � l � � 1

� 1
) � V (2j= 2 �

� 3 � � l � � 1

� 1
): (24)

Here (1; � l ; � l ) is the direction of the centre line of the wedge. Every Carte-
sian corona has six components. The windows in the other �ve components
have similar de�nitions.

RR n ° 6683
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Now we de�ne the modi�ed frequency window eU as

eU0;0(� ) = fW0(� ); j = 0 ; (25)

eUj;l (� ) = fWj (� ) � eVj;l (� ); 0 < j < j f ; (26)

and at the �nest scale j f , the wavelet-like isotropic element is de�ned by the
frequency window eUj f ;0(� ) = fWj f (� ). It is clear that eUj;l (0 < j < j f ) isolates
frequencies near the wedge

(� 1; � 2; � 3) : 2j � 1 � � 1 � 2j +1 ; � 2� j= 2 � � 2=�1 � � l � 2� j= 2; � 2� j= 2 � � 3=�1 � � l � 2� j= 2:
(27)

Let L p;j;l (p = 1 ; 2; 3) be three positive integers satisfying

(i) One can not �nd � and � 0 such that � p � � 0
p are multiples of L p;j;l ;

(ii) The volume � j;l = L 1;j;l � L 2;j;l � L 3;j;l is minimal.

The two previous conditions guarantee that the data does notoverlap with
itself during the wrapping process below. Obviously, theeUj;l is supported now
in a 3D rectangular box of integer sizeL 1;j;l � L 2;j;l � L 3;j;l .

The discrete curvelets are given by their Fourier formation

'̂ D
� (� ) = eUj;l (� ) � exp

 

� 2�i
X

p=1 ;2;3

kp� p

L p;j;l

!

=
p

� j;l (28)

for 0 < k p < L p;j;l ; p = 1 ; 2; 3:
Analogously, the transform at the coarsest level is de�ned as

'̂ D
0;0;k (� ) = eU0;0(� ) � exp

 

� 2�i
X

p=1 ;2;3

kp� p

L p;0

!

=
p

� 0; (29)

and a similar formula can be obtained at the �nest scale by replacing the
scale 0 with j f and setting L p;j f = n.

Now we can �nd the Cartesian counterpart of the coe�cients in ( 22) by

~cD
� (f ) = hf; ' D

� i =
Z

R3
W( eUj;l (� )f̂ (� )) ei hk j ;� i d�: (30)

The algorithm of three-dimensional discrete curvelet transform is summa-
rized as follow:

1. Apply the 3D FFT and obtain Fourier samples f̂ (� ); � n=2 � � < n= 2; � =
(� 1; � 2; � 3).

2. Multiply the frequency window eUj;l (� )f̂ (� ) for each scalej and anglel .
3. Wrap around the origin and obtain W( eUj;l f̂ )( � ), where the range for� p is

� L p;j;l =2 � � p < L 1;j;l =2, j = (0 ; j f ). No wrapping at scales 0 andj f .
4. Apply 3D inverse FFT to each W( eUj;l f̂ ) to obtain the discrete coe�cients

cD
� .

The computational complexity of the DCuT is O(n3 logn) ops for n � n � n
data [8].
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Reconstruction of threshold-processed curvelet coe�cients

uc =
X

�

� (~cD
� (f )) ' � ; (31)

leads to denoising or extraction of videos. Here� (x) denotes a thresholding
function. Some classical thresholding functions are listed below [16]:

1) Hard thresholding

� (x) =
�

x; jxj � �;
0; jxj < �;

(32)

2) Soft thresholding

� (x) =

8
<

:

x � �; x � �;
0; jxj < �;

x + � x � � �;
(33)

3) Firm thresholding

� (x) :=
�

x � � 2

x ; jxj � �;
0; jxj < �;

(34)

4) SCAD by Antoniadis and Fan [17]

� (x) =

8
<

:

sign(x) max(0; jxj � � ); jxj � 2�;
( � � 1)x � ��sign (x )

� � 2 ; 2� < jxj < ��;
x; jxj � ��:

(35)

Generally, we choose� = 3 :7. Here � is a given threshold value.

