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Abstract: Behavioral theory for higher-order process calculi is less well devel-
oped than for first-order ones such as the 7-calculus. The most natural process
equivalence relation, barbed congruence, is difficult to use in practice because
of the infinite number of test contexts it requires. One is therefore lead to find
simpler characterizations of barbed congruence, which may not be easy to do for
higher-order process calculi, especially in the weak case. Such characterizations
have been obtained for some calculi. For instance, in the case of the higher
m-calculus, HO7, Sangiorgi has defined a notion of normal bisimulation, which
characterizes barbed congruence and that requires only a finite number of tests.
In this paper, we study bisimulations in higher-order calculi with a passivation
operator, that allows the interruption and thunkification of a running process.
We develop a normal bisimulation that characterizes barbed congruence, in the
strong and weak cases, in a higher-order calculus with passivation, but without
name restriction. We then show that this characterization result does not hold
in the presence of name restriction.
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Bisimulations normales dans des calculs de
processus avec passivation

Résumé : La théorie comportementale des calculs de processus d’ordre supé-
rieur est moins développée que celle des calculs du premier ordre tels que le 7-
calcul. La relation d’équivalence entre processus la plus naturelle, la congruence
barbée, est difficile & utiliser en pratique & cause du nombre infini de contextes
de test qu’elle requiert. On est donc conduit & chercher des caractérisations
plus simples de ’équivalence barbée, qui ne sont pas faciles & obtenir dans des
calculs d’ordre supérieur, notamment dans le cas faible. De telles caractérisa-
tions ont pu étre trouvées pour quelques calculs. Par exemple, pour le m-calcul
d’ordre supérieur, HO7, Sangiorgi a défini une notion de bisimulation normale,
qui caractérise la congruence barbée et qui ne nécessite qu'un nombre fini de
contextes de test. Dans ce rapport, nous étudions diverses formes de bisimu-
lations dans des calculs d’ordre supérieur avec un opérateur de passivation qui
autorise 'interruption et la sérialisation d’un processus en cours d’exécution.
Nous définissons une bisimulation normale qui caractérise la congruence barbée,
dans le cas fort et le cas faible, dans un calcul d’ordre supérieur avec passivation
mais sans restriction. Nous montrons ensuite que cette caractérisation ne tient
plus en présence de restriction.

Mots-clés : Calcul de processus, ordre supérieur, théorie comportementale,
congruence barbée, bisimulation normale
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1 Introduction

Motivation

A natural notion of behavioral equivalence for process calculi is barbed con-
gruence. Informally, two processes are barbed-congruent if they behave in the
same way (i.e., they have the same reductions and the same observables), when
placed in similar, but arbitrary, contexts. Due to this quantification on contexts,
barbed congruence is unwieldy to use for proofs of equivalence, or to serve as
a basis for automated verification tools. One is thus lead to study coinduc-
tive characterizations of barbed congruence, typically in the form of bisimilarity
relations.

For first-order process calculi, such as the m-calculus and its variants, the
resulting behavioral theory is well developed, and one can in general readily de-
fine bisimularity relations that characterize barbed congruence for these calculi.
For higher-order process calculi, the situation is less satisfactory. Simple higher-
order calculi, such as HOx [12] [13], have a well-studied behavioral theory. For
HOm, Sangiorgi has defined context and normal bisimilarity relations; which are
both sound with respect to barbed congruence (i.e. they are included in barbed
congruence), and sometimes complete (i.e. they contain barbed congruence),
leading to a full characterization. Context bisimilarity still involves some quan-
tification over test contexts. For instance, for assessing the equivalence of two
processes which consist only of the output of a message on a communication
channel a, context bisimilarity needs to consider every interacting system that
is capable of doing an input on channel a. Normal bisimilarity improves context
bisimilarity by requiring only a single test context. E.g., in the case of two
emitting processes, as above, normal bisimilarity only requires to compare the
behavior of the two processes when placed in parallel with a single, particular
receiving process. Furthermore, context and normal bisimilarities characterize
barbed congruence both in the strong case (where a step from the first process
must be simulated by a single step of the second process), and in the weak case
(where a step of a first process must be simulated by a single step of the second
process, possibly preceded and/or followed by an arbitrary number of internal
steps).

Unfortunately, HO7 is not expressive enough to faithfully model concurrent
systems with dynamic reconfiguration or strong mobility capabilities. For in-
stance, a running HO7w process cannot be stopped, which prevents the faithful
modeling of process failures, of online process replacement, or strong process
mobility. It is for this reason that we have seen the emergence of process calculi
with (forms of) process passivation. Process passivation allows a named process
to be stopped and its state captured at any time during its execution. The Kell
calculus [I6] and Homer [§] are examples of higher-order process calculi with
passivation. The behavioral theory of these calculi is less understood than the
one for HOm, whose proof techniques and relations do not easily carry over.
More precisely, no sound and complete characterization of barbed congruence
has been found in the weak case. In the strong case, context bisimilarities have

RR n°® 6664



6 Lenglet, Schmitt € Stefani

been defined. They characterize barbed congruence at the expense of larger
test contexts than in the case of context bisimilarity for HOx. Importantly, no
relation akin to normal bisimilarity has been found for these calculi.

Contributions

To pinpoint issues that arise in the development of a behavioral theory for
higher-order calculi with passivation, and to show that they arise from the in-
terplay between passivation and restriction, we consider in this paper two calculi
with passivation, which are simpler than both Homer and the Kell calculus, and
which differ merely in the presence of restriction. The first one, called HOP,
extends HOcore with passivation and sum. HOcore is a minimal higher-order
concurrent calculus without restriction that has recently been studied in [9]. As
a first contribution, we show that HOP admits a sound and complete form of
normal bisimulation, in both the strong and weak cases. The second calculus,
called HO7P, extends HOw with passivation. As a second contribution, we show
that with HO7P a large class of tests do not suffice to build a sound normal
bisimulation. This casts some doubt as to whether a suitable notion of normal
bisimilarity, that is with finite testing, can be found for HO#P, and therefore
for Homer and the Kell calculus.

Organization of the report

The report is organized as follows: in Section 2] we quickly recall the syntax, se-
mantics, and behavioral theory of HOw. In Section [3 we define a calculus called
HO=#P that extends HO7 with passivation. We propose behavioral equivalences
ingpired by previous works on Homer and the Kell-calculus, and we give char-
acterization results for HOnP, that mirror those obtained for Homer and for
the Kell calculus. This allows us to review the proof techniques developed for
Homer and for the Kell calculus. The main contribution of this paper is in
Section [4} where we define context and normal bisimilarities that characterize
barbed congruence for HOP. We prove that these relations are not suitable in
HO=P in Section [5, and we show that a large class of finite test processes can-
not be used as a basis for defining a form of normal bisimilarity for HO7P. We
discuss related work in Section [6] and Section [7] concludes the paper. Complete
proofs are given in the appendices. Appendices [4] to [C] and Appendix [G] give
details and proofs for HOnP, while Appendices [D] to [F] deal with HOP.

2 Bisimulations in HO7
In this section, we recall some results on bisimulations in a higher-order calculus

HO~7 [13]. We base our work on this calculus since it enjoys a nice behavioral
theory and is very close to the calculi with passivation we wish to study.

INRIA



Normal bisimulations

Notations:

X,Y, Z: process variables

m,n,m,n: first-order names

le {m,m}uUr

a,b,@,b: higher-order names

x,y: channel names (first-order or higher-order names)

Z: vectors of channel names x1,..., %,

Syntax:

P:=0| X | P|P | LP | a(X)P | aP)P | va.P | IP

2.1

Figure 1: Syntax of the Higher-Order 7

Syntax and Semantics of HOx

The calculus HO7 [13] extends the m-calculus with higher-order communication,
which allows processes as arguments in messages. The syntax of the calculus
and some notations can be found in Figure [I, The constructs of the calculus

are:

The inactive process O.
Process variables X.
Parallel composition of two processes P | Q.

Prefixed processes 7.P: this process can perform an internal action 7
before continuing as P.

CCS-like first-order communication m.P | T.P, where no information is
exchanged, that allows synchronization between processes.

Synchronous higher-order communication a(X)P | a(Q)R: the left process
a(X)P is waiting for a process (here @}) on name a, and then continues
as P{Q/X}. The right process a(Q)R sends the process Q on a and then
continues as R. In process a(X)P, the variable X is bound. We write
fv(P) the free variables of a process P.

Name restriction va.P, where the (first-order or higher-order) name z is
made local to the process P. In process vz.P, the name z is bound. We
write bn(P) (resp fn(P)) the bound names (resp free names) of a process
P.

Process replication ! P, which provides an infinite number of copies of P.

RR n° 6664
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1.P L p LTS-PREFIX a(X)P % (X)P LTS-ABSTR
Q)P L (Q)P LTS-Conc p=A LTS-Pa
a s, -CONCR _ -PAR
PlQ—=AlQ
P A a ¢ {x,T} P A
5 LTS-RESTR —————— LTS-REPLIC
ve.P — vz A P — A|lP
PP Qg r~p prPZp
. LTS-FO = LTS-ReprLic-FO
PIQLP|Q P 5 Py | Py |IP
PLF Q%cC PLF PLC
= LTS-HO = LTS-RepLic-HO
P|Q—FeC IP—> FeC(C|P

Figure 2: Labelled transition system for HOx

We identify processes up to a-conversion of names and variables. For conve-
nience, we sometimes identify a name vector = x1, ..., x, with its supporting
set {x1,...,2,} (assuming the z; are mutually distinct).

Remark 1. Replication may be encoded with the other constructs. We first
write |P with a prefiz: vm.(m.0 |'m.(P | m.0)). To have a copy of process P,
we just have to take a copy of m.(P | m.0) and trigger the communication on
m.

Consequently, it is enough to encode replication of prefized processes. Let
Y = mt(X)(P | X | ¢{X)0). We encode !'m.P by Q = vt.(¢(Y)0 | Y). The
process Y is similar to a copy of m.P, except that it is waiting for a copy of
itself on t after a communication on m, to launch a copy of P and to recreate
the process Q. Hence the process Q) reduces to P | Q after a communication on
m, like the process !'m.P.

However this encoding raises issues with strong behavioral equivalences, hence
we keep replication explicitly in the calculus.

The semantics of the calculus may be based on a reduction relation —,
defined modulo a structural congruence relation =, or may be derived from a
labeled transition system (LTS) semantics —+. We only recall the LTS semantics
in the following subsection. The reduction relation (for HOx as well as all the
calculus in this paper) can be recovered from the structural congruence and the
labeled transition system relation via the equation — = =5=.

INRIA
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2.2 Labeled Transition Semantics

We present here a labelled transition system (LTS) semantics for HO7 in the
style of [11]. In the LTS semantics, we have three kind of possible evolutions
for processes:

e First-order evolution labeled by I, where a process evolves toward a pro-
cess.

e Message input on a channel a, where a process evolves toward an abstrac-
tion (X)Q. The transition P % (X)Q means that the process P may
receive a process R on the name a to continue as Q{R/X}.

e Message output on a channel a, where a process evolves toward a concre-

tion vZ.(R)Q, where & C fn(R). The transition P % v#.(R)Q means that
the process P may send the process R on the name a and continue as @,
and the scope of names T has to be expanded to encompass the recipient
of R. We write bn(C') = Z the bound names of a concretion.

A higher-order communication takes place when a concretion interacts with an
abstraction. We define a pseudo-application operator e between an abstraction
F = (X)P and a concretion C' = vZ.(R)(Q by:

(X)P e vZ.(R)Q 2 vZ.(P{R/X}| Q) fm(P)NF =10
The rule for higher-order communication on name a is:

PLF Q%cC
P|Q L FeC

LTS-HO

Let the set of agents, noted A, be the set of processes, abstractions and
concretions. A process always evolves toward an agent. Rules LTS-PAR and
LTS-RESTR require the extension of the parallel composition and restriction
operators to all agents:

o Let F = (X)Q

— If X ¢ fv(P), then F'| P stands for (X)(Q | P) and P | F stands for
(X)(P [ Q).
- va.F = (X)vz.P.

o Let C=vy.(Q)R

— If yNnin(P) = 0, then C | P stands for vy.(Q)(R | P), and P | C
stands for vy.(Q)(P | R).

— If z € in(Q), then va.C = vy, z.(Q)R. Otherwise, we have vz.C =
vy.(Q)vz.R.

RR n° 6664



10 Lenglet, Schmitt € Stefani

The LTS rules are given in Figure [2| with the exception of the symmetric
rules (commuting P and Q) for LTS-PaAr, LTS-FO, LTS-HO. The transitions
are labeled with the (first-order or higher-order) names on which the commu-
nications may happen, or by 7 for an internal evolution. The meta-variable «
ranges over all the labels.

2.3 Barbed congruence

Behavioral equivalences may be defined either from the reduction or LTS se-
mantics. We first give the definition of barbed congruence, which is a uniform
definition of process equivalence among process calculi. It relies on the defi-
nition of barbs, i.e. the observable actions of a process. For HOx, barbs are
unrestricted first-order or higher-order names on which a communication may
occur.

Definition 1. For every first-order or higher-order name n, we define the strong
observability predicates P |, with u=n | 7, as follows:

We have P | iff P =vy.(a(Q)R | S) with a ¢ .

We have P |, iff P =vy.(a(X)Q | R) with a ¢ §.

We have P | iff P =vy.(m.Q | R) with m ¢ y.

We have P |, iff P =vy.(m.Q | R) with m ¢ y.

We now define barbed bisimulation on closed processes, i.e. processes with
no free process variables. It relates processes with identical barbs that may keep
this property by reduction.

Definition 2. A relation R on closed process is a strong barbed simulation iff
for all (P,Q) €R

o If P |, then Q |,
e If P —— P’, then there exists Q' such that Q — Q' and (P',Q’) €R.

A relation R is a strong barbed bisimulation iff R and R~ are both strong
barbed simulations. Two closed processes P and @) are strongly barbed bisimilar,
iff there exists a strong barbed bisimulation R such that (P, Q) €R.

We close the strong barbed bisimulation under contexts to define barbed
congruence. As usual, contexts are terms with a hole; filling a context C with a
process P gives a process written C{P}. The grammar of HO7 contexts is:

C:=0 | C|P | P|C | vaC | GC)P | @P)C | a(X)C | I.C | IC

In the following, we distinguish a subset of contexts called evaluation con-
texts [E:
E:=0 | veE | E|P | P|E

INRIA



Normal bisimulations 11

Evaluation contexts are contexts which allow evolution (reduction) at the
hole position: if P — P’, then we have E{P} — E{P’}.
Finally, barbed congruence is defined as:

Definition 3. Closed processes P and @Q are strongly barbed congruent iff
C{P} and C{Q} are strongly barbed bisimilar for every context C.

Up to this point we have worked in the strong setting, where each reduction
of P is matched by exactly one reduction of Q). In the weak case, a reduction
of P may be matched by an arbitrary number (possibly zero) of reductions of
@). We write = the reflexive and transitive closure of —.

We define the weak observability predicate by P |}, iff there exists P’ such
that P = P’ |,,. We define barbed simulation by:

Definition 4. A relation R on closed process is a barbed simulation iff for all
(P,Q) €R

o If P |, then Q |,
e If P — P’, then there exists Q' such that Q = Q' and (P',Q’) €R.

A relation R is a barbed bisimulation iff R and R~ are both barbed simulations.
Two closed processes P and ) are barbed bisimilar, iff there exists a barbed
bistmulation R such that (P,Q) €R.

Finally, we define barbed congruence:

Definition 5. The closed processes P and Q) are barbed congruent, iff C{P}
and C{Q} are barbed bisimilar for every context C.

It is easy to prove that two processes are not barbed congruent: we just
have to find a context C which distinguishes them. However, proving barbed
congruence is more difficult because of the universal quantification on contexts.
Consequently it is common in process calculi to find a simpler behavioral equiv-
alence which characterizes barbed congruence.

2.4 Context bisimulation

Sangiorgi proposes context bisimulation as a LTS based alternative to barbed
congruence. The definition of the (early strong) context bisimulation is:

Definition 6. A relation R on closed processes is an early strong context sim-
wlation iff P R Q implies

e Forall P L P’, there erists Q' such that Q 4 Q' and PP R Q.

e For all P % F, for all closed concretions C, there exists G such that
QL Gand FeCRGeC.

o For; al P % C, for all closed abstractions F, there exists D such that
Q5 Dand FeCRF eD.

