
HAL Id: inria-00329969
https://inria.hal.science/inria-00329969

Submitted on 13 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Performance by Embedding HPC
Applications in Lightweight Xen Domains

Samuel Thibault, Tim Deegan

To cite this version:
Samuel Thibault, Tim Deegan. Improving Performance by Embedding HPC Applications in
Lightweight Xen Domains. 2nd Workshop on System-level Virtualization for High Performance Com-
puting (HPCVIRT’08), Mar 2008, Glasgow, United Kingdom. �10.1145/1435452.1435454�. �inria-
00329969�

https://inria.hal.science/inria-00329969
https://hal.archives-ouvertes.fr

Improving Performance by Embedding HPC Applications in

Lightweight Xen Domains

Samuel Thibault

XenSource, Cambridge

samuel.thibault@eu.citrix.com

Tim Deegan

XenSource, Cambridge

tim.deegan@eu.citrix.com

Abstract

Although they allow easy and cost-effective use of a wide

range of machines, the programming interface and behav-

ior of general-purpose Operating Systems (OS) often fail to

meet, or even conflict with, the specific desires of High-

Performance Computing (HPC) applications, such as low

preemption or control over memory and I/O management.

That often leads to poor performance. On the other hand, hy-

pervisors are more and more commonly used on top of those

OSes for various reasons, such as ease of dedicated environ-

ment deployment or load balancing. In contrast to the usual

unix process model, hypervisors provide their guests with

kernel-level facilities. In this paper, we show how an HPC

application and its execution environment can be embedded

within a lightweight guest domain, alongside a domain that

runs a conventional OS which is only used for administra-

tive purpose. That permits the execution environment to take

advantage of kernel-level facilities to improve performance,

which would be hard to achieve in the traditional process

model because of lack of support or excessive overhead.

Keywords Virtualization, Microkernels, HPC, Memory

management, Scheduling, I/O.

1. Introduction

The expected characteristics of a general-purpose Operating

System (OS), such as the responsiveness of the user interface

or the delaying of I/O operations, often mismatch or even

conflict with the desires of HPC applications. Indeed, the lat-

ter typically use e.g. cache-oblivious BLAS routines which

often perform very badly under a time-shared scheduling

policy (some people even prefer to patch their kernel so as

to almost completely disable preemption (13)!). For out-of-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

2nd Workshop on System-level Virtualization for High Performance Computing

(HPCVIRT’08) 31st March, Glasgow, Scotland
Copyright c© 2008 ACM ISBN 978-1-60558-120-0/08/03. . . $5.00

core applications, I/O could also be far better scheduled by

the application itself (20). As a consequence, execution en-

vironments for HPC have to bypass OS algorithms, for in-

stance by pinning threads on processors, locking memory,

or using O DIRECT operations.

One of the goals of microkernels is precisely to have

minimum impact on applications and to delegate such re-

source management as much as possible. Their availability

in HPC centers is however very low, and the preference is for

general-purpose OSes, for various reasons such as support of

the hardware or the availability of HPC tools.

However, virtualization solutions are more and more be-

ing considered in HPC centers (such as the French CEA)

for several reasons, including the ability to migrate applica-

tions between physical machines or to easily deploy separate

personal execution environments (and thus avoid e.g. library

conflicts). That is actually an opportunity for new execution

models for HPC. As Mergen et al. have foreseen (18), and as

shown in figure 1, it becomes possible to run a hypervisor on

top of a general-purpose OS, and then run the HPC applica-

tion in its own virtualized domain, along with a specialized

execution environment and kernel (often called library OS).

As a result, the general-purpose OS is only used for support-

ing the hardware and administrative tasks, and it does not

interfere with the HPC application during the computation.

The hypervisor does, but that interference is very low: the

scheduler of a hypervisor is usually very conservative for in-

stance. In addition, the control that the application and the

execution environment may have over the specialized ker-

nel can be arbitrarily strong, opening the way to all sorts of

memory, CPU, or I/O scheduling optimizations well adapted

to the particular application. This is usually not possible in

traditional OSes because such control requires kernel-level

privileges.