3 TV-SYNTHESIS 3D CURVELET SHRINK-
AGE

It has been well known that tools from computational harmonic analysis su�er
from pseudo-Gibbs phenomena (i.e., oscillation artifactsnear the discontinu-
ities), although curvelets have much improved the problem in comparison to
traditional wavelets. Reconstructing the coe�cient using a rule of total varia-
tion (TV) minimisation can reduce the pseudo-Gibbs and element-like artifacts
[18,13,14].

Following the previous work, here we combine the TV technique with 3D
curvelet transform for the �rst time. The TV-synthesis curv elet shrinkage can
reduce the artifacts and sharpen the blurry edges in extracted �elds.

For a function u with jr uj 2 L 1(
), the total variation functional is de�ned
by [19]

T V(u) =
Z



jr u(x)j dx: (36)

In order to avoid computational di�culties arising from the non-di�erentiation
of the modulus at zero, the TV functional is often replaced by

T V(u) =
Z




p
jr u(x)j2 + � 2 dx; (37)
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where � > 0 is a small parameter. In the following description, we mainly
restrict our attention to the 3D problem. For the 2D problem, we refer read-
ers to [12, 13], where the authors have combined TV minimisation with the
ridgelet and curvelet transform for image processing. Using a �rst order �nite
di�erences scheme for computing the gradient, the total variation functional for
u := ( u�;�;�; )( �;�;� )2 I3

n
is given by

T V(u) =
X

�;�;�

q
(� 1u)2

�;�;� + ( � 2u)2
�;�;� + ( � 3u)2

�;�;� + � 2 dx; (38)

where (� 1u)�;�;� = u� +1 ;�;� � u�;�;� , (� 2u)�;�;� = u�;� +1 ;� � u�;�;� , and (� 3u)�;�;� =
u�;�;� +1 � u�;�;� . More precisely, for a givenu let

U := f u := ( u�;�;� )( �;�;� )2 I3
n

: cD
�> = cD

� ; 8� 2 � g: (39)

Then we are looking for the solution of the constrained minimisation problem

min
u2 U

T V(u): (40)

If the linear subspaceV consists of functions onI3
n given by

V := f � := ( � �;�;� )( �;�;� )2 I 3
n

: cD
� = 0 ; 8� 2 � g; (41)

the idea of TV-minimisation is to remove the pseudo-Gibbs oscillations by min-
imizing the functional

F (u) =
Z



ju � u0j2 dx + � T V (u) (42)

for u 2 f uc + v; v 2 Vg, where u0 is an original ow, uc is a reconstructed
ow after curvelet hard thresholding, and V is a linear subspace of functions
consisting of the components removed by thresholding. It should be noted that
because of the constraint on the subspaceV, Eq. ( 42) is not the usual Rudin-
Osher-Fatemi's TV model as in Ref. [19], but instead is a variant of the TV
problem, which was originally inspired by Durand et al. [18] for wavelets and
extended by Ma et al. [14,13,12].

Using uc as an initial guess, the constrained TV-minimisation can becom-
puted by a projected subgradient descent scheme [18]

ul +1 = ul � t l PV (gT V (ul )) : (43)

Here gT V (u) denotes the subgradient ofT V at u. The step sizet l can be taken
appropriately to ensure convergence.PV (u) denotes a projection ofu on the
constrained subspaceV. This means that only the coe�cients with absolute
value smaller than a given threshold � will be changed by the minimisation
process. LetT be the curvelet transform and T � 1 be its inverse, then we have
PV (u) = T � 1 � � 1 T(u) where � � 1 denotes the so-called inverse thresholding
function,

� � 1(x) :=
�

0; jxj � �
x; jxj < �:

(44)

A crucial step is to compute the gradient of total variation, i.e., gT V (u) or
r u T V(u).
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ul ;�;� ul ;� +1 ;�

ul ;� +1 ;�

ul +1 ;�;�

ul ;� � 1;�

ul ;�;� � 1

ul � 1;�;�

Figure 7: Diagram of 3D coordinate grid for computation of r u T V(u). The
four points with red arrow are points related to the derivati on of the sum with
respect tou�;�;� . The arrow head indicates the Euler forward di�erence scheme.