RR n° 6664



12 Lenglet, Schmitt € Stefani

A relation R is an early strong context bisimulation iff R and R~ are early
strong context simulations. Two closed processes P and Q) are strongly early
context bisimilar, noted P B Q, iff there exists an early strong context bisimu-
lation R such that P R Q.

In the message sending and input cases, the context bisimulation introduces
the surrounding environment which interacts with the processes P and ). When
sending a message (resp inputting a message), it considers all the abstractions
F (resp concretions C') which may input (resp send) a message on the same
channel a.

The relation is said to be early because the evolution G or D of @) depends
on the choice of the interacting context. Another definition, where the two are
independent, is said to be late.

Definition 7. A relation R on closed processes is a late strong context simula-
tion iff P R @ implies

e Forall P L P’, there exists Q' such that Q 4 Q' and PP R Q.

e For all P % F, there exists G such that Q = G and for all closed con-
cretions C, we have F e C R G o C.

e For all P & C, there exists D such that Q % D and for all closed
abstractions F, we have F e C R F o D.

A relation R is a late strong context bisimulation iff R and R~ are late strong
context simulations. Two closed processes P and Q) are strongly late context
bisimilar iff there exists a late strong context bisimulation R such that P R Q.

For HOm, the early and late bisimilarities coincide [13], hence we can use
both formulations. It is not the case in all calculi; for instance in the 7-calculus,
there exist early bisimilar processes which are not late bisimilar. In general the
late version is easier to manipulate but is not complete, i.e. there exist processes
which are barbed congruent but are not late bisimilar. On the other hand, early
bisimulations are good candidates to characterize barbed congruence.

These definitions may be extended to the weak case. We note = the reflexive
and transitive closure of ©. In the definition of weak relations, a matching
transition may include T-action. A first possibility is to allow T-actions before a
visible action only: these relations are called delay bisimulations. For instance,
the definition of the delay early context bisimulation is:

Definition 8. A relation R on closed processes is a delay context simulation
iff PR Q implies

o For all P 5 P, there exists Q' such that Q = Q' and P’ R Q'.
o For all P 5 P with [ % T, there exists Q' such that Q =4 Q' and
PPRQ.

INRIA



Normal bisimulations 13

e For all P % F, for all closed concretions C, there exists G such that
Q=5Gand FeCRGeC.

o For all P % C, for all closed abstractions F, there exists D such that
Q=D and FeCRF eD.

A relation R is a delay context bisimulation iff R and R~ are delay context
simulations. Two closed processes P and Q are delay context bisimilar, iff there
ezists a delay context bisimulation R such that PR Q.

Delay bisimulations are generally easier to handle and some proof techniques
may fail with non delay bisimulations (like for instance Howe’s method given
in Section . However delay bisimulations are generally not complete: there
are processes which are weak barbed congruent but not delay context bisimilar.
Another definition of weak relations is possible where m-action are allowed before
and after a visible action. We write = for =. For all first-order name or coname
n, we write = for == and for all higher-order name or coname a, we write =
for =% (as higher order steps result in concretions and abstractions, they may
not reduce further; silent steps after this reduction are taken into account in
the definition of weak simulation below). We define weak early and late context
bisimulations as:

Definition 9. A relation R on closed processes is an early weak context simu-
lation iff P R Q implies

o Forall P L P’, there exists Q' such that Q 4 Q and PP R Q.

e For all P % F, for all closed concretions C, there exists G, Q' such that
Q232G GeC2Q,and FeCRQ'.

e Forall P % C, for all closed abstractions I, there exists D, Q' such that
Q2D FeD=Q and FeCRQ'.

A relation R is an early weak context bisimulation iff R and R™' are early
weak context simulations. Two closed processes P and Q are early weak context
bisimilar, iff there exists an early weak context bisimulation R such that P R Q.

Definition 10. A relation R on closed processes is a late weak context simula-
tion iff P R Q implies

e Forall P L P', there exists Q' such that Q 4 Q" and PP R Q'.

e Forall P % F, there exists G such that Q = G and for all closed concre-
tions C, there exists Q' such that G e C = Q' and F ¢« C R Q'.

e Forall P % C, there exists D such that Q) 2 D and for all closed ab-
stractions F, there exists Q' such that F ¢ D = Q' and F ¢ C R F e D.

RR n° 6664



14 Lenglet, Schmitt € Stefani

A relation R is a late weak context bisimulation iff R and R~ are late weak con-
text simulations. Two closed processes P and Q) are late weak context bisimilar
iff there exists a late weak context bisimulation R such that P R Q.

In the following, we use mainly the weak context definition, except when we
explicitly refer to delay relations.

In the strong and weak cases, context bisimilarities are sound: two context
bisimilar processes are barbed congruent. To prove this, Sangiorgi shows that
context bisimilarities are congruences, i.e. if P and @) are context bisimilar, then
op(P) and op(Q) are context bisimilar for all the operators op of the language.
As a corollary, we deduce that if P and @ are context bisimilar, then for all
contexts C, C{P} and C{Q} are context bisimilar. As bisimilar processes have
identical barbs, P and @) are barbed congruent.

To prove this congruence result on context bisimilarities, one relies on a
substitution lemma:

Lemma 1. Let A be an agent and P, Q be processes; if P and Q) are strong (resp
weak) context bisimilar, then A{P/X} and A{Q/X} are strong (resp weak)
context bisimilar.

The scheme of [I3] to prove this lemma can be summed up by:

e The result is proved for evaluation contexts (parallel composition, repli-
cation, and restriction).

e The result is proved for all processes, using the first step.

The distinction is useful since if A is an evaluation context, the reductions of
A{P/X} may come from A or P, whereas if A is not an evaluation context, P
cannot be reduced.

Context bisimulation is easy to understand: when two tested processes P and
@ may perform a partial action (sending or receiving a message), it considers all
the complementary contexts which may interact with P and Q. It is easier to
manipulate than barbed congruence, since it features only one test in the internal
action case. However, the universal quantification on concretions or abstractions
makes the definition still hard to handle in practice. In the following, we give
the definition of a simpler behavioral equivalence for HOm.

2.5 Normal bisimulation

Normal bisimulation is a behavioral equivalence easier to use since it does not
feature any universal quantification in its definition. It relies on an encoding
of HO7 in a first-order m-calculus. Indeed, when we receive a process, we can
only run, duplicate, discard, or forward it. These behaviors can be simulated
by sending a name which is used as a trigger to run the process when needed.
Formally, we have the following theorem (called factorization theorem):
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Normal bisimulations 15

Theorem 1. For all A, Q, and m with m ¢ fn(A, Q), the agents A{Q/X } and
vm.(A{m.0/ X} |!'m.Q) are weakly late context bisimilar.

The factorization theorem allows to replace several copies of a process ) by
a trigger m.0, which may activate a copy of Q when needed with the associ-
ated process !m.Q). Normal bisimulation relies on this translation to test weak
equivalences of processes.

Definition 11. A relation R on closed processes is a normal simulation iff
P R Q implies

e Forall P P’, there exists Q' such that Q LN Q and PP R Q.

e For all P % (X)P', there exists (X)Q' such that Q = (X)Q' and for
some .0 where m is a fresh name, we have P'{m.0/X} R Q'{m.0/X}.

e For all P % vi.(R)S, there exists vz’ .(R')S" such that Q = va/ (R')S’
and for some fresh name m, we have vx.(S |'m.R) R va'.(S’ |'m.R’).

A relation R is a normal bisimulation iff R and R~ are normal simulations.
Two closed processes P and Q are normal bisimilar iff there exists a normal
bisimulation R such that PR Q.

In the message input case, normal bisimilarity tests only a trigger. In the
message sending case, normal bisimilarity tests processes where the emitted
processes R, R’ are made available through a name m. Using the factoriza-
tion theorem and the fact that weak late context bisimulation is a congruence,
Sangiorgi proved that normal bisimilarity coincide with weak late context bisim-
ilarity. Cao [2] extended the result to the strong case.

As we saw in this section, context bisimulation is a first step in finding a
simple behavioral equivalence: it reduces only slightly the quantifications. On
the other hand, normal bisimulation is a major improvement since only one
test is perform at each transition step. We now study such relations for more
expressive calculi.

3 Bisimulations in calculi with passivation

We now study bisimulations in calculi with passivation capabilities as in Homer
or the Kell-calculus. Instead of working in Homer or Kell-calculus directly, we
define a simpler calculus called HOm with Passivation (HO7P), which extends
HO7 with a passivation operator. By doing this we avoid the unnecessary
features of Homer and Kell (mainly additional control on communication) and
we are able to compare bisimulations in HOm and HO#P.
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P | (Py| Ps) = (P, | P) | Ps CoNG-PAR-Assoc
P, | P,= P, | P, CONG-PAR-COMMUT P|0=P CoONG-PAR-ZERO
ve.vy.P =vyve. P CONG-RESTR-COMMUT
vz.0 =0 CONG-RESTR-ZERO IP=P|!P CoNG-REPLIC

x ¢ (P)

CoNG-NEwW-PAR
Z/Z‘.(Pl | PQ) = P1 | VQZ‘.PQ

P=Q
C{r} =C{Q}

CoNG-CONTEXT

Figure 3: Structural congruence for HOmP

3.1 Syntax and semantics of HO7P

We add localities a[P], that are passivation units, to the HOx constructs. With
the same notations as for HOm, the HOnP syntax is:

P:=0| X | P|P | LP | a(X)P | @P)P | va.P | P | a[P)

When passivation is not triggered, a locality a[P] is a transparent evaluation
context: process P may evolve by itself and communicate freely with processes
outside of locality a. At any time, passivation may be triggered and the process
a[P] becomes a concretion (P)0. Passivation may thus occur as an internal 7
step only if there is a receiver on a ready to receive the contents of the locality.

We extend localities to all agents: if F' = (X)P, then a[F] 2 (X)alP); if

C = vz.(Q)R, then a[C)| 2 vZ.(Q)a[R]. We also add the following rules to the
LTS:
P%A -
———— LTS-Loc a[P] % (P)o LTS-Passiv
a[P] — alA
The reduction relation — is defined as ==. The structural congruence
relation = is the smallest equivalence relation that verifies the rules in Figure
Note that rule LTS-Loc implies that the scope of restricted names may cross
locality boundaries. Scope extrusion outside localities is performed “by need”
when a communication takes place. The reduction semantics, however, does
not allow the restriction and locality operators to commute freely by structural

congruence. If it did, there would be structurally congruent processes with
different behavior. For instance, let Q = a[yn.P] | a(X)(X | X). It reduces
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Normal bisimulations 17

to (vn.P) | (vn.P) by triggering the passivation. If we allow the structural
extrusion of vn across locality a, we would have @ = vn.(a[P] | o(X)(X | X)),
which evolves to vn.(P | P). In this case, the name n is shared by the two
instances of P, whereas each instance of P has its own name n in the first
case: the two obtained processes may have different reductions. For example,
let P=m.0|n.n.R:

o In the first case, we have (vn.(m.0 | n.n.R)) | (vn.(7.0 | n.n.R)), which
evolves in (vn.n.R) | (vn.n.R). No further reduction is possible.

¢ In the second case, we get vn.(7.0 | 7.0 | n.n.R | n.n.R), which may evolve
in vn.(R | n.n.R). All the reductions of R are possible.

We now define HO#P contexts C, evolution contexts G, and evaluation con-
texts E.

C:=0|C|P|P|C]|vaC | alC)P | a(P)C | o(X)C | LC | !C | a[C]
G:=0 | veG | G|P | P|G | oG] | |G
E:=0 | vaE | E|P | P|E | a[E]
HO7P contexts simply extend the HOn ones with the locality construct.

3.2 Characterization of barbed congruence

As in HOw, our goal is to find a simple bisimulation-based characterization of
barbed congruence. The definition of strong barbed congruence for HO7P is
identical to Definition [3| after adapting the observability predicate. We note
P ~p @ to indicate that processes P and @ are strongly barbed congruent.

Definition 12. For all first-order or higher-order name n, we define the strong
observability predicates P |, with p=n | 7, as follows:

e We have P |z iff P = G{a(Q)R} or P = G{a[Q]}, with a ¢ bn(G).
o We have P |, iff P = G{a(X)Q} with a ¢ bn(G).

o We have P |5 iff P = G{m.Q} with m ¢ bn(G).

e We have P |, iff P = G{m.Q} with m ¢ bn(G).

Bound names of a context bn(C) are first-order and higher-order restricted
names in C of whose scope encompasses the hole. For instance, a name x €
fn(P) Nbn(C) is free in P and becomes bound in C{P}.

We now define a sound and complete context bisimulation for HOzxP in
the strong case. We first notice that the context bisimulation B given by San-
giorgi for HOm (definition [6) is not sound in our calculus because of passivation.
Bisimulation B relates the processes

Py =a{0)!m.0 Qo = a(m.0)!m.0
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18 Lenglet, Schmitt € Stefani

The differences between the emitted processes 0 and m.0 are shadowed by the
process !m.0. More precisely, we have to check that for all ', we have F' e
(0)!m.0 B F e (m.0)!m.0, i.e. for all R, we have P = R{0/X} |!'m.0 B
R{m.0/X} |!m.0 = Q’. We have three kinds of possible transitions from P’:

e Transitions from R alone: they are matched by the same transitions of R
in Q'

e Synchronisations between !m.0 and R or —--transitions from !m.0: they
are matched by the same transitions in Q’

e Synchronisations between the copies of the message m.0 and R or —-
transitions from the message: they are matched by synchronizations be-
tween !m.0 and R or —»-transitions from !m.0 in Q’.

Conversely the transitions of @’ are matched by P’.

Remark 2. This result can be proven formally by considering the relation
{(Po |!m.0,P{0/X} |!m.0),fu(P) C X}, where o stands for a substitution
which replaces some process variables with m.0 and the others with 0, and show-
ing that this relation is an early strong bisimulation according to definition[6

However Py and @y are not barbed congruent in HO7P. The context C =
b[d] | a(X)X | b(X)0 distinguishes them. We have C{Py} — b[!m.0] |
0 | b(X)0 = P’ by a communication on a. This reduction is matched by
C{Qo} — b[!m.0] | m.0 | b(X)0 = Q'. By triggering the passivation on b, we
have P’ — 0 and Q" — m.0. The two resulting processes are not barbed
bisimilar.

In a message sending vz.(R)S, the emitted process R may be sent outside a
passivation unit while the continuation S stays in this unit. If the passivation is
triggered, the process S may be put in a different context, or may be destroyed
(as shown in the previous example). Hence the passivation may separate the
processes R and S and put them in totally different contexts, which is not
possible in a calculus without passivation: the definition of the bisimulation has
to be modified to take this into account.

The easiest way to adapt the bisimulation definition is to check in the con-
cretion case that processes are still bisimilar when they are put in a locality. It

means that we add the following condition (in the early case): if P % C, for all

abstraction F, there exists C” such that Q@ % C’ and F' e a[C] R F e a[C"]. One
of the possible evolutions of F e a[C] is triggering of the passivation and send-
ing the contents of the locality (i.e. the continuation) in an arbitrary context.
Consequently, the condition implies that for all evaluation context E, we have
F e E{C} R F ¢ E{C"}. Actually this new condition is enough to have a sound
bisimulation. Therefore the definition of an early strong context bisimulation
becomes:

Definition 13. A relation R on closed processes is an early strong context
simulation iff P R @Q implies fn(P) = fn(Q) and:
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Normal bisimulations 19

o Forall P L P’, there exists Q' such that Q 4 Q' and PP R Q.

e For all P % F, for all closed concretions C, there exists G such that
QLGand FeCRGeC.

o Foral P % C, for all closed abstractions F', there ewvists D such that

Q % D and for all closed evaluation contexts E, we have F o E{C} R
FeE{D}.

A relation R is an early strong context bisimulation iff R and R~ are early
strong context simulations. Two closed processes P and Q are early strongly
context bisimilar, noted P ~ Q, iff there exists an early strong context bisimu-
lation R such that P R Q.

This definition is similar to the ones for context bisimilarities in Homer [g]
and the Kell-calculus [16] (except that in Kell, contexts are also added in the
abstraction case).