In this paper, we present an actual implementation of such

an execution model on top of the Xen (1) Hypervisor. For

Xen-related purposes, we used the sample para-virtualized

kernel ‘Mini-OS’, to which we added a POSIX interface

thanks to the newlib C library and lwIP IP stack so as to

run stub domains for various services related to Xen (hard-

ware emulation, network services, ...). In this paper, we show

Hypervisor

Dedicated OS

Execution

environment

HPC

application
Administration

tools

OS

Figure 1. Running an HPC application in a dedicated do-

main under the control of a hypervisor.

how this work may be re-used for HPC and we describe var-

ious kinds of optimizations which become possible in such

an environment. Through our application example, we both

show how the reduced kernel call overhead brings perfor-

mance benefits, and explain some optimizations which we

were able to perform.

2. Related Work

Reducing kernel impact and allowing applications to han-

dle scheduling, memory, and I/O management have been

some of the key features of microkernels. Examples include

Nemesis (21), the Exokernel (8) and the ExOS, K42 (5),

and L4 (16). The amount of mechanisms implemented in

these microkernels varies somewhat, the extreme cases be-

ing L4 and Nemesis, which are incredibly small (about 15

thousands lines of code for L4) and only handle very ba-

sic operations. Micro kernels often let applications sched-

ule their own threads themselves with the help of Sched-

uler Activations (4) so as to better handle blocking system

calls. They also delegate memory traps so as to let applica-

tions handle paging themselves (20), and provide very effi-

cient inter-domain communications, typically based on RPC

with IDLs. Engler et al. explain (8) that building a dedicated

execution environment on top of such delegations can give

far better performance and that resources should be safely

provided instead of being emulated like in the case of the

traditional process model. As a result, microkernels would

be a target of choice for HPC execution environments. Un-

fortunately, from a pragmatic point of view, general-purpose

OSes have much better support for modern hardware and can

be more easily installed by administrators. As a result, on ac-

tual HPC machines microkernels are generally not available,

and the use of a hypervisor (which is sometimes considered

as ‘MicroKernel Done Right’ (10)) turns out to be a much

more viable solution, benefitting from the hardware support

of general-purpose OSes.

There are a few exceptions, however. The most notable

one is probably the Operating System of the computing

nodes of Blue Gene/L machines. While communication

nodes are mere PowerPC processors running Linux, com-

putation nodes are specialized processors which execute

CNK (19) (Compute Node Kernel), a small kernel that pro-

vides applications with a flat fixed-size memory area without

paging support (typically 512 MB). The kernel and the ap-

plication are only separated by a privilege level. The I/O

operations are delegated to the communication node, so that

computation nodes only handle computations. The program-

ming environment is the usual GNU toolchain which was

ported to that special execution environment. This is how-

ever a quite special case developed for such particular ma-

chines, and thus not adapted to the typical HPC machines

which, as the top500 shows (2), are often just clusters of

standard PCs.

Several projects use a hypervisor to isolate the actual ap-

plication from the general-purpose OS so as to keep an easy

administration of the machine through that OS, and still get

good performance or security for the application. The Li-

bra (3) and JavaGuest (14) projects both aim at providing

‘Java on silicon’, i.e. to execute the JVM in an environment

as close to the metal as possible. By using very simple vir-

tualized kernels, they avoid all the complicated semantics of

a full-featured kernel, and hence permit far easier certifica-

tion of the semantics of the JVM. The virtual memory model

of the JVM, for instance, can be implemented directly using

the basic hypervisor memory management primitives, which

boils down to handling a page table, and memory traps are

directly handled by the JVM. By avoiding all the OS layers,

the implementation is a lot faster. Of course, these projects

only target the Java language in particular.

The Catamount (15) kernel is a very lightweight kernel

for the Cray XT3 system, designed to have small overhead

for parallel computing environments. It uses a very pruned

version of the GNU libc that provides a POSIX environment

for the applications. However, similarly to CNK, it provides

almost no support for advanced features like threads and

the mmap() function, and thus does not allow developers to

easily port existing applications to it.

The Library OS (17) is very similar to our work: it uses

Xen as a hypervisor and Xen’s Mini-OS as a basic kernel.

It links with the latter some libraries including the newlib C

library and an efficient Inter-Domain Communication mech-

anism (IDC) based on the shared memory feature of Xen.

However, the target is security rather than performance of

the application itself: this environment supplies very good

isolation for the use of e.g. TPM devices (Trusted Platform

Module). In this paper, we use the same basic approach, but

we target the performance of HPC applications.