Figure 7 illustrates the 3D grids for computation of r u T V(u) for 3D prob-
lems. The four points denoted by red arrow are points that arerelated to the
derivation of the sum with respect to u�;�;� . The arrow head indicates the direc-
tion of the Euler forward di�erence scheme. The derivation of the total variation
at location u�;�;� is given by

r u T V(u) : = (3 u�;�;� � u� +1 ;�;� � u�;�;� +1 � u�;� +1 ;� ) � A � 1=2

+( u�;�;� � u�;� � 1;� ) � B � 1=2

+( u�;�;� � u�;�;� � 1) � C � 1=2

+( u�;�;� � u� � 1;�;� ) � D � 1=2 (45)

for the inner points (�; � ) 2 I3
n and corresponding modi�cation at the boundary

@I3
n . Here

A = ( u� +1 ;�;� � u�;�;� )2 + ( u�;�;� +1 � u�;�;� )2 + ( u�;� +1 ;� � u�;�;� )2; (46)

B = ( u� +1 ;� � 1;� � u�;� � 1;� )2+( u�;� � 1;� +1 � u�;� � 1;� )2 +( u�;�;� � u�;� � 1;� )2; (47)

C = ( u� +1 ;�;� � 1 � u�;�;� � 1)2+( u�;� +1 ;� � 1 � u�;�;� � 1)2+( u�;�;� � u�;�;� � 1)2; (48)

D = ( u�;�;� � u� � 1;�;� )2 +( u� � 1;�;� +1 � u� � 1;�;� )2 +( u� � 1;� +1 ;� � u� � 1;�;� )2: (49)

Essentially, TV minimisation does not set the insigni�cant coe�cients to zero
as conventional shrinkage does, but typically removes optimally small values to
eliminate the artifacts. This 3D TV constrain method can be also incorporated
easily into other transforms such as wavelets, contourletsand Surfacelets [21].
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4 Numerical experiments

In this section, we will assess abilities of the 3D curvelet transform combined
with TV-minimisation based thresholding for denoising and extracting from
image sequences some pertinent structures of the observed geophysical uids.

4.1 Simulated uid motion video data (denoising and edge
extraction)

Fig. 8 (a) shows a 3D vortex video of a simulated geophysical ows with 128
frames. It shows the motion of a vortex in a uid submitted to t he Coriolis
force. Image pixels correspond to the concentration of a passive tracer which is
advected by the velocity �eld (computed by the model). Fig. 8 (b) shows the re-
sult of using reconstruction of detailed coe�cients of 3D wavelet transform [20].
Fig. 8 (c) is obtained using the 3D curvelet transform described in section 2.
Both transforms can capture the edges. However, curvelet transform results to
be smoother and more continues along the edges than wavelet transform does. It
can be seen obviously that oscillating artifacts arise along the edges with wavelet
transform: it is due to its poor abilities for representing curve-line singularities.
It is also possible to extract edge structures in noisy environment. Fig. 9 shows
3D evolution of a ow with Gaussian white noise. Fig. 9 (b) and (c) show the
denoising results by 3D wavelet transform and curvelet transform, respectively.
Fig. 9 (d) and (e) are the edge mapping of (b) and (c) using simple reconstruc-
tion of detailed coe�cients after hard thresholding. The 3D curvelet shows its
good performances for edge-preserving denoising and feature extraction.

In these above tests, we only use the simplest hard thresholding for wavelet
and curvelet transform. Many advance techniques includingcontrast enhance-
ment (e.g., [11]) can be incorporated into this framework. Now we will show
the abilities of the proposed 3D TV-synthesis curvelet shrinkage. Figure 10
(a) shows part of the 3D vortex video with white noise. Fig. 10 (b) is the de-
noising result by curvelet transform. It should be noticed that analysing such
kind of images with weak features using conventional methods is a challenging
problem. Indeed the edges are too blurry and almost without high-frequency
components. Using our TV-synthesis curvelet transform cansharpen the edges
to some extent when we remove the noise: Fig. 10 (c). Fig. 10 (d) shows the
removed components in our curvelet denoising. Some edge structures have been
kicked out yet. There is a big room for future researches in image processing
communities.