Remark 3. In the definition, the condition fn(P) = fn(Q) has been added
because of the lazy scope extrusion: two bisimilar processes with different free
names may be distinguished because of this mechanism. For instance, a process
P bisimilar to O but with a free namey (e.g. va.xz.y.0) may be distinguished from
0 by a context C = a[vy.b(O)R] | b(X)a(Y)(Y | Y). The process C{P} may re-
duce to vy.(R | R), while the process C{0} evolves toward (vy.R) | (vy.R). With
an appropriate R, the two processes have different transitions, as illustrated in
the discussion on commutation of name restriction and localities in Section[3.1]
See the completeness proof in Appendiz[(] for full details.

The corresponding late version of context bisimulation is:

Definition 14. A relation R on closed processes is a late strong context simu-
lation iff P R Q implies fn(P) = fn(Q) and:

o ForallP L P’, there exzists Q' such that Q LR Q and PP R Q.

e For all P 5 F, there exists G such that Q = G and for all closed con-
cretions C, we have F e C R G o C.

o For all P & C, there exists D such that @ % D and for all closed
abstractions F' and evaluation contexts B, we have F ¢« E{C} R F ¢ E{D}.

A relation R is a late strong context bisimulation iff R and R~ are late strong
contzt simulations. Two closed processes P and Q) are late strongly context
bisimilar, noted P ~; Q, iff there exists a late strong context bisimulation R
such that PR Q.

Both early and late strong bisimilarities are sound with respect to barbed
congruence. This is given by the following theorem, whose proof can be found

in Appendix
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Theorem 2. For all P,Q, if P~ Q, or P ~; Q, then P ~}, Q.

In the following subsection, we discuss techniques, developed for the Kell-
calculus and for Homer respectively, that can be used to show that context
bisimulation is sound and complete in the strong case. We also explain why
these techniques fail in the weak case, which remains an open problem.

3.3 Kell-calculus soundness proof

As in HOm, the soundness proof used for the Kell-calculus relies on the substitu-
tion lemma (Lemmal[l)). However Sangiorgi’s method to prove it (distinguishing
between evaluation and other contexts) does not work in HO#xP. Unlike HOm,
an execution context in HO7P may become a non-execution context (a locality
may become a message output preventing internal reductions).

In concrete terms, to show the first step of Sangiorgi’s method in the locality
case, we would have to prove that if P ~ @, then a[P] ~ a[Q]. We would have
to build a relation R such that (with P ~ Q):

alP] -~ a[Q)
a(i’;O _R_ a(c,l);o
<Pl>ao - B <QJ/;)

and such that R is a bisimulation. Therefore for all abstractions (X)R, we would
have R{P/X} R R{Q/X}. To prove a sub-case of the substitution lemma, we
would have to consider the relation R= {(R{P/X}, R{Q/X}),P ~ Q} and
show that it is a bisimulation. But this would be the same as proving the sub-
stitution lemma directly. Hence Sangiorgi’s proof method cannot be applied to
HO~=P.

The method used for the Kell-calculus is the following one. We define a
relation R = {(C{P{R/Y}},C{P{S/Y}}),fv(P) = Y,R ~ S}, and we show
that its reflexive and transitive closure is an early or late bisimulation. We
suppose now that we work with the early definition, but the proof technique
work with the late one as well.

We first explain why we work with the reflexive and transitive closure instead
of the relation itself. To show that R is a bisimulation, we proceed by induction
on the derivation of the transition P{R/Y} < P’ (in the case C = O). Consider
the case of the parallel composition P = @ | T, and we suppose that P evolves
by a higher-order communication. We want to close the following diagram:
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R
Qr|Tr

ir

FR.CR

Qs | Ts

knowing that Qr = Fgr and Tr = Cg for some a (for all processes P, E, we
write Pg for P{ﬁ/f/} We have Qr R Qs so by applying Cr to Fr (we work
with early bisimulation, hence we have to choose the concretion before getting
a matching abstraction), we have by induction:

R

Qr Qs
|

\La | a
y

Fr— R _Fy

with FR ° CR RFS ] CR.
We have Tr R Tg, so by applying Cr to Fs we have:

Tp ——Ts
|
la la
\i
Cr-%-Cs

with Fg ¢ Cr R Fg e Cg. From these we can conclude that:

R

Qr|Tr Qs | Ts

|

TJ/ | T

R R v
FROCR———FsocR———Fsocs

As a result, we have:

Pr —=— Pg
|
o
\

2
PL-%_ P,

while we need Py, R P§.

More generally, we prove that R progresses towards its reflexive and transi-
tive closure R*, i.e. if (P,Q) € R and P % P’, then there exists Q' such that
Q% Q and (P,Q') € R* (see appendix @ for details).

R

P Q
|

\La | a
. \
P/_E _Q’
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In the strong case, it is sufficient to show that R* is a bisimulation. Suppose
that P R* Q and P % P’. There exists Py,...,P, such that P R P, R
... P, R Q. We want to close the following diagram:

pP—E PP R

P\L)/

Since R progress towards R*, we build Pj...P,, Q" such that P R* P R*
P R* Q.

PLPI PniQ
I | |

J/a | a | a | a
. \ N . Y
e Ry e

Since R* is transitive, we have P’ R* Q' as required. The soundness proof using
the Kell-calculus technique can be found in Appendix [A]

This approach fails in the weak case. We want to close the following diagram:
P2 Py Py 2 Q
‘i/

We use the fact that R progress towards R* for P, P, P;.

P—"—p " P P, Q
I
| T
\i
Prs
I
a | T
\i
P13
I
la
.
P-%-P

We close the sub-diagram Py, P2, Ps:
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A A PRQ PRQ PR PR Qs
XRX ORO A A A
IPRILQ  vePRuaQ P PaROQL| Qs
PRQ PRQ. PRQs  PRQ PRQ
W X)PRa(X)Q  alP)PsRaQ1)Qs PRIQ [P R a[Q]

Figure 4: Compatible refinement for HO7wP

R R

P P Py Py ——0Q
| I
| T 1]
y 3
-
Pip—'=— Py
|
a | T
\
Py3
Il
Ila
\
-
p-=-PF

Hence we have Pio R* Py and Pjs — Pj5: the diagram P, Q, P’ we want to
close may be smaller than Pjo, P, P13. The scheme may then recursively and
infinitely repeat itself. Knowing that R progress towards R* does not allow to
prove that R* is a bisimulation in the weak case. This problem is similar to the
application of up-to techniques in the weak case [I4]. Hence we cannot show
that the early bisimulation is a congruence in the weak case with this technique.

Remark 4. We have the same results with the late bisimulation: we can prove
that the late bisimulation is a congruence in the strong case, but the weak one
remains an open problem.

Remark 5. On the contrary the method used by Sangiorgi may easily be adapted
in the weak case for HOn without passivation. Transitivity issues are dealt with
by using up-to techniques mizing strong and weak bisimilarities. See [13] for
further details.

3.4 Howe’s method and input-early bisimulations

Howe’s method [I} [7] is a systematic proof technique to show that a candidate
relation R is a congruence. It has been used for Homer to show first that
late bisimilarity is sound [8], and has been adapted to show that input early
bisimilarity is sound [6]. We introduce input-early bisimulations later; we first
explain Howe’s technique and its application to late bisimulations.
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Instead of showing that R is a congruence directly, Howe’s method builds
a relation R® (the Howe closure of R) which is immediately a congruence and
which is very close to bisimulation by construction. Additional properties which
relate R and R* allow to conclude that R is a congruence.

The definition of the Howe closure relies on auxiliary relations, the open

A
extension of R noted R° and the compatible refinement of R, noted R. The
open extension extends the definition of the relation R to open processes, i.e.
to processes with free process variables X:

Definition 15. Let P and Q be two open processes. We have P R° Q iff
Po R Qo for all substitutions that close P and Q.

The compatible refinement of a relation is inductively defined for HO#P
by the rules given figure @l These rules formalize the fact that two processes
A
are related by R iff they have the same syntactic shape and if their immediate
sub-processes are related by R.

Definition 16. The Howe’s closure R® of a relation R is inductively defined
by the following rule:
A
PR*Q QR°R
PR*R

A
The composition of the relations R® and R° gives to the Howe closure con-
gruence properties but allows also some transitivity. Indeed we have the follow-
ing properties:

Lemma 2. If R is an equivalence, then R°® is reflexive and:
A
PR*Q PR°Q PR*P P R°Q

—— (CoONG ———— OPEN OPEN RIGHT
PR*Q PR*Q PR*Q

PR*Q P R® Q/
P{P'/X} R* Q{Q'/X}

By rule CoNG we know that the Howe closure is a congruence. Rule OPEN
RIGHT allows a composition on the right, and rule SUBST allows substitutions
to take place inside two processes related by the Howe closure. These properties
can be proved by induction or follow immediately from the definition and from
the fact that R (and then R°) is an equivalence.

SUBST

In our case we want to show that a bisimulation B is a congruence. Fol-
lowing the Howe’s method scheme we have to prove that B*=B°. Since B® is a
congruence and B° equals B on closed terms, we conclude that B is a congruence.

With OPEN, we already have B°CB°®. The reverse inclusion can be es-
tablished by proving a modified simulation property for B®. Proving that a
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congruence has some bisimulation properties raises some transitivity issues as
pointed out with the previous technique, and consequently cannot be applied in
the weak case. To deal with this issue, the modified bisimulation property has
to feature some transitivity. It is easy for late bisimulation: we extend ~7 to
abstractions by F' ~p F' iff for all C', we have F' ¢ C' ~} F’ ¢ C. We have then
the following property:

Lemma 3. If P ~} Q, then:

o Forall P L P’, there exists Q' such that Q 4 Q' and P' ~} Q.

e For all P F, there exists F' such that Q < F' and F ~} F'

o ForalP % C, there exists C' such that Q 50" and for all closed F, F’
such that F ~7 F' and all evaluation contexts E, we have F o« E{C} ~}
F' e« E{C"}.

The transitivity is built in the output clause of this bisimulation-like prop-
erty: F and C are directly related to F’ and C’. With this lemma and properties
of Howe’s closure, we can prove that ~; is a congruence.

For late bisimilarities, it is possible to prove bisimulation-like properties
featuring some transitivity for Howe’s closure: we can work with abstractions
and concretions independently. It is not case for early bisimilarities. However
the method can be adapted to work with input-early bisimulations [6], which are
bisimulations with an early condition in the input clause and a late condition
in the output one. The definition is:

Definition 17. A relation R on closed processes is an input-early strong sim-
wlation iff P R Q implies fn(P) = fn(Q) and:

o ForallPL P’, there erists Q' such that Q 4 Q' and PP R Q.

e Forall P 5 F, for all closed concretions C' and closed evaluation contexts
F, there exists G such that Q % G and F{F} ¢ C RF{G} e C.

e Forall P % C, there exists D such that QQ % D and for all closed
abstractions F and evaluation contexts E, we have F ¢ E{C'} R F' ¢ E{D}.

A relation R is an input-early strong bisimulation iff R and R™' are input-
early strong simulations. Two closed processes P and @) are input-early strongly
bisimilar, noted P ~;. Q, iff there exists an inpul-early strong bisimulation R
such that PR Q.

Evaluation contexts have been added in the message input clause for tech-
nical reasons. Concretions remain independent from abstractions, so we extend
~3, to concretions:

P~y P Qrp Q (PHQ L C C~3. D wvaeD~; C'
(PYQ ~;, C ve.C ~3, C'
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with C ~5, C"ifffor all F, F' e C ~%, F' @ C’. We extend ~?, by adding the rule
~? 0O, and we show this bisimulation-like property for input-early Howe’s

closure:

Lemma 4. Let (~;.)2 be the restriction of ~3, to closed terms. If P (~.)o Q
then :

o If P L P!, there exists Q' such that Q - Q' and P’ (~ie)e Q'

e If P % F, for all closed concretion C (~;.)% C' and evaluation contexts
E ~8, E/, there exists F' such that Q <> F' and E{F} & C (~;.)* E'{F'} o
C/

o If P s, C, there exists C' such that Q % ¢" and for all closed evaluation
contests B, E' such that E ~3, E', we have E{C} (~;.)2 E'{C"}.

The property features transitivity in the input clause. Using this lemma and
properties of Howe’s closure, we can prove that ~2, is a bisimulation and coin-
cide with ~;.. The complete soundness proof of input-early strong bisimilarity
using Howe’s method can be found in appendix [B] The proof can be extended
to the late weak delay bisimulation. However it cannot be used for early bisim-

ilarities.

Until now, we have proved that early context bisimulation is sound in the
strong case, using the Kell-calculus method, and that input-early bisimulation
is sound in the strong and weak cases using Howe’s method. In the following
section, we show that both relations are complete in the strong case.

3.5 Completeness

Early bisimulation and input-early are sound in the strong case. We prove that
they are also complete. It means that the two relations coincide, and that we
have a full characterization of the strong barbed congruence.

Theorem 3. For all P,Q, if P ~, Q then P~ Q and P ~;c Q.

The theorem is proved by contradiction. We sketch the proof here. The
detailed proof of completeness for both relations, ~ and ~;., can be found in
Appendix @ We define two families of relations ~y, ~je r, with k£ an integer,
which differentiate several levels of bisimulations by stating that processes have
to be bisimilar only during the first k steps, and such that ~= [, ~ and

~ie=— mk ~iek+

o The relations ~g, ~;¢ o relate the processes with the same free names, ie.

~O="ie,0— {(P,Q),fH(P) = fn(Q)}
e We have P ~j, Q iff

— Forall P & P’ there exists Q' such that @ 4 Q' and P’ ~p_1 @',

and conversely for all 4 Q.
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— For all P % F, for all closed concretion C, there exists G such that
Q5 Gand FeC ~p_1 GeC,and conversely for all Q % F.

— For all P % C, for all closed abstraction F', there exists D such
that Q = D and for all closed evaluation context [E, we have F' o
E{C} ~,_1 F ¢ E{D}, and conversely for all Q % C.

o We have P ~j. j Q iff

— Forall P L P’, there exists @’ such that Q 4 Q' and P’ ~je 1 @',
and conversely for all @ 4 Q'

— For all P % F, for all closed concretions C' and evaluation contexts
E, there exists G such that Q = G and E{F} e C ~. ;1 E{G} e C,
and conversely for all Q = F.

— For all P & C, there exists D such that @ %, D and for all
closed abstractions F' and closed evaluation contexts [, we have

F ¢ E{C} ~jcx—1 F ¢ E{D}, and conversely for all Q % c.

By induction we prove that if for some k we have P ») Q or P . @,
then there exists a context Cjy such that Ci{P} =y Cr{Q}. If P » Q (resp
P ;e @), then there exists k such that P~y Q (resp P »;e 1 @), hence there
exists a context C such that C{P} =, C{Q}. Consequently P and @Q are not
strongly barbed congruent.

3.6 Summary

The behavioral theory of HO7P is severely lacking, compared to the one of HOw.
In the strong case, early or input-early strong context bisimilarity characterizes
strong barbed congruence. In the weak case, only sound relations (input-early
or late context bisimilarities) have been found. Context bisimulations are more
complex than in HOw since they feature additional quantifications on contexts.
Simplifications of these relations similar to normal bisimulations have yet to be
found.

In the next section, we show that this additional complexity is due to the
relationship between passivation and name restriction. We remove name restric-
tion vz.P from HO7P and we show that in this calculus with passivation but
without restriction, called HOP, we can define a simpler context bisimulation
and a normal bisimulation. We also present counter-examples that show that
this approach does not work for HOxP.

4 HOP: Removing restriction from HO7P

In this section, we show that the behavioral theory of the calculus HOP is
similar to the one of HOm: we are able to define simple context and normal
bisimilarities which characterize barbed congruence.
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P|(Q|R)=(P|Q)| R CoNG-PAR-ASsOC
P|Q=Q|P CoNg-PAR-COMMUT P|0=P CoNG-PAR-ZERO
IP=P|!P CoNG-REPLIC P+Q=Q+ P CoNG-SUM-COMMUT

P+(Q+R)=(P+Q)+ R CONG-SUM-ASSOC

P=
P+0=P CONG-SUM-ZERO —Q CoNG-CONTEXT

C{P} =C{Q}

Figure 5: Structural congruence

4.1 Syntax and semantics

The syntax of the Light Higher-Order m-calculus with Passivation (HOP) is
given below. Without restriction, it is no longer possible to compositionally
encode choice (which is necessary to obtain a simple characterization of barbed
congruence), so we add this operator to the calculus.