MM
Block

frontend
Network
frontend

Console
frontend

FS
frontendSched

Execution environment

newlib

Mini−OS

Xen Hypervisor

lwIP

Application

Figure 2. Structure of our lightweight guest domain.

3. A not so mini domain

In this section we describe how we embed an application

within a lightweight Xen domain, on top of the Mini-OS

kernel, the newlib C library, and the lwIP IP stack.

3.1 Mini-OS

Mini-OS is shipped in Xen as a sample para-virtualized

guest for the Xen Hypervisor (6). It is meant to be very

simple and it completely relies on the hypervisor to access

the machine: it just uses the Xen network, block, and con-

sole frontend/backend mechanisms. It only supports non-

preemptive threads, and supports only one virtual memory

address space (no user space). It can access part of the file

system of the general-purpose domain (dom0) through the

FileSystem frontend/backend mechanism developed for the

JavaGuest project (14).

3.2 A POSIX environment on top of Mini-OS

The design of our POSIX-compatible lightweight execution

environment on top of a Mini-OS guest domain is shown in

figure 2. Briefly, the idea is to just link together the code

of the Mini-OS kernel, a C library, an IP stack, the ex-

ecution environment, and the application in a single exe-

cutable. Technically speaking, using the GNU tools we setup

a plain ELF cross-compilation chain, i.e. we build a cross-

compilation version of binutils and gcc with plain ELF as

target, so as to avoid any specifics of the OS which is used

to build our environment (the Thread-Local Storage model

for instance). We then cross-compile some libraries with the

same kernel C flags as for the Mini-OS compilation, and in-

stall them in the cross-compilation environment. To produce

an embedded version of an application and its execution en-

vironment, we then just need to cross-compile them and link

them with Mini-OS and the required libraries.

The POSIX interface is provided in several parts by

newlib, lwIP, and some additional code. LwIP provides a

lightweight TCP/IP stack which we just connect to the net-

work frontend of Mini-OS. Newlib provides the standard

C library functions. Another choice could have been the

GNU libc, but newlib is meant for embedded projects and

thus better suits our goal. The GNU libc would also have

needed some porting work, while newlib just depends on a

very small range of basic system functions like sbrk. These

system functions and the Unix part of POSIX then have to

be implemented on top of Mini-OS. Some functions are very

trivial to implement: since we do not have the notion of Unix

process, getpid and similar can just return e.g. 1. As we do

not have signals either, sig functions can just be void. Other

functions can be very easily implemented on top of Mini-

OS: sleep and gettimeofday just require careful inter-

facing. mmap is only implemented for one case: anonymous

memory, for which we just have Mini-OS project zeroes on

a newly allocated address space.

The tricky part resides in the file-related functions. Since

we want to have all of the console, main domain files

(through the FileSystem frontend), block devices, network

devices, and lwIP TCP/IP connections to work in a POSIX

way, we have to multiplex among the corresponding parts of

Mini-OS and lwIP. We therefore implemented a thin Virtual

File layer, which for each file descriptor records the kind of

file, and then all file-related functions are redirected to the

appropriate low-level functions. The most tricky function is

select, for which all kinds of file descriptors have to be

mixed. The approach is to first register the caller thread on

wait queues corresponding to those descriptors, then call the

poll function for each of them, and if nothing comes out,

block the thread. On wake up, we poll all file descriptors

again and return the result.

The resulting lightweight environment is actually quite

complete and we were even able to launch the Caml run-

time with it. One of the key advantages of this approach is

that, like Unix distributions, it assembles pieces of software

which are well-maintained in other respects. Mini-OS, as the

sample guest for Xen, is always kept up to date with the hy-

pervisor interface, and newlib and lwIP are well maintained

for other embedded projects. The hard work is thus to inter-

face these existing implementations together.

4. Optimization opportunities for HPC

HPC applications often use an execution environment which

acts as an adapted layer between the application and the Op-

erating System, so as to provide advanced tools to the ap-

plication, for instance computation, thread, or communica-

tion libraries. These environments are often dedicated to the

particular purpose they serve, and as a consequence have

quite a good idea of how resources should be used: how

tasks should be scheduled, how memory or I/O management

should be performed, etc. With traditional Operating Sys-

tems, these environments usually have quite a hard time in-

teracting with the kernel so as to bypass the general-purpose

algorithms that it implements, by pinning the kernel threads

on processors, by locking, or by write-protecting memory

so as to manage memory from the user space, by using the

non-standard O DIRECT extension in order to control the

actually performed I/Os, etc (12).