4.2 Real uid motion video data (denoising and edge ex-
traction)

Fig. 11 shows denoising result by wavelets and TV-synthesiscurvelet transform
of a real { then noisy { EUMETSAT (water vapour channel) video data showing
the evolution of a vorticity band. Fig. 11 (a) is a frame of original ows with
noisy. Fig. 11 (b) and (c) are the denoising result by 3D wavelet transform and
its removed components, respectively. Fig. 11 (d) and (e) are results by 3D
TV-synthesis curvelet denoising with 0.005 stepsize and 10iterations, and its
removed components. The SNR (signal-to-noise ratio) of wavelet and curvelet's
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denoising results are 38.95 dB and 42.96 dB. In order to see clear the di�erence,
Fig. 12 shows the close-up of the original ow, wavelet denoising result, and
curvelet denoising result. It can be seen obviously that theresults by our pro-
posed method preserve the edges much better than those by wavelet method.
The oscillating artifacts and element-like artifacts that appear in wavelet's re-
sults are almost suppressed by our TV-synthesis curvelet method. However, the
orthogonal wavelet transform is much faster than the curvelet method. Specially
for this case, the elapsed time of forward 3D wavelet transform is 0.54 seconds,
and inverse transform is 0.45 seconds. The elapsed time of forward curvelet
transform and inverse curvelet transform are 1.55 seconds and 1.65 seconds,
while the TV-synthesis curvelet transform has to pay 85.0 seconds.

Fig. 13 shows edge extraction using wavelet transform, curvelet transform
combined with hard thresholding and TV-synthesis curvelet transform. Fig.
14 displays the respective close-up ampli�cation. The curvelet-based meth-
ods show good abilities to extract line-like geometric edges. These extracted
spatio-temporal geometric structures will be used in our sequent work on image
assimilation of geophysical uids. This is also one of main motivations of this
paper.

4.3 Video data containing high frequency edges and tex-
tures (denoising)

The proposed method can be widely used in other �elds. Indeed, the TV-
synthesis curvelet transform is more signi�cant for imageswith high-frequency
edges and textures. We give an example of real video data (thedata was also
used in [21]) to further show the outstanding performance ofour method, in
comparison to existing wavelet methods. Fig. 15 (a) shows the 3D noisy video
consisting in line edges and point features. Fig. 15 (b) is the denoising result
using 3D wavelet transform. Analogically, Fig. 15 (c) is the edge-preserving
denoising result using our TV-synthesis curvelet transform. Fig. 16 displays the
close-up of Fig. 15 (a) (b) and (c), respectively. The proposed method preserves
the edges better and also achieve much higher signal-noise-ratio SNR = 36.99
than those by wavelet SNR = 34.92 dB.

Finally, we should notice that we do not pay attention to crit icise the
wavelets here but to point out the respective advantages of using wavelets and
curvelets. Indeed, wavelets are better at representing point-like features while
curvelets are optimal for curve-like edges and structural features. Orthogonal
wavelet transform is very fast and rich achievements on wavelet algorithm in
other disciplines can be applied in our �eld. For a 643 data, the wavelet for-
ward and inverse transform takes 0.83 seconds and 0.54 seconds while curvelet
transform takes 1.29 seconds and 1.27 seconds; For a 1283 data the wavelet
takes 2.29 and 2.17 seconds while curvelet takes 26.82 and 56.26 seconds for the
forward and inverse transform. At the present time, a fast parallel algorithm of
3D curvelet transform can be available at www.curelet.org for large-scale com-
putations. Normally, the performances of curvelets for larger scale images are
better than smaller scale images: indeed more decomposed levels can be used
in large size problems so that the elements of curvelets havemore anisotropic
directional selectivity. Combining curvelets with wavelets would be promising
for general geophysical uids and natural image sequences.
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(a) (b)

(c)

Figure 8: Extraction of edge structure. (a) original vortex ows. (b) extraction
by 3D wavelets. (c) extraction by 3D curvelets.

5 Conclusion

In this paper, we investigated applications of 3D curvelet transform to extrac-
tion of spatio-temporal geometric structures from geophysical uid ow image
sequences and denoising. Extracting such structures and tracking their evo-
lution is essential for future forecast systems. Indeed, new data assimilation
techniques (namely Image Sequences Assimilation) which will take into account
such spatio-temporal structured data are under development.

A total variation based 3D curvelet reconstruction is proposed in order to
sharpen the edges and to suppress oscillating artifacts. Itcan be applied widely
in other �elds on image and video processing.
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