P:=0| X | P|P | 1P | a(X)P | @P)P | a[P] | \P | P+ P

The LTS semantics becomes simpler since we do not have to worry about
scope extrusion: concretions are now simply written (R)S. Pseudo-application
e between an abstraction F' = (X )P and a concretion C' = (R)(@ becomes:

(X)P e (R)Q 2 P{R/X}|Q

However we have to give rules for the added choice operator. Rules of the LTS
are given Figure [6] except symmetric rules for LTS-PAR, LTS-FO, LTS-HO
and L'TS-Sum. The structural congruence rules can be found in Figure

4.2 Barbed congruence and context bisimulations

We first modify the observability predicate, since name restriction may no longer
hide observables. We also add replication and choice to evolution contexts. The
syntax of HOP evolution contexts is:

G:=0 | G|P | P|G | aG] |G| G+P | P+G
The definition of the strong observability predicate becomes:

Definition 18. For all first-order or higher-order name n, we define the strong
observability predicates P |, with p=mn | 7, as follows:

e We have P |g iff P = G{a(Q)R} or P = G{a[Q]}.
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I.P L p LTS-PREFIX

a(Q)P % (Q)P LTS-CoNcr

P A

P+Q— A

PLF

P%LC

IP L FeC|IP

P p

PP,

PP | Py |IP

rsp Qg

FlonPg ISTO

P A

——  _ LTS-Loc
alP] = a[4]

a(X)P % (X)P LTS-ABSTR

P A

——  LTS-Par
PlQ—=AlQ

P A

———— LTS-REPLIC
IP =S A |!P

LTS-REpPLIC-HO

LTS-RErPLIC-FO

a[P] & (P)0 LTS-Passiv

Figure 6: HOP: Labelled transition system
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o We have P |, iff P = G{a(X)Q}.
e We have P |7 iff P = G{m.Q}.
e We have P |, iff P = G{m.Q}.

Evaluation contexts E in HOP have the same form as those in HO#wP. The
definition of the strong barbed congruence is similar to Definition[3] We continue
to write P ~j @ to denote that processes P and @ are strong barbed congruent.

We now give a definition of bisimulation which characterizes barbed con-
gruence. As pointed out in Section [3.2] in the concretion case passivation may
put the message and its continuation in different contexts. However since name
restriction has been removed, they may not share private channels. Instead of
keeping message and continuation together, we can now study them separately
and still have a complete bisimilarity. We propose the following bisimulation,
similar to the higher-order bisimulation given by Thomsen for Plain CHOCS
[I7]. For an abstraction F = (X)P and a process R, we write F o R for
P{R/X}.

Definition 19. A relation R on closed processes is an early strong HO simu-
lation iff P R Q implies:

o ForallP L P’, there exists Q' such that Q LR Q and PP R Q.

e ForallP = F, for all closed processes R, there exists F' such that Q = F’
and Fo RR F' o R.

e Foral P % (R)S, there exists R',S" such that Q s, (RYS", R R R/,
SRS.

A relation R is an early strong HO bisimulation iff R and R~ are early strong
contezt simulations. Two closed processes P and Q) are strongly early HO bisim-
ilar, noted P ~ Q, iff there exists an early strong HO bisimulation R such that
PRAQ.

We notice that this HO bisimulation is easier to use than the context simula-
tion for HO#P since a test on all processes is performed only in the abstraction
case. This HO bisimulation is a characterization of barbed bisimulation. First,
the relation is sound:

Theorem 4. The early strong HO bisimilarity ~ is a congruence.

For the proof, we use the Kell-calculus technique described earlier. See
Appendix D] for details.
The early strong HO bisimulation is also complete:

Theorem 5. For all P,Q, if P ~, Q then P ~ Q.

We use the same technique as for HO7P. The proof can be found in Appendix
[El

In the following we also use the late counterpart of HO bisimulation, given
below:
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Definition 20. A relation R on closed processes is a late strong HO simulation
iff PR Q implies:

o ForallP L P’, there exists Q' such that Q LR Q and PP R Q.

e For all P % F, there exists F' such that Q < F' and for all closed
processes R, o RR F' o R.

e ForallP % (R)S, there exists R', S’ such that Q 5, (R")S" and RR R’
and S R S'.

A relation R is a late strong HO bisimulation iff R and R~ are late strong
HO simulations. Two closed processes P and Q are strongly late HO bisimilar,
noted P ~; Q, iff there exists a late strong HO bisimulation R such that P R Q.

We show later that early and late HO bisimulations coincide. Consequently
the (simpler) late formulation is also suitable to prove behavioral equivalence of
processes.

These definitions and results may be extended to weak bisimulations. We
define weak HO bisimulations as follows:

Definition 21. A relation R on closed processes is an early weak HO simulation
iff PR Q implies:

e Forall P L P’, there exists Q' such that Q LN Q and PP R Q.

e For all P % F, for all closed processes R, there exists F', Q' such that
Q2F ,FFoR>Q,and FoRR Q' .

e ForallP % (R)S, there exists R',S", S’ such that Q 2 (RS", 8" % 8,
RRR,and SR S’

A relation R is an early weak HO bisimulation iff R and R~ are early weak
HO simulations. Two closed processes P and Q) are weakly early HO bisimilar,
noted P =~ Q, iff there exists an early weak HO bisimulation R such that P R Q.

Definition 22. A relation R on closed processes is a late weak HO simulation
iff PR Q implies:

e Foral P L P, there exists Q' such that Q iy Q' and PP R Q.

e For all P % F, there exists F' such that Q = F’ and for all closed
processes R, there exists Q' such that ' o R = Q' and Fo RR Q'.

e ForallP % (R)S, there exists R',S", S’ such that Q 2 (RS", 8" = &',
RRR, and SR S'.

A relation R is a late weak HO bisimulation iff R and R~ are late weak context
simulations. Two closed processes P and Q are weakly late HO bisimilar, noted
P = Q, iff there exists a late weak HO bisimulation R such that P R Q.
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As in the strong case, we have:
Theorem 6. The early and late weak HO bisimilarities are sound.

The Howe’s method is used for both proofs. We only give the proof for the
early version in Appendix the proof is similar for the late version. In this
particular case, the input-early and early definitions are the same, and since
Howe’s method works with input-early bisimulation, it works with this one.
The definition is non-delay, however Howe’s method still works because of the
simplicity of the definition in the concretion case.

We also have completeness of the early version on image-finite processes:

Definition 23. A process P is image finite iff:
o For all first-order label I, the set { P;|P i P;} is finite.

e For all higher-order name a, the set {F;|P = F;} is finite and for all F;
in this set and all process R, the set {P;|F; o R = P;} is also finite.

e For all higher-order name a, the set {C;|P = C;} is finite and for all
C; = (R;)S; in this set, the set {S!|S; = S!} is also finite.

Theorem 7. The early weak HO bisimilarity is complete on image-finite pro-
cesses.

The proof of this theorem can be found in Appendix [E] The restriction to
image-finite processes is classical in process calculi (e.g. in the w-calculus [15]).
Otherwise, the proof technique is the same as in the strong case. In the follow-
ing, we show that late and early version coincide, hence the late weak context
bisimulation is also complete on image-finite processes.

The HO bisimulations definitions are simpler than context bisimulations in
HO~7P since they do not features any additional contexts and require tests in
the abstraction case only. In the following section, we show that this remaining
universal quantification is not necessary.

4.3 Normal bisimulation

In this section, we show that testing one process is enough in the abstraction
case and we define a sound and complete bisimulation without any universal
quantification, similar to Sangiorgi’s normal bisimulation.

In HOm, testing abstractions (X)P and (X)Q with a trigger m.0 (where m
does not occur in P, @) is enough as explained in Section if P{m.0/X}
and Q{m.0/X} are context bisimilar, then for all R, P{R/X} and Q{R/X}
are context bisimilar. We first show that this result does not hold in HOP.
Consider the following processes:

P1 :'a[X} \'E(O)O Ql = P1 | X
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We have Pi{m.0/X} ~ Q:{m.0/X}, but Pi{m.n.0/X} and Q:{m.n.0/X}
(where m,n do not occur in P, Q) are not strong HO bisimilar, i.e. we have
found a process R such that P{R/X} and Q{R/X} are not strong HO bisimi-
lar.

We first give the idea why P,, = P;{m.0/X} and Q,, = Q:{m.0/X} =
m.0 | P, are HO bisimilar. All transitions from P,, are easily matched by

Qm, and reciprocally for Q,,, except for transition Q,, —= P,,. It can only

be matched by P,, =~ a[0] | P,, = P!,. We now prove that P,, and P’ are

HO bisimilar. We just have to check passivation on a, i.e. transition P/ LN

(0)P,,. Tt is clearly matched by message sending on a in P,,, i.e. Py, — (0)P,,.
Consequently P,, and @, are early strong HO bisimilar.

However P, , = Pi{m.n.0/X} and Q,,,, = Q1{m.n.0/X} are not strong
HO bisimilar. We consider the transition Q, n = n.0 | Pon=Q, which
can only be matched by a transition P, , RN an.0] | Ppn = P,’nyn. Passiva-

m,n’

tion of a in P/, ,, i.e. transition P, , — (n.0)P,,,, can only be matched by

m,n? m,n
a

T — (Mn.0)Q,, . or Q, , — (0)Q,, .. Since n.0 % m.n.0 and n.0 % 0,

m,n m,n m,n

P}, , and Qy, ,, (and consequently Py, ,, and Q,, ) are not strong HO bisimilar.

In the previous example, a process 7.0 is not enough to distinguish between
process variables inside and outside a locality: a —— transition from a process

.0 in a locality can be matched by a — transition from a 7.0 outside any
locality. This distinction, however, becomes possible with a process m.n.0.
Suppose we have P{m.n.0/X} HO bisimilar to Q{m.n.0/X}, with m,n not
occurring in P,Q. A % transition in P is matched by a —- transition in
Q: the two resulting processes P’, Q' may now perform one and only one —
transition from a process n.0 in an evaluation context. If the process n.0 is in a
locality @ in P’, then it can be send in a message on a after a passivation. The
process @' has to match with a message sending on a; since the contents of the
messages are pairwise HO bisimilar, the message from Q' has to contain n.0.
Consequently the only occurrence of n.0 was in an evaluation context in " and
may be sent in a message on a: it is possible if and only if n.0 is in a locality a.
To summarize, when a process m.n.0 in a locality performs a — transition,
it has to be matched by a process m.n.0 in a locality with the same name. More
precisely, if a process m.n.0 in P performs a — transition and is matched by a
process m.n.0 in @, then the locality hierarchies around m.n.0 in P and @ are
the same. This result is a consequence of the following decomposition lemma:

Lemma 5 (Decomposition). Let P,Q two open processes such that fu(P,Q) C
{X} and m,n two names which do not occur in P,Q. If P{m.n.0/X} ~
Q{m.n.0/X} and P{mn.0/X} = P'{mn.0/X}{n.0/X;} = P,, then there
exists Q' such that Q{m.n.0/X} = Q'{m.n.0/X}{n.0/X;} = Q, and P, ~
Qn (by definition of the bisimulation). Moreover, we are in one of the following
cases:
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e There exists Py, Q1 such that P, =n.0 | Py, Q, =n.0| Q1 with P; ~; Q.

e There exists ai,...ax, P1... Pey1, Q1...Qky1 such that
Pn = al[. . .ak,l[ak[n.O | Pk+1} ‘ Pk] | Pk,1 .. ] | P1

and

Qn = a1]...ap—1[ax[n.0 | Qr1] | Qr] | Qu—1...] | Q1
and for all 1 <j<k+1, P; ~ Q.

The lemma gives several results on two matching transitions P{m.n.0/X} %
P, and Q{m.n.0/X} ™ Q,:

o The resulting n.0 is only under parallel compositions and localities (and
not under replication or choice operators) in P, Q.

e If n.0 is not under a locality in P,, it is not under a locality in @,, and
the processes in parallel with n.0 in P,, Q,, are bisimilar.

e If n.0 is under a locality hierarchy aq,...ax in P,, then it is under the
same locality hierarchy in @, and the locality process bodies Py, ... P11,
Q1, ... Q41 are pairwise bisimilar.

For instance, if we have P{n.0/X} = a[b[n.0 | P3| | P»] | P, then we have

Q{n.0/X} = ab[n.0| Q3] | Q2] | Q1 with P, <) Q1, Py ~; Q2, P3 ~; Q3. The
proof of this result is given in Appendix

From this lemma, we can show that testing abstractions with m.n.0 is
enough, as stated in the following theorem:

Theorem 8. Let P,Q two open processes such that fu(P,Q) C {X} and m,n
two names which do not occur in P,Q. If P{m.n.0/X} ~; Q{m.n.0/ X}, then
for all closed processes R, we have P{R/X} ~; Q{R/X}

Proof. We give here a sketch of the proof. The complete proof can be found in
Appendix [F] We define

R={(P{R/X},Q{R/X}),P{mn.0/X} ~; Q{m.n.0/X}, m,n not in P,Q}

and show that R is a bisimulation. The proof is done by case analysis on
the transition performed by P{R/X}. We briefly give the proof in the case

when a copy of R (at position X; in P) performs a transition R LR (we have

P{R/X} L P{R/X}{R'/X,;}). We want to show that there exists a transition
from Q{R/X} which stays in the relation R.

In this case, X; is in an evaluation context, so we have P{m.n.0/X} =
P'{m.n.0/X}{n.0/X;}. By bisimilarity hypothesis, there exists a transition
Q{mn.0/X} = Q'{m.n.0/X}{n.0/X;} such that P'{m.n.0/X}{n.0/X;} ~
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Q' {m.n.0/X}{n.0/X;}. Consequently X, is also in an evaluation context, so
we have Q{R/X} & Q{R/X}{R'/X,}.

The Lemma [5] allows us to decompose P’ and @’ in localities and paral-
lel compositions, with pairwise bisimilar processes. From this decomposition
and using the fact that ~; is a congruence, we have P'{m.n.0/XHR'/X;} ~;
Q' {m.n.0/X{R'/X;}, so we have P{R/X}{R'/X;,} R Q{R/X}H{R/X,},
hence the result holds.

O

The theorem allows us to define a bisimulation without any universal quan-
tification, similar to the normal bisimulation of Sangiorgi:

Definition 24. A relation R on closed processes is a normal simulation iff
PR Q implies:

e Foral P P’, there exists Q' such that Q 4 Q' and PP R Q.

e For all P 5 F, there exists F' such that Q = F’ and for two names m,n
which do not occur in processes P,Q, we have F o mn.0 R F’ o R.

e ForallP % (R)S, there exists R, S’ such that Q LN (RS', RR R' and
SRS

A relation R is a normal bisimulation iff R and R~ are normal simulations.
Two closed processes P and Q are normal bisimilar, noted P ~,, Q, iff there
exists a normal bisimulation R such that PR Q.

As a corollary of Theorem [8] normal bisimilarity coincides with late and
early bisimulations.

Corollary 1. ~,=~=r

Proof. The inclusions ~;C~C~,, are easy by definition. The inclusion ~,C~;
is a consequence of Theorem
O

These results may be extended to the weak case:

Theorem 9. Let P,Q two open processes such that fu(P,Q) C {X} and m,n
two names which do not occur in P,Q. If P{m.n.0/X} ~; Q{m.n.0/X}, then
for all closed processes R, we have P{R/X} ~; Q{R/X}

The proof, which can be found in Appendix is similar to the strong
case one, except for some modifications to Lemma [} We define weak normal
bisimilarity as follows:

Definition 25. A relation R on closed processes is a weak normal simulation
iff PR Q implies:

e Forall P L P’, there exists Q' such that Q 1N Q' and PP R Q.
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e For all P % F, there exists F' such that Q = F' and for two names
m,n which do not occur in processes P,(Q, there exists Q' such that F' o
mn.0= Q' and Fomn.0R Q.

e ForallP % (R)S, there exists R',S", S’ such that Q 2 (RS", 8" = &,
RRR and SR S'.

A relation R is a weak normal bisimulation iff R and R~ are weak normal
simulations. Two closed processes P and Q are weakly normal bisimilar, noted
P =, Q, iff there exists a weak normal bisimulation R such that P R Q.

As in the strong case, we have

Hence in HOP, we can define a suitable bisimulation without any universal
quantification. We show in the next section that adding back restriction to the
calculus foils this approach.