In a lightweight guest domain environment like ours, the

situation is quite different. Since the execution environment

is directly linked with the kernel, interaction between the

two has very low overhead (it is reduced to a mere function

call), and as shown in figure 2, there is no such barrier as

a system call interface, the environment can interact with

all interesting components of the kernel in whatever way it

prefers. In the following subsections, we study the cases of

scheduling, memory management, and disk Input/Output.

4.1 Scheduling

Mini-OS provides threads, but they are non-preemptive and

there is support for only one processor. This actually meets

the requirements of HPC components like BLAS routines

quite well: they can run at full speed without seeing the

cache being polluted by other tasks which might get woken

up during the computation. The default scheduler is very

simple: it uses a single runqueue without any priorities, and

therefore it has very little overhead.

On the other hand, since the execution environment is

directly linked with the kernel, it is easy to have the former

provide its own scheduler, dedicated to the application, to be

used by Mini-OS instead of the default trivial one.

The uniprocessor nature of the Mini-OS scheduler actu-

ally permits Xen to have very good control over the CPU

usage. Indeed, with only one processor to manage, Mini-

OS does not need to use techniques such as spinning, which

would typically uselessly consume CPU while the hypervi-

sor might have other domains to schedule.

Also, the scheduler interface of Xen itself is quite simple

and already has a plug-in interface. As future work, it would

be interesting to delegate the domain scheduling decisions to

an advanced scheduler in a lightweight guest domain, which

would permit to implement heuristics more easily, since that

application may be developed and debugged in a standard

OS first, and then just moved to a lightweight domain.

4.2 Memory management

The principle of memory management with Xen is very

simple: domains are given a list of machine pages which they

are allowed to use. Then they can build page tables in the

way they prefer, provided that they only map the machine

pages they are allowed to. The updates hence have to be

validated by the hypervisor, but this can be efficiently run

in batch. Memory traps are delivered to the domain the same

way they would be on a genuine machine. This is a great

opportunity for execution environment to actually have true

control over the use of memory, just like a kernel usually

has.

For instance, HPC often uses sparse data (11), in which

whole parts can be zero for instance. In our environment, this

can be achieved with very little cost by just changing the

virtual memory mappings. The Copy on Write mechanism

can then be used to have the sparse areas dynamically change

according to updates. This behavior is of course exactly the

same as what is achieved in a traditional Unix system when

mapping anonymous pages. However, in our environment

the overhead of memory maps is much lower since it reduces

to a series of function calls and one call to the hypervisor to

apply all page updates. Also, there is no arbitrary limit on

the data that can be projected: identity matrix blocks could

be projected the same way, copying matrix blocks could be

performed through Copy on Write, etc. Doing so with a

standard Unix environment would require first writing the

data in a file, then mapping it, etc. which has much higher

overhead.

Another interesting possibility is to exploit the Ac-

cessed/Dirty bits of page table entries, which track at no cost

reads and writes in the pages. These are usually not available

to Unix processes. In our environment, since the application

has access to the actual data page tables thanks to the para-

virtualization nature of Xen, reading these bits is as cheap as

a memory dereference! This opens possibilities like various

heuristics based on costless data access pattern detection,

and also permits to implement an application-level DSM in

a far more efficient way than when using the Unix process

model.

On IA-64 machines the memory management model is

not limited to a mere page table, but can use fixed TLB

entries, hash tables, and trap-provided TLB entries. These

could be usefully exploited by HPC execution environments.

4.3 Disk Input/Output

Since they have to go through dom0, disk Input/Output op-

erations would a priori be slowed down. Actually, measure-

ments show that the para-virtualization interface achieves

quite good performance, very close to native Linux (the

overhead is about 1%, as detailed in (6) and verified in (7)).

A possible benefit from our lightweight environment is

that like the non-standard O DIRECT interface of some

Unix systems, the I/O operations are not buffered, they are

directly enqueued to be completed as soon as possible. That

means that the execution environment of an out-of-core ap-

plication can exactly control the disk accesses and thus opti-

mize requests.