5 Abstractions equivalence in HO7P

In this section, we present counter-examples to show that a simplification similar
to the one of Section [4.3]is not possible in HO7TP. We prove that testing large
sub-classes of processes (abstraction-free and finite processes) is not enough to
guarantee bisimilarity of abstraction.

5.1 Abstraction-free processes
In the following, we omit the trailing null processes to improve readability; m
in an agent definition stands for m.0. We also write vab.P for va.vb.P. Let

0,, 2 vx.x.m. Process 0,, is bisimilar to 0 except it has a free name m. We
define the following abstractions:

>

(X)vnb.(b[X | vm.@(0p)(m | n | mm.p)] | R0(Y)(Y | Y))
(X)vmnb.(b[X | a(0)(m | n | mm.p)] | m.0(Y)(Y |Y))

1>

The two abstractions differ in the process emitted on a and in the position of
name restriction on m (inside or outside hidden locality b). An abstraction-free
process is a process built with the regular HO7P syntax minus message input
a(X)P.

We remind that ~ is the early strong context bisimilarity (Definition .

Lemma 6. Let R be an abstraction-free process. We have P{R/X} ~ Q{R/X}.

Since R is abstraction-free, it cannot receive the message emitted by P or
Q on a. Passivation of hidden locality b and transitions from R in P{R/X} are
thus easily matched by the same transitions in Q{R/X}.
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Let P, g =vnb.(b[R | m | n | m.mm.p] | m.b(Y)(Y | Y)), F be an abstraction,
and E be an evaluation context such that m ¢ fn(E, F). We now prove that
P{R/X} % vm.(0,,) Py g is matched by Q{R/X} < (0)vm.P,, g, i.e. that
we have vm.(F o Oy, | E{P,, r}) ~ F 0 0 | E{vm.P,, r}. Since m ¢ fn(E, F'),
there is no interaction between F,E and P, r, and the inert process 0, do not
interfere either. Hence the possible transitions from vm.(F o 0,, | E{P,, r})
are only from F|,E, and internal actions in P, r, and are matched by the same
transitions in F o 0 | E{vm.P,, r}.

Abstractions (X)P and (X)Q may have different behaviors with an argu-
ment which may receive on a, like a(Z)q, where ¢ is a first-order name such that
p # q. By communication on a, we have Q{a(Z)q/X} = vmnb.(b[g | m | n |
mm.p] | mb(Y)(Y | Y)) = Q. Since Q; may perform a - transition, it can
only be matched by P{a(Z)q/X} T vnb.(blvm.(q | m | n | m.m.p)] | m.b(Y)(Y |
Y)) = P;. Notice that in Py, the restriction on m remains inside hidden locality
b.

After synchronisation on n and passivation on b, we have Q,(=)?vmnb.(q |
q|m|m|mmp| mm.p) = Q2 (process inside b in @1 is duplicated). After
double synchronisation on m, we have Q2(=)?vmnb.(q | ¢ | p | m.m.p) = Qs,
and Q3 may perform a 2> transition. These transitions cannot be matched by
Py,. Performing the duplication, we have Py(=)?vnb.(vm.(q¢ | m | m.m.p) |
vm.(q | m | m.m.p)) = P». Each copied sub-process ¢ | m | m.m.p of Py has
its own private copy of m, and we can no longer perform any transition to have
the observable p. More generally, the sequence of transitions Q;(—)* 2, cannot
be matched by Pj, consequently Q1 and P; (and therefore Q{a(Z)q/X} and
P{a(Z)q/X}) are not bisimilar.

This counter-example shows that testing abstractions with abstraction-free
processes (such as m.n.0) is not enough to potentially distinguish them. Conse-
quently, we have to test abstractions with processes which performs some kind
of message input. Notice that this counter-example relies on how scope extru-
sion is handled; it reminds the one given to explain why restriction and locality
operators do not “structurally” commute (Section . Other scope extrusion
semantics (for instance, name restriction is used as fresh name generator, and
is always extruded outside localities) make this counter-example fail. In the
next sub-section we give other counter-examples which do not rely on scope
extrusion.

5.2 Finite Processes

We define finite processes as follows:

Definition 26. A finite process is a HOn P process built on the following gram-
mar:

PFZZ:O | PF|PF | lPF | VI.PF ‘ 6<P>PF | CL(X)PF | a[PF]
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Roughly, finite processes cannot initiate an infinite sequence of transitions.
Notice that in a message output, the message does not matter and can be a
regular process. We do not allow process variable X in the syntax, hence finite
process encompass only message inputs a(X)Pr where either X ¢ fv(Pr) or
where X appears in emitted messages only (since emitted processes in a message
output may be any process). In other words, processes received on input can
only be passed around but never activated. With unrestricted message input,
we may encode replication (as explained in Section [2]) and therefore have infinite
sequence of transitions.

We extend the definition to all agents in the following way: a concretion
vZ.(R)S is finite iff S is finite. An abstraction (X)P is finite iff P is finite. We
write Ar the set of finite agents. We give some properties of finite agents:

Lemma 7. Let F be a finite abstraction. For all HOm P processes P, the process
F o P is finite.
Let Pp be a finite process:

o If Pr 5 A for some «, then A is finite.
e The set {a|3A, Pr % A} is finite.
e For all action o, the set {A|Pr <5 A} is finite.

e There is no infinite sequence of processes (P;) such that Py = Pr and for

all i, P; LR Pii1 or P, % v (R)Piy, or P; % F with F o P = Py for
some P.

The first properties are easy by induction on Pr or F. The last one means
that there is no infinite sequence of transitions started by Pr. To prove this,
we define the size of a process, which strictly decreases at each transition step.
Details and proofs can be found in Appendix [G]

In the following, we use the depth of a finite process Pr, defined as the length
of the longest sequence of transitions initiated by Pg.

Definition 27. We define inductively the depth of a finite agent Ap, written
d(AF), as:

d(Pr) = 0 if there is no transition from Pp.

d(Pp) = 1+ max {d(A)|3a, Pr < A} otherwise.

For all finite concretions vZ.(P)Pp, we have d(vZ.(P)Pp) = d(PF).

For all finite abstractions (X)Pg, we have d((X)Pr) = d(Pr).

Properties of Lemma [7| guarantee that d(Ap) exists for all Ap. We may
think that the depth of an abstraction depends on the interacting process. It is
not the case since process variable may occurs in processes emitted in a message
output, and the depth of a concretion takes into account the continuation only.
Hence we have the following lemma:
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Lemma 8. Let F be a finite abstraction. For all HOw P processes P, we have
d(F o P) =d(F)

We now use depth to prove that using finite processes to test bisimilarity of
abstractions is not sufficient.

5.3 Counter-examples

In this section, we give counter-examples to show that testing finite processes
is not enough to ensure bisimilarity of abstractions. To show this, we define
inductively two families of HOmP abstractions (F,),(G,), such that for any
finite process Pr such that d(Pr) = n, the processes F,, o Pr and G,, o Pp
are context bisimilar, but F,, o Q41 and G,, o Qn41 (where Q,, 41 is a process
Mpt1--..m1.0 with n + 1 first-order names) are not context bisimilar.

For a a higher-order name and F' = (X)P an abstraction, we write a.F for
a(X)P. Let ~ be HO7P early strong context bisimilarity. We define:

Fo £ (Xo)Xo0,Go 2 (Xo)(Xo | Xo)
and for n > 0, we define
F, 2 (Xn)van(an[Xn] | an-Fn-1) + Rn

Gn é (Xn)Van-(an[Xn] | an-Gn—l) + Sn

with R,, = va,.7.G,_1 o X, and S,, = va,.7.F,_1 o X,. Notice that R,
mimics passivation of locality a, in G,,, and S,, mimics passivation of a,, in F,.
They have been added to match some particular transitions.

Let (myg) be a family of pairwise distinct fresh names which do not occur in
any Iy, nor G,,. Let Q1 = m1.0 and Q1 = mgy1.Qy for all k > 1. Abstractions
F,, and G,, are designed such that we have F,, o Ppr ~ G,, o P for all Pr such
that d(Pr) < n, but F,, o Qn41 is not bisimilar to G,, © Q,+1. To have an
intuition as to why F, o Q,41 and G, o @, +1 are not bisimilar, consider the
following sequence of transitions from F,, o Q,,41: an Dt transition, followed
by a passivation of locality a,; we obtain F, o Qni1 —t vap,.(an[Qn] |
an-Fr_1) D~ Fpy_1 0 Q,,. As this sequence must be matched by G,, o Qn+1, we
obtain F,_; o @, and G,,_1 o @),,. After repeating this sequence of transitions
n — 1 times, we obtain Fy o Q1 = m;.0 and Gp o Q1 = m1.0 | m;.0, which are
clearly not bisimilar. Consequently F;, o Q,11 is not bisimilar to G,, 0 Q1.

If we do the same with F;, o @Q,, and G,, o Q,,, we obtain processes bisimilar
to 0 and O | 0. Another possible evolution is to trigger passivation of a,
directly, without any transition from @, beforehand: in this case, we have
F,0Q, > vay,.(Fn,—1 o Q). Process G, o @, matches this transition with
the T-action of its sub-process S,: we have G,, o Q,, — van,. (Fh—1 0 Q). The
two resulting processes are identical. All the other evolutions of F,, o Q,, are
also matched by G,, o Q,. More generally, a process Pr which perform less
than n transitions cannot distinguish F, and G,,.
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Lemma 9. If d(Pr) <n, then F, o Pr ~ G, o Pp.

We prove Lemma [9] by showing that the relation:
Rp2 ((P{F, 0 Po/XY}, P{Cy o P/ X)), Yk, d(P) < k < n}

is an early strong context bisimulation. The complete proof may be found in Ap-
pendix [G] The relation is a bit complex since a process Pr may evolve toward a
concretion; consequently we have to introduce a surrounding environment, (here
P), which may duplicate F,, o Pr and G,, o Pp.

To summarize, testing a finite process Pr with depth n is not enough, since
we have F,, o Pp ~ G, o Pp, but F,, o Qu41 »~ G, o Qn4+1. Testing a
finite set P of finite processes is not enough either. Since P is finite, the set
{d(Pr)|Pr € P} is finite and has a greatest element d. For all Pr € P, we have
Fyo Pr~Ggo Ppbut Fyo Qur1 » Fy o Qqy1. Similarly, testing an infinite
set of finite processes with depths bounded by d is not enough.

Most cases are already covered by the abstraction-free counter-example, ex-
cept for the abstractions. Besides, the counter-examples of this subsection do
not rely on scope extrusion “by need” like the previous one, which means that
they may be still valid with other ways to handle scope extrusion. We conjecture
that we cannot define a normal bisimilarity in HO7P, i.e. that we cannot de-
fine a sound and complete strong bisimilarity with fewer tests than early strong
context bisimilarity.

6 Related work

The syntax and semantics of HOP is inspired from the one of HO7, removing
restriction and adding passivation. Sangiorgi studies behavioral equivalences
for HO7 in [I3]. He defines context and normal bisimilarities as substitutes for
barbed bisimilarity. In the message sending and input cases, context bisimilarity
considers the possible environments which may communicate with the tested
processes. Normal bisimulation improves context bisimulation: in the message
sending and input cases, normal bisimilarity tests equivalence with only one
process.

The Kell-calculus [16] and Homer [§] are two higher-order calculi with pas-
sivation in which bisimulations have been defined. The two calculi share some
common concepts, like hierarchical localities, local names, and objective passive
and active process mobility. The calculi differ in how they handle communica-
tion.

In the Kell-calculus, communications may use join patterns and are only
local: processes may communicate only if they are in the same locality or in
direct parent-child localities. In the strong case, a sound and complete early
context bisimulation has been defined. In the message sending (resp. input)
cases (which encompass passivation), this bisimulation considers all the contexts
which may receive (resp. send) a message or a kell on the same channel. The
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complementary action may be performed either at the same level, from a sub-
locality, or from a parent locality. Consequently nearly all contexts are tested
in the message sending and input cases.

In Homer, a process may send a message to a nested sub-locality or it may
passivate it, but the interactions are not allowed in the other way: a process
in a sub-locality cannot send a message to a process in a parent one. Passive
processes go down in the locality hierarchy (by message sending), and active
processes go up (by passivation). In [6], the authors define an input early context
bisimulation which is sound in the weak case and sound and complete in the
strong case. An input-early bisimilarity is late in the message sending case and
early in the message input case. Asin HOm or other calculi, context bisimilarity
for Homer tests every possible communicating context in the message sending
and input cases, but it also features an additional quantification on contexts in
the message sending case.

The Seal calculus [18] [5] features a form of process mobility similar to pas-
sivation: localities may be stopped, duplicated, and moved up and down in the
locality hierarchy. Mobility is less flexible than in Homer or Kell since a process
inside a locality cannot be dissociated from its locality boundary. The authors
define a bisimilarity in [4] called Hoe bisimilarity for the Seal calculus which is
similar to normal bisimulation for HOx in the message sending case. However
this Hoe bisimilarity is sound but not complete.

Mobile Ambients [3] is also a higher-order calculus with hierarchical locali-
ties. Unlike previous calculi, mobility in Mobile Ambients is subjective: locali-
ties move by themselves, without any acknowledgment from their environment.
In [10], Merro defines a context bisimilarity which characterizes barbed con-
gruence. A normal bisimulation without universal quantification has yet to be
found.

7 Conclusion

Behavioral theory in calculi with passivation (like Homer or the Kell-calculus)
is lacking compared to a simpler higher-order calculus like HO7. Sound and
complete context bisimulation have been developed in the strong case only,
and they require additional tests on contexts in the message output case. This
additional complexity comes from the relationship between name restriction and
passivation.

In a calculus with passivation and without name restriction, we have devel-
oped and presented normal bisimulations similar to Sangiorgi’s for HOm:

e Weintroduce a simple higher-order bisimulation which characterizes barbed
congruence. In a message output, the message and the continuation are
considered separately, since they do not share private names and passiva-
tion may put them in different contexts to interact with them indepen-
dently. Early and late formulations coincide.
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e We also introduce a normal bisimulation without any universal quantifica-
tion which coincides with higher-order bisimulation. HO7m comes from an
encoding of higher-process in a first-order, which is not possible in HOP.
Instead, our normal bisimulation relies on a means (a process m.n.0) to
observe locality hierarchies and to decompose abstractions in bisimilar
sub-processes.

However we have not been able to adapt our proof technique to the calculus

with restriction. As proved in Section [5] testing any abstraction-free processes
is not enough to establish abstractions equivalence. We conjecture that in a
calculus featuring passivation and name restriction, we cannot define a sound
and complete strong bisimilarity with fewer tests than early strong context

bisi

milarity.
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A Soundness proof for HO7P

In this section, we work with the early bisimulation. Proofs are similar or simpler
with the late bisimulation. To prove soundness of early strong bisimilarity
with respect to strong barbed congruence, it suffices to show that early strong
bisimilarity is a congruence, since early strong bisimilarity is included in strong
barbed bisimilarity, and strong barbed congruence is the largest congruence
included in strong barbed bisimilarity (by definition).

To prove that a relation is a bisimulation, we use a notion of progress (defined
in [13]):

Definition 28. Let R,U be binary relations on closed processes. Relation R
is said to strongly progress towards U, noted R~~U iff for all closed processes
such that P R @, we have:

e IfP 4 P’, then there exists Q' such that Q = Q' and P'U Q.

e If P 5 F, then for all closed concretions C, there exists F' such that
QL F and FeCUF oC.

o If P L, C, for all closed abstractions F, there exists C' such that Q Yol
and for all evaluation contexts E, we have F ¢« E{C} U F ¢ E{C"}.

Lemma 10. Let R be a reflexive binary relation on closed processes, let U be
its reflexive and transitive closure. If R~U, then U is a strong simulation.