5. Xen use case: HVM stub domains

Our lightweight guest domain environment was not origi-

nally intended for HPC and hence our use case is not HPC-

related, but it still demonstrates the kind of improvements

that can be expected, and it illustrates the optimization pos-

sibilities that have been described in the previous section.

Thanks to recent processor technologies (VMX and

SVM), Xen 3 is able to run unmodified guests in fully-

virtualized domains (also known as HVM domains, Hard-

ware Virtual Machine domains) by using a new ‘VM mon-

dom0

qemu

Linux

Xen Hypervisor

HVM domain

Figure 3. Traditional Xen approach: qemu, the device em-

ulation component, runs as a process in dom0.

stubdom

Linux

qemu

Mini−OS

dom0

Xen Hypervisor

HVM domain

Figure 4. Stubdomain approach: qemu runs on top of Mini-

OS in a specialized domain.

itor’ level above the kernel level. The guest can hence run

natively on the processor even with kernel privileges. How-

ever, when it performs operations which need the attention

of the hypervisor, e.g. access to I/O ports, control is returned

to the hypervisor so as to take appropriate actions. In the case

of accesses to I/O ports, Xen has to emulate virtual devices,

for the guest to believe it is running on a real machine. This

is achieved by running a qemu process1 in the dom0 admin-

istration domain, as shown in figure 3. However, emulation

of virtual devices sometimes takes non-negligible CPU time,

and this prevents correct accounting for e.g. scheduling quo-

tas. Also, the latency is not so good: on an I/O operation,

the Xen hypervisor immediately schedules dom0, but then

the Linux scheduling policies come into play, and the hyper-

visor has no control over that. If dom0 is loaded with other

tasks, the responsiveness can be very poor.

In a way similar to the sidecore approach described by

Gavrilovska et al. (9), by moving the qemu application into

a stub domain, as shown in figure 4, the hypervisor has better

control over scheduling and accounting, since the Mini-OS

scheduler is very simple and basically only runs the qemu

application. Figure 5 shows the various performance mea-

surements we could obtain with qemu running in dom0 or

1
qemu is a complete machine emulator, of which Xen just uses the virtual

device emulation part.

 0

 5

 10

 15

 20

 25

 30

 35

inb(µs) Boot(s) Disk(MB/s) Net(MB/s)

dom0
stubdom

Figure 5. Performance of the fully virtualized guest, when

qemu is running as a process in dom0, and when it is running

in a stub domain: latency of guest I/O port access, guest boot

time, throughput of disk and network.

in a stub domain. The inb bars show the latency of I/O port

accesses as seen from the HVM domain, i.e. the round trip

time between the application in the HVM domain and the

virtual device emulation part of qemu (dom0 is not involved

at all here, only the hypervisor and the stub domain are).

These two bars show a dramatic reduction between the dom0

and the stub domain approaches. A closer analysis of the de-

composition of the latency showed that most of the time was

spent in the main loop of qemu, in which the overhead is due

to calls which check for events. In the case of a stub domain,

that is reduced a lot since there is no system call barrier, just

straight forward function calls. The same kind of improve-

ment can be seen for the boot time of a Linux kernel, shown

in the second pair of bars, since booting a kernel in an HVM

domain typically requires a lot of I/O operations. Lastly, the

throughput achieved by the virtual disks and network boards

emulated by qemu are improved quite well (between 20 and

30 %)2. Of course, an interaction with dom0 is still needed

in order to perform the actual communications, but the main

bottleneck is the interaction between the device drivers in

the HVM domain and the virtual devices of qemu, since for

each communication operation the guest has to perform a lot

of basic I/O port operations.

Thanks to our lightweight environment, some parts of

qemu can be optimized. For instance, for the 65 536 I/O

ports of the x86 architecture, qemu just uses a big table of

handlers, initially filled with the address of a default handler.

In order to save memory, it could instead be filled with

NULL pointers which would be checked for, and the default

handler be called in such a case. Allocating the table through

2 Of course, the use of para-virtualized drivers gives far better results, but

this typically can not be used during the installation of the guest for instance,

and thus efficient full virtualization is essential too.

an anonymous mmap call would allow us to exploit Copy

on Write to actually use a sparse table. However, a better

approach is to fill one page with the address of the default

handler, and then to project that page in the whole table, and

enable Copy on Write for that page. This way, checking for

NULL is not even needed as the address of the default handler

address is efficiently exposed.

In addition to that, we plan to exploit the Dirty bits of

page tables so as to more efficiently track the parts of the

virtual screen that are updated by the HVM domain and thus

need a refresh on the screen of the user, instead of the current

approach which is using a memcmp with a shadow copy of the

video memory.

6. Future Work

The few features of Mini-OS already present optimization

opportunities for HPC. Some new features could bring yet

more possibilities.

The use of super pages (2-4MB) can dramatically reduce

TLB misses, but the usual issue is to decide which parts of

the memory should use them, because kernels usually have

few clues about the actual usage of application memory.

The interface provided by standard Operating Systems to

let applications use super pages is often clumsy, if at all

available. By adding the support to Xen and Mini-OS, the

execution environment of the application would be able to

easily and efficiently use them, thus improving performance.

In the case of an MPI application for instance, it would

be interesting to have the MPI execution environment use

the Inter-Domain Communication facility of the Library

OS (17), so as to optimize the intra-machine communica-

tions between MPI instances.

In order to take full benefit from hi-speed network cards,

the use of VT-d technology would let Mini-OS (and thus

the application itself) push packets directly to the network

and hence get better performance since that completely skips

interactions with dom0. Cisco is already considering our

environment as a potential target for their IOS Operating

System.

7. Conclusion

The performance of HPC applications executed by general-

purpose Operating Systems are often poor just because the

algorithms of the latter are not adapted to the special require-

ments of HPC. On the other hand, using hypervisors on com-

putation machines is more and more being considered as a

interesting solution, for various reasons like load balancing

or ease of deployment.

In this paper, we have shown that it is possible to take the

opportunity of the availability of such hypervisors to run ap-

plications more “close to the metal”, by embedding them and

their execution environment in a lightweight domain, along

with a basic kernel with which they can have a very strong

costless interaction (since they just run at the same privilege

level). We have described some of the optimizations which

are made possible in such an environment. All of that actu-

ally brings a initial positive answer to one of the research

questions raised by Mergen et al. (18): ‘Does virtualization

make it possible to implement a hybrid full-function OS as a

combination of two pieces: a small library OS that provides

an optimized subset of performance-critical services for a

class of HPC applications and runs in the VM with the ap-

plication, plus a full-function OS that runs in a separate VM

and uses introspection of the first VM to provide all other

non-performance-critical services?’

By its very nature, this work opens of course optimization

perspectives for all kinds of execution environments. For in-

stance, being able to manage memory just like a kernel has

long been considered to be reserved to the not-so-widespread

microkernel systems. With the advent of hypervisors, the sit-

uation changes and this paper has effectively shown that we

now have potential for a viable way to do it on normal com-

putation systems too, which opens a new area of optimiza-

tions.

As machines are becoming increasingly parallel, it would

be also interesting to determine the best way to schedule par-

allel applications in such an environment. A multiprocessor

version of Mini-OS exists for the JavaGuest project, so it

would be possible to run a parallel application in a single

domain. The multiprocessor scheduling could for instance

be performed by the dedicated execution environment used

by the application. That said, a lot of legacy applications are

not parallel, and the level of parallelism that can be used is to

run several applications on the same machine. It would then

be interesting to consider how to schedule different domains

embedding HPC applications. That could even be achieved

by having the hypervisor delegate scheduling decisions to a

dedicated domain running a complex scheduler.

Software

This lightweight guest domain environment is available in

the Xen unstable tree in the stubdom/ directory.

References

[1] Open source xen hypervisor technology. Xen, Inc., Palo Alto,

CA, USA, http://www.xensource.com/.

[2] Top 500. http://www.top500.org/.

[3] Glenn Ammons, Jonathan Appavoo, Maria Butrico, lma

Da Silva, David Grove, Kiyokuni Kawachiya, Orran Krieger,

Byran Rosenburg, Eric Van Hensbergen, and Robert W. Wis-

niewski. Libra: A Library Operating System for a JVM in a

Virtualized Execution Environment. In Virtual Execution En-

vironments (VEE), 2007.

[4] Thomas E. Anderson, Brian N. Bershad, Edward D. La-

zowska, and Henry M. Levy. Scheduler Activations: Effec-

tive Kernel Support for the User-Level Management of Paral-

lelism. ACM Transactions on Computer Systems, 1992.