Proof. If UU~~U, then U is a simulation. We prove by induction on n that we have
R™~U. There is nothing to show for n = 1. We suppose that the result holds
for all K < n. Let P R"™*! Q. Then there exists P, such that P R" P, R Q.
We check the conditions of progress:

eIt P L P’ then by induction there exists P/ such that P, 4 P! and

P'U P. Since R~U and P, R @, there exists Q' such that Q LR Q' and

P' U @'. Hence we have found Q' such that Q@ & Q' and P’ U2 Q'. By
transitivity of U, we have P’ U Q' as required.

e Assume P 5 F and let C be a closed concretion. By induction, there
exists F! such that P, = F/ and ' « C U F! e C. Since R~U and
P, R Q, there exists F’ such that Q % F’ and F/ e C U F' e« C. We
have the result by transitivity of U.

e Assume P & C, and let F be a closed abstraction. By induction, there

exists C! such that P, % €’ and for all evaluation contexts E, F e
E{C/} U F ¢ E{C}. Since R~U and P, R Q, there exists C’ such that

Q% C and for all E, F e E{C.} U F e E{C'}. The result holds by
transitivity of U.
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For all n, we have R™~~U, so we have U~~U, and thus U is a strong context
simulation.
O

In the rest of the proof, we define R= {(C{P{Q/X}},C{P{R/X}}),fv(P) =
)?, @ ~ E, C closed context} and its closure /=R*. Capture of free names may
occur with the restriction operator. This case is not taken into account with the
substitution alone (which is capture-free by definition), consequently we add a
context C in the definition of the relation for possible captures.

Lemma 11. If P U Q, then for oll names x,a, for all closed processes T we
have ve. PUvz.Q,P | TU Q | T,a[P]U a]Q], P U!Q.

Proof. We proceed by induction on n, proving that P R” @ implies vx.P R"
ve.Q,P|TR"Q|T, ...

For n =1, let PR Q with P = C{U{R/X}} and Q = C{U{S/X}}. Since
ve.C,C | T, !C, and a[C] are closed contexts, we have ve.P R vz.Q,P | T R
Q| T,'PR!Q,a|P] R alQ)].

Assume now that the result holds up to n. We show that it holds for n + 1
in the restriction case (the other cases are similar). Let P R"*1 Q. Then there
exists P, such that P R™ P,, R ). By induction assumption, we have vz.P R"
vx.P,. Also we have vz.P, R vz.Q, hence we conclude vz.P R" ! va.Q.

O

Lemma 12. For all closed processes P, P’ and for all evolution contexts G, if
PU P’ then G{P} U G{P'}.

Proof. By induction on G, using lemma O

For all process P such that fv(P) C X and for all set R of closed processes
with the same number of elements than X, we write P for P{R/X}.

Lemma 13. For all Py, Pz such that P; R Pg, if Py L F, then for all closed

processes T such that fn(T) Nbn(F) = 0, there exists F’ such that Pz = F' and
FoTUF oT.

Proof. A common subcase is when P = X (the transition comes from R). In
this case, we have R % (F) with R ~ S. By definition of the bisimulation, there
exists F' such that S % F’ and F e (T)0 ~ ' & (T)0,ie. FoT ~ F'oT.
Since ~CU, we have the required result.

In the following, we suppose P # X. We proceed by induction on the
derivation Py < F:

e LTS-ABSTR Since P # X, the derivation comes from P, so P = a(Y)Q.
Hence we have Pz = a(Y)Qz = (Y)Qfz and Pz = a(Y)Qz = (Y)Qg by

LTS-ABSTR. Since R and S are closed, we have Qz{T/Y'} = Q{T/Y}z R
Q{T/Y}5=Qz{T/Y}, so we have Qs{T/Y} U Qz{T/Y} for all T.
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o LTS-PAR We must have Pz = Uy | Vg = F | Vg with Uz = F. Let
T be a closed process. We have Uz R Ug, so by induction there exists
F’ such that Ug < F' and F o T U F' o T. By LTS-PAR we have
P; % F' | Vg, and by lemmanwe have F oT | Vs U F' o T | Vz and
F'oT |VzUF oT | Vg, so by transitivity we have (F' | Vg) oT = F o
T|VEUF oT |Vg=(F'"|Vg)oT.

e LTS-RESTR We must have Py = vz.Ug % vx.F with a # 2 and Ui 4 F.
Let T be a closed process such that x ¢ fn(7). We have Uz R Ug so by

induction there exists F” such that Uz = F’ and F o T U F' o T. By

LTS-RESTR we have Pg % va.F’, and by lemman we have va. FFo T U
ve.F'oT, ie (va.F)oTU (va.F') o T, since x ¢ fu(T).

e LTS-Loc We must have Pz = b[Uz] = b[F] with Uz = F. Let T
be a closed process. We have Uz R Ug so by induction there exists
F' such that Ug L Fand FoT U F' o T. By LTS-Loc we have
Pz <% b[F’], and by lemma [L1| we have b[F o T] U b[F’ o T], i.e. we have
(b[F]) o T U (b[F']) o T as required.

o LTS-REPLIC We must have Pz =IUz = F |IUg with Uz < F. Let T be a
closed process. We have Uz R Ug so by induction there exists ' such that
Us % F' and F o TU F' o T. By LTS-REPLIC we have Py = F' [Ug,
and by lemma [11] we have F o T |'Uz U F' o T \Uz U F' o T |\Ug, hence
by transitivity we have (F' |!{Ug) o T U (F' |!Ug) o T as required.

O

Lemma 14 (Substitution lemma). Let P be a process such that fo(P) C X,

and let é and R two sets of closed processes with the same number of element
than X, and such that Q ~ R. Then P{Q/X} ~ P{R/X}.

Proof. We show that the transitive and reflexive closure U of R (defined pre-
viously) is a strong simulation. As U is symmetrical, it will imply that U is a
strong bisimulation. By lemma [10] it suffices to show that R~~U.

Let C{Pg}, C{Pz} €R. We proceed by induction on C.

% Case C = O We proceed by induction on the derivation P5 - As. A
common subcase is the case P = X, and the derivation comes from . In this
case, we have P@ = Q,P5 = R with Q ~ R. Since ~CRCU, we have Q U R.
Therefore we consider P # X in the following cases.

LTS-PrREFIX. In this case, we have Ps = l.SQv. So P; = 1.5 and P 4 Sg-
We have Sé R S5, so we have S@ U Sg as required.

LTS-ABSTR. In this case, we have P5 = a(Y)Sg, and Ag is an abstraction

Fg = (Y)S5. Then Pz = a(Y)Sg. Let C be a closed concretion. We have
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P = Fg. Since C'is closed, we have Fi5 ¢ C = (F e C)5 R (Fe ()= Fpe
C'. Hence we have F@ o C'U Fy o C as required.

LTS-CoNcR. In this case, we have Py = a(S5)15, and Pg — (S

G 5/ = Co
Hence Py = a(S;)Tx- Let F be a closed abstraction. We have P; — Cp.

Let E be a closed evaluation context. Since F' and E are closed, we have F o
E{Cs} = (F' ¢ E{C})5 R (F' @ E{C})z = F' e E{Cy}. Hence we have
FeE{Cz} U F o E{C} as required.

m

LTST—FO. In this case, we have PQ = S@ \ TQ with S@ — UQ, TQ =, V@, and
P53 Us| Vs |

By induction, there exists Ul% such that Sg =, U}%: and Us U U}%, and
there exists VIL{ such that T3 RN V}% and Vg U VIL{. By LTS-FO we have
Si | Tp = Upy | Vi By lemma[11] we have U | Vg U U%, | Vg U U | VE, so
by transitivity we have Ug | Vg U UI% | Vé, as required.

LTS-REPLIC-FO. Similar to the case above.
LTST—HO. In this case, we have Py = S@ | T with S@ — Fa, Ty — C@. So
P@ — F@ L] C@ .

By induction, there exists F}% sﬁuch that Sz — Flﬁ and Fiz e C5 U F}% * Cs,
and there exists C}{ such that Tz — C}% and FI% e Cal FI%/ e C%. By LTS-HO
W? have Sg | TE ; F o C%. Moreover we /have /F@ *Cs M FLeCsUF; e
C%, so by transitivity we have F5 ¢ Cg U F7; @ C7, as required.
LTS-REPLIC-HO. Similar to the case above.

LTS-Passiv. In this case, we have Pgz = a[Sz] and Az = (55)0. Let F

be a closed abstraction. We have P5z = a[Sz] and Px LR (S5)0. For all
evaluation context E, we have F' o S5 | E{0} R F' o S | E{0}, hence we have
FoSs|E{0}U F o S; | E{0} as required.

LTS-PAR. In. this case, we have P@ = S@ | T@? A@ = B@ ‘ T@ with S@ — B@
We have to discuss on the shape of B@:

. BQ is a process U: then S@ LU. So by induction, there exists U’ such

that Sz — U’ and U U U’. By rule LTS-PAR, we have P - U’ | T,
and by lemma we have U | Tz U U’ | Tz. As Ty U Ty, we have
U'|TaU U | Tf by lemma again. Finally we have Py Lo | T and
by transitivity of U, we have U | T UU'" | Ty as required.

* B is an abstraction F: then S5 % F. Let C = vy.(V)W be a closed
concretion. By lemma there exists F” such that Sz = F” and F o V U
F' o V. By LTS-PaR, we have Pz % F' | Tx. By lemma [11] we have
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(F|Tg) e C=vy(FoV |Ts|W)Uvy(F oV [Tg|W) and since
T5 R Ty, we have vji.(F' o V | Ty | W) U vi.(F' o V | T | W) = (F |
Tr) o C. Hence by transitivity of U, we have (I' | Ti3) « CU (F' | T) o C
as required.

B@ is a concretion C. Let F be a closed abstraction. By induction, there

exists C’ such that Sg 2, ¢’ and F e E{C | Tt U F e E{C" | T} for all
evaluation context E (using progress definition with context E{O | T5}).
Since T5 U T, by lemma we have F' e E{C" | T3} U I o E{C" | Ty}
By transitivity, we have I o E{C' | T5} U I o E{C" | T}, and by

LTS-PAR we have Pg LNo T'5 as required.

LTS-RESTR. In this case, we have Py = va.S5, A5 = va.Bg with S = Bg.
We distinguish three cases:

LTS-Loc. In this case, we have Py = a[S5

° B@ is a process T: hence we have S@ LT By induction there exists T”

such that S - T’ and T U T". By rule LTS-RESTR we have Py - vz.T’
and by lemma [11| we have va. T U vz. T’ as required.

* By is an abstraction F: then Sz % F. Let C = vy.(V)W be a closed

concretion such that x ¢ fn(V). By lemma there exists F’ such that
Sg L F'and FoV U F' o V. By LTS-RESTR, we have Pg L v F.
By lemma[11] we have (vz.F) e C = vy.(va.(F o V) | W) U vy.(va.(F' o
V)| W) = (va.F') e C as required.

° B@ is a concretion C: then S@ %, €. Let F be a closed abstraction.

By induction, there exists C' such that S3 L ¢’ and F o E{vz.C} U
F o E{vz.C'} for all evaluation context E (using progress definition with

E{vz.0}). Moreover we have Pz < vz.C’ by LTS-RESTR, hence the
result holds.

5] with S5 R Bg. We have three

cases to consider:

. B@ is a process T: we have S@ LT By induction there exists T such

that Sz ~ T’ and T U T'. By LTS-Loc we have Pz - a[T"] and by
lemma we have a[T| U a[T"] as required.

o B is an abstraction F: we have Sg Y F. Let C = vi (V)W be a

closed concretion. By lemma there exists F’ such that Sz L P and

FoVUF oV. By LTS-Loc, we have Py 2 a[F"]. By lemmalt1] we
have (a[F]) ¢ C = vy.(a[F o V] | W)U vy.(a[F' o V] | W) = (a[F']) o C
as required.
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° B@ is a concretion C: then S@ LA C. Let F be a closed abstraction.

By induction, there exists C’ such that Sz 2 ¢ and F o E{a[C]} U
F o E{a[C']} for all E (using progress definition with context E{a[O]}).

Moreover we have Py LN a[C’] by LTS-Loc, hence the result holds.

LTS-REPLIC. In this case, we have PQ :!S@ with SQ = B@. We have three
cases to consider:

. B@ is a process T: we have S@ L. By induction there exists T such

that S5 > T’ and T U T’. By LTS-REPLIC we have P; — T’ [IS5. By
lemma and transitivity of & we have T' [lS5 U T" [ISF as required.

* B is an abstraction F: we have Sg % F. Let C = vz.(V)W be a
closed concretion. By lemma there exists F” such that Sg % F’ and
F oV UF oV. By LTS-REPLIC, we have Px L F |!Sz. By lemma
and transitivity of U, we have F' IS5 ¢ C = vy.(F oV IS5 | W) U
vy.(F' oV IS5 | W) = (F' |!S5) e C as required.

. B@ is a concretion C': then S@ 2, C. Let F be a closed abstraction. By

induction, there exists C’ such that Sz b ¢ and F e E{C IS5} U F o
E{C" !S5} for all E (using progress definition with contexts E{0 [155}).
Since Sz U Sg, by lemma we have I e E{C" IS5} U F' ¢ E{C" [\SR}.
By transitivity, we have F' @ E{C' [lS5} U F' @ E{C" |!S3}, and by LTS-

REPLIC we have Py = C’ |ISy as required.

* Case C = C'|S The reduction C{Pg} = Az may come from the rules
LTS-Par, LTS-HO, LTS-FO or their symmetric. We omit the symmetric
cases, since they are similar (for LTS-HO and LTS-FO) or easier (for LTS-
Par).

LTS—PAR.. .In t}.liS case, we have C'{P5} = B and C{P5} = Bs | S. We
have to distinguish three cases:

o Bgisaprocess T: we have (C’{P@} L By induction there exists 7" such
that C'{Pz} & T’ and T U T'. By LTS-PAR we have C{Pz} & T’ | S
and by lemma we have T | SU T’ | S, as required.

e Bg is an abstraction F: we have C'{P5} L F. Let C = vz.(T)V be a

closed concretion. By lemma (13| there exists F”’ such that C'{Pz} = F’
and F o T U F' o T. By LTS-PAR we have C{Pz} & F’ | S and
by lemma [11} we have vZ.(F o T | S | V) U vZ.(F' o T | S | V), ie.
(F|S)eCU(F'|S)eC as required.
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* B is a concretion C: we have C'{Pg} %, C. Let F be a closed ab-

straction. By induction there exists C’ such that C'{ Pz} %, ¢’ and for
all evaluation context E, we have F' @« E{C' | S} U F' ¢ E{C’ | S}. By

LTS-PAR we have C{Pz} %, C"| S, hence the result holds.

LTS-FO. In this case, we have C'{P5} L Tand 5 L U. By induction there
exists T" such that C'{ Pz} L 7 and TU T'. By LTS-FO, we have c{Pz} =
T" | U, and by lemma[11] we have T'| U U T | U as required.

LTS-HO. In this case, we have C'{FP5} 2, Fand S % C. By induction there

exists F’ such that C'{Pz} < F’ and F e C U F' e C. By LTS-HO, we have
C{Pz} - F’ e C as required.

% Case C=S5|C’ Similar to the case above.

* Case C = vz.C’ The reduction C{P5} = Ag comes from rule LTS-
RESTR:

o Ag is a process T: we have C'{P5} L T with 1 ¢ {z,T}. By induction
there exists 7" such that C'{Pz} L 7" and T U T'. By LTS-RESTR we

have C{P5} 4 ve. T, and by lemmawe have ve. T U va. T’ as required.

o Ag is an abstraction F: we have C'{P5} % F with a # 2. Let C =
vy.(T)V be a closed concretion such that x ¢ fv(T). By lemma [13| there
exists F’ such that C'{Pz} < F’ and F o T U F' o T. By LTS-RESTR

we have C{Pz} < vz.F’ and by lemma we have vy.((vz.F) o T |
VYU vY.((ve.F')oT | V), ie (va.F)e CU (vax.F') e C as required.

o Ag is a concretion C: we have C'{P5} %, C with a # 2. Let F be a

closed abstraction. By induction there exists C’ such that C'{ Pz} KNYel
and F o E{vz.C} U F e E{vz.C'} for all evaluation context E. By

LTS-RESTR we have C{Pg} %, v2.C", hence the result holds.

* Case C = b[C'] The reduction C{Pg5} R Ag may come from rules LTS-
Loc or LTS-PAssiv:

LTS—LOC. In this case we have C'{Pg} = B and Az = b[Bg]. We have three
different cases:

e Bg is a process T: we have C'{Pg} L 7. By induction there exists T’

such that C'{Pz} & T’ and T U T'. By LTS-Loc we have C{P5} 5 b[T"]
and by lemma [11| we have b[T] U b[T"] as required.
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o Bg is an abstraction F: we have C'{Pg} L F. Let C = vy.(T)V be a
closed concretion. By lemma [13| there exists F’ such that C'{Pz} = F’
and F o T U F' o T. By LTS-Loc we have C{Pz} < b[F'] and by
lemma [11] we have vy.(b[F] o T | V) U vy.(b[F'] o T | V), i.e. (b[F]) e
CU (b[F']) @ C as required.

o Ag is a concretion C: we have C'{Pg} %, C. Let F be a closed ab-

straction. By induction there exists C’ such that C'{Pgz} 2, ¢ and
F o« E{b[C]} U F e E{b[C"]} for all evaluation context E. By LTS-Loc

we have C{ Pz} 5, b[C"], hence the result holds.

LTS-Passiv. In this case we have C{P5} LR (C'{P5})0. Let F be a closed

abstraction. We have C{Pz} LN (C'{Pz})0. For all evaluation context E we
have I o C'{Pz} | E{0} U F' o C'{Py} | E{0}, hence the result holds.

* Case C =IC' The reduction C{Pg} = Ag comes from LTS-REPLIC, with
Ag = B [IC'{Pg}. We have three cases to consider for B:

* Bg is a process T: we have C'{Pg} L By induction there exists T’
such that C'{Ps} - T’ and T U T'. By LTS-REPLIC we have C{P} -
T |'\C'{Pg} and by lemmaand transitivity of ¢, we have T" |IC'{ Pz} U
T" |!/C'{Pg}, as required.

* Bg is an abstraction F:: we have C'{P5} L F. Let C = va.(T)V be a

closed concretion. By lemma [13| there exists F’ such that C'{Pz} = F’
and F o T U F' o T. By LTS-REPLIC we have C{Pz} = F’ |IC'{P5}.
By lemma [11} and transitivity of U, we have vz.(F o T' [IC'"{Pg} | V) U
VE.(F' o T IC{Pg} | V), ie. (F|IC{Pg}) e CU (F' [C'{Pz}) o C as
required.

* Bg is a concretion C: we have C'{Pg} %, C. Let F be a closed abstrac-

tion. By induction there exists C’ such that C'{Pgz} L, ¢ and for all
evaluation context E, we have ' ¢ E{C |IC'{Pz}} U F' ¢ E{C" [\C'{P5}}.
Since IC'{Pz} RIC'{Pz}, we have F' o E{C" [IC'{P5}} U F o E{C" |
IC’'{Pg}}, so by transitivity we have F' ¢ E{C' [IC'{Pg}} U F o E{C" |
IC'{P5}}. By LTS-REPLIC we also have C{Px} % C' [\C'{P5}, hence
the result holds.

* Case C = a(Y)C" The reduction C{Pg} = Ag comes from rule LTS-
ABSTR: we have C{Pg} N (Y)C'{Pg}. Let C = vz.(T)U be a closed concre-
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tion. We have C{Pz} = (X)C'{Pz}. Since Q, R are closed, the variable Y oc-
curs in C" or P, hence C{P5H{T/Y} = (C”{PCLQ} and C{PHT/Y} = C"{P:}
for some C” and P’, so we have C'{PzH{T/Y} R C'{Pz}{T/Y}. By several ap-
plications of lemma we have vz (C{PzH{T/Y} [ U) R va.(C{PrHT/Y} |
U),ie. (Y)C{Pz}eCU (Y)C'{Pg} e C as required.

* Case C = a(C')T" The reduction C{Pg} = Ag comes from rule LTS-
CONCR: we have (G{P@} 5, (C{Pa}T. Let I = (X)U be a closed abstraction.

We have C{Pz} = (C'{Pz})T, and F e (C{PsHT = U{C{Pz}/X} | T R
U{C'{Pz}/X}|T = F o (C'{Pg})T, hence the result holds.

* Case C = a(T)C’ The reduction C{Pg5} = Ag comes from rule LTS-
CoNcR: we have C{P5} 5, (T)C'{Pz}. Let I = (X)U be a closed abstraction.

We have C{Pz} & (I'C'{Pz}, and F e (I)\C'{Pg} = U{T/X} | C'{P5} R
U{T/X} | C'{Pz} = F o (T)C'{ Pz}, hence the result holds.

* Case C = [.C" The reduction C{P5} = Ag comes from rule LTS-PREFIX:
we have C{Pg} - C'{Pz}. We have C{P} - C'{P} and C'{P5} U C'{Pz},
hence the result holds.

O

We now prove the theorem:

Theorem 10. If Q ~ R then for all x,a,T, we have va.QQ ~va.R,Q | T ~ R |
T,alQ) ~ a[R},a(Y)Q ~ a(Y)R, &(Q)T ~ a(R)T,a(T)Q ~ &(T)R, 1Q ~R and
1.Q ~I.R.

Proof. The result holds by using the substitution lemma with P = X | T, P =
alX],P = aY)X,P = a(X)T,P = a(T)X,P =!X,P = [.X. The only case
which needs a more detailed proof is the restriction operator one, since using
the substitution lemma is not possible when = € fn(Q) (no capture occurs in a
substitution). In this case, we use the fact that the relation R defined previously
is a bisimulation, with C = v2.0 and P = X.

O

B Howe’s Method

We give the proofs in the strong case. The proofs for the weak case are similar.

We remind the definition of open extension:

Definition 29. Let P and Q be two open processes. We have P R° Q iff
Po R Qo for all substitutions that close P and Q.
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Figure 7: Compatible refinement for processes and concretions

We extends open extension to concretions: we have C R° C' iff for all F,
we have F e C R° F o ('
We remind the definition of the Howe closure:

Definition 30. The Howe’s closure is inductively defined by the following rule:

A
PR*Q QR°R

DEF
PR*R

The compatible refinement for our calculus and its extension to concretions is
given Figure[7] We first prove some general properties about the Howe closure:

Lemma 15. If R is an equivalence, then R*® is reflexive and:

A
PR®Q PR°Q PR®Q QR°R
ConNG OPEN OPEN RIGHT
PR*Q PR®Q PR*R

PR Q Pl R Q/
P{P'/X} R* Q{Q'/X}

And the transitive and reflexive closure of R® is symmetric SYMM.

SUBST

Proof. The reflexivity can be shown by a direct structural induction on P, using
the reflexivity of R° (since R is an equivalence). The rule CONG follows from
the definition of the Howe closure since R° is reflexive. By structural induction

A
on P, we can prove that P R P, hence OPEN follows from the definition of the
Howe closure.

For OPEN RIGHT, assume we have P,(Q, R such that P R®* Q and QQ R° R.
A
By definition there exists @’ such that P R®* Q' and @’ R° Q. By transitivity
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of R°, we have Q R° R, hence we have P R® R as required.

We now prove the rule SUBST. Let P,Q,P’,Q" such that P R® @Q and
P’ R* Q. We proceed by induction on P:

e P = 0: by definition of the Howe closure and the compatible refinement
relation, we have 0 R° Q. By definition of the open extension, we have
0 R° Q{Q'/X}, so by OPEN we have 0 R® Q{Q’/X} as required.

e P = X: by definition of the Howe closure and the compatible refinement
relation, we have X R° Q. For all substitution o that closes Q' we have
X{Qo/X} =Q'c RQ{Qc/X}, so we have Q' R° Q{Q'/X}. We have
P’ R* @', so by OPEN RIGHT we have P’ R® Q{Q’/X} as required.

e P = vz.R. Since substitution is capture free, we have x ¢ fn(P’) and
x ¢ fn(P’) (by a-conversion if needed). By definition of the Howe closure,
there exists R’ such that R R®* R’ and vz.R' R° Q. By induction we have

R{P'/X} R* R'{Q'/X}, hence we have vz.R{P'/X} 7/2\’ ve.R'{Q'/X}.

As z ¢ fn(P’) and z ¢ fIn(Q’), it is the same as (vz.R){P'/X} R*®
(ve.RN{Q'/X}. Since vz.R' R° @, for all substitutions oy such that
Q'o1 is closed and for all substitutions oy such that R'{Q’c1/X }os and
Q{Q'01/X }oq are closed, we have ve.R'{Q'c1/X}o2 R Q{Q'01/X }oo,
ie. va.R{Q'/X} R° Q{Q'/X}. Hence by definition of the Howe closure
we have P{P'/X} R®* Q{Q'/X}.

The other induction cases are similar to the vx.R case.

For SymM, we prove that (R*)~! C (R*)*. For all B, we show by induction
on B that for all A, A(R®)~!B implies A(R*®)*B. We give the proof in one case,
the others are similar. Assume B = va.B’. We have va.B’ R® A, so by definition
there exists R such that B’ R® R and va.R R° A. Hence we have R(R®)"'!B’,
so by induction we have R(R*)*B’. By CONG we have va.R(R®)*va.B’. Since
R is an equivalence, R° is symmetric, so we have A R° va.R, so by OPEN we
have A R® va.R. Finally we have A R® va.R(R®)*va.B’, i.e. A(R®*)*B as
required.

O

We now prove a modified simulation property for the restriction of the Howe
closure to closed process. We have to extend the Howe closure to evaluation
contexts [E, which can be easily done by adding the rule

A
oRrRGa

to the compatible refinement relation definition. If E ~?, E’, then for all
a,z, P,Q such that P ~?, @, we have E{O | P} ~?, E'{0 | Q},E{va.0} ~2,
E'{vz.0} and E{a[O]} ~¢, E'{a[d]}. To prove this, we can show by induction

e
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that if X do not occur in E,E’, then E{X} ~?, E'{X}, and we use rule SUBST
to conclude.
Let P (~c)e Q. When we introduce an intermediate process P’ using Howe’s

A
closure definition, (i.e. such that P ~?, P’ and P’ ~$, ), P’ may be open. We
show that we can always chosed a closed one.

A
Lemma 16. Let P (~;.)® Q. There exists closed process R such that P ~?,
and R ~3, Q.

A

Let C (~;.)® D. There exists closed concretion C' such that C' ~?, C' and
C’'~2, D.

Proof. We proceed by induction on P.

e P =1[.P'. By definition there exists R such that P’ ~}, R and l.R ~5,
The process R may be open; let ¢ be a substitution which closes R. By
reflexivity and SUBST, we have P’ ~%, Ro (since P’ is closed), and since @
is closed we have [.Ro ~;. Q. Since the involved processes are closed, we
have [.Ro ~$, Q. The process (I.R)o is closed and respect the definition.

7

e P = (X)P'. By definition there exists R such that P’ ~?, R and (X)R ~3,
Q. The process R may be open; let o be a substitution which closes R,
except for variable X. By reflexivity and SUBST, we have P’ ~! Ro
(since fv(P') C {X}), and since @ is closed we have ((X)R)o ~ie Q.
Since the involved processes are closed, we have ((X)R)o ~%, Q. The
process ((X)R)o is closed and respect the definition.

The other cases as well as the concretion case, are similar to the [.P’ one.
O

Consequently, in the proofs of the following results, we implicitely use Lemma
and introduce closed processes only. Besides we use (~;.)? instead of ~,

and ~¢ instead of using ~;. directly when possible to shorten the proofs.

e

Lemma 17. Let C (~)s C' and P ~%, P with fu(P) = fo(P’) C {X}. We
have (X)P ¢ C (~;.)s (X)P' o C'.

Proof. By induction on C (~;.)s C’'. We have two possibilities:

e We have C' = (R)S, R (~.)2 R, S (~)s S" and (R')S’ ~2, C'. Since
P ~? P’ wehave P{R/X} (~;.)s P'{R'/X} by SuBsT. Using CONG we
have P{R/X} | S (~e)s P{R'/X} | S, 1e. (X)P o C (~ie)2 (X)P' o
(R)S’. By definition, we have F o (R')S" ~? F e (' for all F, in
particular we have (X)P' o (R')S" ~2, (X)P' o C'. We then have the
required result by OPEN RIGHT.

e We have C' = vz.D, D (~): D', ve. D' ~5, C'. By induction, we have
(X)P o D (~ye)s (X)P' o D’. Using CoNG (and making several cases
depending z is {ree in the processes emitted by D, D’ or not), we have
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(X)P e vx.D (~ic)o (X)P' e vx.D'. By definition, we have ' @ vaz.D’ ~9,

F o C' for all F, in particular we have (X)P' e va.D' ~2 (X)P' o C'.
We then have the required result by OPEN RIGHT

O

Lemma 18. Let (~ie)? be the restriction of ~2, to closed terms. If P (~;.)e Q
then:

e IfP 4 P', there exists Q' such that Q 4 Q' and P’ (~;)2 Q.

o If P5 F, for all closed concretions C (~;.)% C' and evaluation contexts
E ~8 ', there exists F' such that Q = F' and E{F} & C (~;.)* E'{F'} o
C/

o If P L, C, there exists C' such that Q %0 and for all closed evaluation
contests B, E' such that E ~3, E', we have E{C} (~;.)2 E'{C"}.

Proof. Let P,(Q be processes such that P (~;.)® Q and P % A. We proceed by
induction on the derivation P % A.

LTS-PREFIX. P =1.P' 5 P'. By definition there exists R such that P’ ~* R
and [.R ~7, (). By LTS-PREFIX we have [.R LR R, so there exists Q' such that

K3
! .
Q — @ and R ~5, '. By OPEN RIGHT we have P’ ~?, )/, and since P’ and
Q' are closed, we have P’ (~;.)® Q' as required.

LTS-ABSTR. P = a(X)P" % (X)P’. By definition there exists R such that
P ~2 R and a(X)R ~2, Q. Let C (~i)2 C" and E (~4.)® E' be closed
evaluation context. By LTS-ABSTR we have a(X)R = (X)R, so by bisimilarity
there exists I’ such that Q % F’ and E'{(X)R} ¢ C' ~2, E'{F'} ¢ C".

By SUBST, we have E{P'} (~;.)s E’{R}. By lemmal[l7] we have E{(X)P’'} o
C (~ie)s E'{(X)R} e C'. We have the required result by OPEN RIGHT.
LTS-CoNCR. P = a(R)S % (R)S. By definition there exists R’, S such that
R~ RS~ S and a(R)S" ~2, Q. By LTS-CONCR we have a(R')S" %
(R)S', so there exists C' such that Q@ % C’ and for all F,E, we have F o
E{(R")S"} ~;c F o« E{C"}.

Let E, E’ be evaluation contexts such that E (~;.)® E'. We have E{S} (~¢)?
E'{S'}. We also have R (~;.)* R’ so by CoNG, we have (R)E{S} (~.)®
(R")E'{S’}. We have the required result by OPEN RIGHT.

LTS-PAR. P=R|S % A| S with R % A. By definition there exists R’, S’

such that R ~?, R', S ~?, 5" and R' | §' ~5, Q. We have three cases to consider
for A:

e A is a process T: therefore we have R Lo By induction, there exists
T’ such that B 5 T’ and T (~;)? T’. By rule LTS-PAR we have
R |5 Lo | S’, and since R’ | S’ ~;. Q, there exists Q' such that
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QL Q and T' | 8’ ~2, Q'. Using CoNg, we have T | S ~2, T' | §', so by

e

OPEN RIGHT we have T' | S (~;.)® Q' as required.

e Ais an abstraction F: therefore we have R % F. Let C (~.)% C' be
closed concretions and E (~;.)® E’ be closed evaluation contexts. Since
E{O | S} (~i)2 E/{O | S'}, by induction, there exists G such that R’ % G
and E{F | S} & C (~;.)e E'{G | S’} ¢ C'. By rule LTS-PAR we have
R | S % G| 8, and since R’ | S’ ~5, Q, there exists F’ such that
QL F' and E'{G|S'} e C ~ E'{F'} e« C'. We have the required result
by OPEN RIGHT.

e A is a concretion C: therefore we have R % C. By induction, there
exists D such that R % D and for all E, B’ with E (~;.)® E’, we have

E{C} (~i.)® E'{D}. By rule LTS-PAR we have R’ | S’ = D | S’, and
since we have R’ | S’ ~2, Q, there exists C’ such that Q@ = C’ and for all
E’, we have E'{D | 8’} ~2, E'{C"}.

Let E, E’ be closed evaluation contexts such that E ~2, E’. Since S ~$, S,
we have E{O | S} (~)s E'{O | S}, hence we have E{C | S} (~ic)®
E'{D | S’} by induction hypothesis. The result then holds with rule
OPEN RIGHT.