[5] Jonathan Appavoo, Marc Auslander, Dilma DaSilva, David

Edelsohn, Orran Krieger, Michal Ostrowski, Bryan Rosen-

burg, Robert W. Wisniewski, and Jimi Xenidis. Scheduling

in K42. Technical report, IBM Reseach, 2002.

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim

Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew

Wareld. Xen and the Art of Virtualization. In nineteenth ACM

symposium on Operating Systems Principles (SOSP’03), Oc-

tober 2003.

[7] Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanchik,

Matthew Finlayson, Jason Herne, and Jeanna Neefe

Matthews. Xen and the Art of Repeated Research. In

FREENIX, 2004.

[8] Dawson R. Engler, M. Frans Kaashoek, and James

O’Toole. Exokernel: An Operating System Architecture for

Application-Level Resource Management. Operating Systems

Review, 29(5):251–266, 1995.

[9] Ada Gavrilovska, Sanjay Kumar, Karsten Schwan Himan-

shu Raj, Vishakha Gupta, Ripal Nathuji, Adit Ranadive Rad-

hika Niranjan, and Purav Saraiya. High-Performance Hy-

pervisor Architectures: Virtualization in HPC Systems. In

1st Workshop on System-level Virtualization for High Perfor-

mance Computing (HPCVirt 2007).

[10] Steven Hand, Andrew Wareld, Keir Fraser, Evangelos Kotso-

vinos, and Dan Magenheimer. Are Virtual Machine Monitors

Microkernels Done Right? In 10th Workshop on Hot Topics

in Operating Systems (HOTOS’05).

[11] Pascal Hénon, Pierre Ramet, and Jean Roman. PaStiX: A

Parallel Sparse Direct Solver Based on a Static Scheduling

for Mixed 1D/2D Block Distributions. In Proceedings of

the 15 IPDPS 2000 Workshops on Parallel and Distributed

Processing, pages 519–527. Springer-Verlag, January 2000.

ISBN 3-540-67442-X.

[12] Andreas Jacbosen. Implementing and Testing the APEX I/O

Scheduler in Linux . Technical report, University of Oslo,

2007.

[13] Terry Jones, Shawn Dawson, Rob Neely, William Tuel, Larry

Brenner, Jeffrey Fier, Robert Blackmore, Patrick Caffrey,

Brian Maskell, Paul Tomlinson, and Mark Roberts. Improving

the Scalability of Parallel Jobs by adding Parallel Awareness

to the Operating System. In SC ’03: Proceedings of the 2003

ACM/IEEE conference on Supercomputing, page 10, Wash-

ington, DC, USA, 2003. IEEE Computer Society. ISBN 1-

58113-695-1.

[14] Mick Jordan. JavaGuest - A Research Java Virtual Machine

on Xen. In Xen Summit, November 2007.

[15] Suzanne M. Kelly and Ron Brightwell. Software Architecture

of the Light Weight Kernel, Catamount. In 47 th Cray User

Group (CUG 2005), 2005.

[16] Jochen Liedtke. µ-kernels must and can be small. In 5th

International Workshop on Object-Orientation in Operating

Systems (IWOOS), pages 66–77, October 1996.

[17] Chris I. Dalton Melvin J. Anderson, Micha Moffie. . Technical

Report HPL-2007-69, April 2007.

[18] Mark F. Mergen, Volkmar Uhlig, Orran Krieger, and Jimi

Xenidis. Virtualization for High-Performance Computing. 40

(2):8–11, 2006.

[19] J. Moreira, M. Brutman, J. Castanos, T. Gooding, T. Inglett,

D. Lieber, P. McCarthy, M. Mundy, J. Parker, B. Wallenfelt,

M. Giampapa, T. Engelsiepen, and R. Haskin. Designing a

highly-scalable operating system: The Blue Gene/L story. In

International Conference on High Performance Computing,

Networking, Storage and Analysis (SC), Tampa, FL, USA,

November 2006.

[20] Gil Utard Olivier Cozette, Abdou Guermouche. Adaptive pag-

ing for a multifrontal solver. In 18th annual international con-

ference on Supercomputing, pages 267 – 276, Malo, France,

2004.

[21] D. Reed and R. Fairbairns. The Nemesis Kernel – Overview.

Technical report, University of Cambridge, 1997.

http://citeseer.ist.psu.edu/reed97nemesis.html.