LTS-FO. P=R| S 5 U |V with R ™ U and S = V for some m. By
definition there exists R’,S” such that R ~$, R',S ~?, S  and R | S ~¢

€
By induction, there exists U’, V' such that R’ = U’ and S’ ©% V' such that
U (~ie)2 U and V (~;)® V'. By LTS-FO we have R’ | S’ = U’ | V'. Since
R'| 8" ~2, Q, there exists Q' such that Q = Q" and U’ | V' ~2, Q'.

We have U (~i.)e U and V (~;.)s V', so by CoNag, we have U | V ~2, U’ |
V’. By OPEN RIGHT we have U | V (~;.)® Q' as required.

LTS-REPLIC-FO. Similar to the case above.

LTS-HO. P=R | S 5 F e C, with RS F and S % C for some a. By
definition there exists R, S’ such that R ~?, R, S ~? S" and R' | S’ ~5,

e

a

By induction, there exists C” such that S’ — C’ and for all E, E/, such that
E (~ie)s E', we have E{C} ~? E'{C’}. In particular we have C' ~?, C’. Since
we have R (~;.)% R', there exists F” such that R’ % F' and F @ C' (~;.)% F' e
C’ (with O as evaluation contexts).

By rule LTS-HO we have R’ | S’ = F’ o C'. From R' | S’ ~%, Q, there
exists Q' such that Q@ = Q" and F' ¢ ¢’ ~5, Q'. Finally, we have the required
result by OPEN RIGHT.

LTS-REPLIC-HO. Similar to the case above.

LTS-RESTR. P = vz.R % vr. A, with R % A and o ¢ {z,7}. By definition
there exists R’ such that R ~}, R and vz.R' ~$, ). We now distinguish three
cases for A:
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e A is a process T: therefore we have R Lo By induction, there exists

T’ such that R 5 T’ and T (~ie)s T’. By rule LTS-RESTR we have

ve.R L ve.T', and since ve.R' ~3, Q, there exists ' such that @ 4 Q'
and ve. T ~5, Q'. Using CONG, we have va.T ~3, va.T’, so by OPEN
RICGHT we have vz.T (~;.)® Q' as required.

A is an abstraction F: therefore we have R = F. Let C (~.)® C’ be
closed concretions and E (~;.)® E’ be closed evaluation contexts. By
induction, there exists G' such that R' % G and E{vz.F} e C (~i.)?
E'{vz.G} e C'. By rule LTS-RESTR we have vz.R' % vz.G, and since
ve. R ~%, Q, there exists F' such that Q = F’ and E'{vz.G} e C' ~5,
E'{F'} e C'. We have the required result by OPEN RIGHT.

A is a concretion C: therefore we have R - C. By induction, there

exists D such that R % D and for all E, E/ with E (~;.)? E/, we have
E{C} (~c)e E'{D}. For E ~?, E', we have E{vz.0} ~?, E'{vz.0}, hence

we have E{vx.C} (~;.)® E'{va.D} by induction hypothesis.

By rule LTS-RESTR we have vz.R' % va.D, and since va.R' ~2, Q, there

exists C’ such that Q % C’ and for all E/, we have E'{va.D} ~2 E{C'}.
The result then holds with rule OPEN RIGHT.

LTS-Loc. P = a[R] % a[A], with R < A. By definition there exists R’ such
that R ~7, R' and a[R'] ~5, Q. We now distinguish three cases for A:

e A is a process T therefore we have R Lo By induction, there exists

T’ such that R 5 T’ and T (~ie)s T'. By rule LTS-Loc we have
a[R/] 4 a[T"], and since a[R'] ~5, @, there exists Q' such that @ Lo
and a[T'] ~3, @’'. Using CONG, we have a[T] ~2, a[T’'], so by OPEN RIGHT
we have a[T] (~;e)? Q' as required.

A is an abstraction F: therefore we have R % F. Let C (~.)% C’ be
closed concretions and E (~;.)® E’ be closed evaluation contexts. By
induction, there exists G' such that R' % G and E{a[F]} e C (~i.)?
E'{a[G]} e C'. By rule LTS-Loc we have a[R'] % a[G], and since
a[R'] ~%, Q, there exists F’ such that Q@ % F’ and E'{a[G]} e C' ~2,
E'{F'} ¢ C’. We have the required result by OPEN RIGHT.

A is a concretion C: tﬁherefore we have B % C. By induction, there
exists D such that R < D and for all E, E' with E (~;.)% E’, we have
E{C} (~ic)2 E'{D}. For E ~?, E’, we have E{a[O]} ~¢, E'{a[0]}, hence

e e

we have E{a[C]} (~ic)s E'{a[D]} by induction hypothesis.

By rule LTS-RESTR we have a[R'] % a[D], and since a[R/] ~2 @, there
exists C’ such that @ = C” and for all E’, we have E'{a[D]} ~5, E'{C"}.
The result then holds with rule OPEN RIGHT.
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LTS-Passiv. P = a[R] 5, (R)0. By definition there exists R’ such that R ~?,
R’ and a[R'] ~5, Q. By LTS-Passiv, we have a[R'] < (R’)0, so there exists C"
such that Q@ < C” and for all F,[E, we have F ¢ E{(R')0} ~2, F o E{C"}, i.e.
(RE{0} ~j, E{C"}.

Let E,E’ be evaluation contexts such that E (~;.)® E’. We have E{0} (~;.)®
E’{0}. We also have R (~;)® R’ so by CoNg, we have (R)YE{O} (~j)?
(RE'{0}. We have the required result by OPEN RIGHT.

LTS-RepLIC. P =!R % A |!R, with R % A. By definition there exists R’ such
that R ~?, R and IR’ ~%, Q. We now distinguish three cases for A:

e A is a process T therefore we have R Lo By induction, there exists
T’ such that B 5 T’ and T (~ie)e T'. By rule LTS-REPLIC we have
IR Lo ['R’, and since |R’ ~% @, there exists Q' such that Q LR Q'
and T" |!R' ~35, @'. Using CONG, we have T 'R ~?, T' |IR’, so by OPEN
RIGHT we have T [IR (~;.)® Q' as required.

e A is an abstraction F: therefore we have R % F. Let C (~;.)% C' be
closed concretions and E (~;.)¢ E’ be closed evaluation contexts. Since
R ~?! R, we have |R ~?,|R’ by CONG, hence we have E{O |!R} (~i.)?
E/{O |'R'}. So by induction, there exists G' such that R’ % G and E{F |
IR} o C (~)® E'{G |!R'} @ C’. By rule LTS-RESTR we have vz.R' <
G |'R', and since |R' ~2, Q, there exists F’ such that Q@ - F’ and
E'{G |!R'} ¢ C' ~3, E'{F'} ¢ C'. We then have the required result by
OPEN RIGHT.

e A is a concretion C: therefore we have R % C. By induction, there
exists D such that R % D and for all E, B’ with E (~;.)® E’, we have
E{C} (~i)s E'{D}. For E ~? E’, we have E{O |!R} ~?, E'{O |!R'},
hence we have E{C |!R} (~;.)® E'{D |'!R'} by induction hypothesis.

By rule LTS-RESTR we have |R' % D 'R, and since |R’ ~2, @, there

exists €’ such that Q < €’ and for all E/, we have E'{D R’} ~2 E{C'}.
The result then holds with rule OPEN RIGHT.

O

With this result we can show the following lemma:

Lemma 19. The transitive and reflezive closure of (~i.)s is an input-early

bisimulation.

Proof. With property SYMM it is enough to show that ((~;.)?)* is a simulation.
Let P,Q such that P((~;.)®)*Q. There exists k > 0 such that P((~;.)?)*Q.
The proof is by induction on k. There is nothing to show for £k = 0 since
((~4e)e)* is reflexive.

We suppose the result holds up to k. We have P (~;e)® P1... Py_1 (~ie)s Q
and P % A. We have three cases to consider.
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e Ais a process P'. By induction there exists P;_, such that P, 4 P

and P’((~e)2)*P)_,. By lemma there exists Q' such that Q & @’
and P;_; (~c)s Q. We have P'((~;c)2)* Q' by transitivity.

e Ais an abstraction F. Let C be a closed concretion and E be an evaluation
context. By induction there exists Fj_; such that P,_; — Fj,_; and
E{F} @ C((~ic)2)"E{F)_1} ® C. Since C (~;.)s C, by lemma [18] there
exists F’ such that Q % F’ and E{F},_1}  C (~;.)2 E{F'}  C. We have
E{F} o C((~ic)2)*E{F'} o C by transitivity.

e Ais a concretion C. By induction there exists Cj_; such that P,_; —
Ck—1 and for all closed abstraction F' and all closed context E, F' e
E{C}((~)2)*F o E{Ck_1}. By lemma there exists C’ such that
Q % ¢’ and for all closed E, we have E{Cy_1} (~.)® E{C’}. By lemma
we have F' @ E{Cy_1} (~i.)® F @ E{C’}. The result then holds by
transitivity.

O

To prove that ~; is a congruence, it is enough to prove the following lemma;:

o o
Lemma 20. ~§,=~7,

Proof. By lemma [19 we have (~;.)®" C~ic, 50 we have (~;.)2"°C~2,. We now

prove that ~$, C(~;.)*°. Let P, Q such that P ~2, Q. For all o which closes P,

€
@, we have Po ~?, Qo by SUBST. Since the considered processes are closed,

we have Po (~;.)% Qo. Consequently, we have P (~;.)*° Q. Hence we have

~2 C(~ie) 2 C(mie) 2% T2, e, ~2,C~%,. The reverse inclusion is given by
o]

OPEN, so we have ~3,=~7

e”

O

C Completeness proofs for HO7P

C.1 Strong early bisimilarity completeness
Lemma 21. For all actions «, the relation = is image-finite.
Proof. By induction on the shape of P :

¢ 0: no transition from P.

e [.(Q: one possible transition by LTS-PREFIX.

e a(R)Q : one possible transition by LTS-CONCR.

e a(X)Q: one possible transition by LTS-ABSTR.

e a[P]: one possible transition by LTS-Passiv, and all the transitions from
P (rule LTS-Loc), which are f{inite by induction hypothesis.
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e vz.P: all the transitions from P (which are finite by induction hypothesis),
minus the one labeled by = or T (rule LTS-RESTR).

e Q| R: the possible transitions are from rules LTS-FO, LTS-HO, LTS-
PAR. In the case of the rule LTS-PAR, there are as many possible — tran-
sitions from P as there are from @, which are finite by induction assump-
tion. The number of 7-transitions from P by LTS-FO (resp. LTS-HO)
are bounded by the product of the number of * (resp. %) transitions

from @ with the number of m, (resp. %) from R, which are finite by
induction assumption.

e !P: the possible transitions are from rule LTS-REpPLIC, LTS-REPLIC-HO,

LTS-REPLIC-FO. There are a finite number of %, %, ™ ™, transitions

from P by induction, hence there are a finite number of transitions from
IP.

O
Definition 31. The relation ~, is defined on closed processes by:
L P o Q iff f(P) = fa(Q)
2. P~ Q iff fo(P) = fu(Q) and

o IfP LR P’, then there exists Q' such that Q LR Q' and P’ ~;, Q', and
conversely if Q 4 Q.

e If P % F, then for all closed concretions C, there exists F' such that
Q5 F and F' @« C ~j, F o C, and conversely if Q = F.

o If P <, C, then for all closed abstractions F, there exists C' such

that Q = C' and for all closed evaluationfcontemts E, we have F o
E{C} ~; F @« E{C"}, and conversely if Q < C.

3. ~w= i ~k
Lemma 22. The relations ~ and ~, coincide.

Proof. From the definition of ~,, we already have that ~C~,. We show the
converse by proving that ~,, is a strong bisimulation. Let P,Q be such that
P ~, Q. We have three cases to check :

o Assume P - P’. For all integers k, there exists Q) such that @Q 4 Qx
and P’ ~j Q. Since L s image-finite, the set {Q;|Q 4 Q;} is finite.
We now prove by contradiction that there exists @’ such that Q 4 Q'

and for all k, P’ ~;, Q. Assume that for all Q; such that Q LR Q;, there
exists k; such that P’ ~y, Q;. Since ~,,C~; if I < m, for all m > k;,

we have P’ o, Q;. Since {Q;|Q LN Q;} is finite, the set {k;} is finite
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and has a greatest element M. For all Q' such that Q 4 Q', we have

P’ =, Q' for all m > M. But for all k, there exists @)} such that Q 4 Qrk
and P’ ~}, Qp, hence a contradiction. Therefore there exists Q' such that

QL @ and for all k, P’ ~;, Q',i.e. P' ~, Q' as required.

o Assume P % F. Let C be a closed concretion. For all k, there exists Fj,
such that Q % Fj, and F e C' ~}, F}, ® C. Since — is image-finite, the set
{F;|Q = F;} is finite. By contradiction we can show that there exists F”
such that Q = F' and for all k, F’ ¢ C' ~;, F e C,i.e. F' ¢ C ~, F o C
as required.

a . . ..
e Assume P — C. This case is similar to the case above.

For the following proof we define some notations :

Pps=350]|sP

> Pi=va.(@P)o]...|a(P.)0|a(X)X | []a(x:)0)
i=1 1=2

We have the following properties :
s PPs |,
e P®Ps— P
e Forall 1 <i<mn, 3% Pj —"~P

Lemma 23. Let P,Q two closed processes. For all integers k, if P »~ Q then
there exists a context K such that K{P} ~, K{Q}.

Proof. We proceed by induction on k. For the case k = 0, we must have
fn(P) # fn(Q). Assume we have a € fn(P) \ fn(Q) for instance. We define

K = blva.c{(0)0 | R] | S
R=e.0]|eed0
S =c(X)Y)(Y |Y)

where b, ¢, d, e are all distinct and do not occur in P or (). We now prove by
contradiction that K{P} =, K{Q}. Assume that K{P} ~, K{Q}. We have
K{P} — va.(b[R] | (Y)Y | Y)) = T} (since a € fn(P) it has to be extruded
during the communication). Since =(77 |.), the only way for K{Q} to match
this transition is with the transition K{Q} — b[va.R] | b(Y)(Y | Y) = U; (we
have a ¢ fn(Q), so a is not extruded). Now we have

T1 — ua.(R | R) = T3
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which can only be matched by
Uy — (va.R) | (va.R) =Us

The reduction 75 — va.(e.0 | €e.d.0 | €d.0) = Ty can be matched by
Us — (va.e.d.0) | (va.R) = Uy. We have Ty — va.(€e.d.0 | d.0) = T5,
with T5 |4 : this reduction cannot be matched by Uy. Hence a contradiction.

Agsume the property holds for all k¥ < n. We now prove it for n + 1. Since
P ~ @ implies P ~; @, to prove P; =, QQ1, it suffices to show that Py <, Qo
with Py ~ Py and Q1 ~ Q2. We distinguish the following cases :

e P L P'. For all Q' such that Q@ = Q’, we have P’ ~»; @Q'. Since =
is image-finite, the set {Q}Q = Q.} is finite. Let N be its cardinality.
By induction, there are contexts K; such that K;{P’'} ~, K;{Q}} for all
ie{l,...,N}. We define:

K =a[0] | a(X) ) (K{X} & dy)

2

where (d;);,a do not occur free in P, Q. Assume that K{P} ~, K{Q}.
Since P — P’, we have

K{P} — a[P'] | a(X) Z(Kj{X} ©d;) = Iy

Since R; |4, this reduction can be matched by

K{Q} — alQi] | a(X) ) _(Ki{X} @ d;j) = 5,

J

for some 7. We now have:

Ry — Y (K{P'} & d;) = Ry

We have = Rs |, so it can only be matched by
S — Y K{Qj}ed;) =S,
J

Now we have Ry —"~ K;{P'} ® d; = R3, which can only be matched
by So —N~ K;{Q!} ® d; = Ss, since R3 |4,. Finally we have Rz —
K;{P'}, which is matched by S35 — K,;{Q}}. Hence a contradiction, since
K A{P'} =, Ki{Q}}, so we have K{P} », K{Q} as required.

e P P’ For all Q' such that Q = Q’, we have P’ »j, @’. Since —
is image-finite, the set {Q’|Q ™~ @/} is finite. By induction, there are
contexts K; such that K;{P'} », K;{Q}} for all i. We define:

K = a[0O] | m.a(X) Z(Kz{X} @ d;)

7
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where (d;);,a do not occur free in P, Q. Assume that K{P} ~;, K{Q}.
We have
K{P} — a[P'] | (X)) (K;{X}@d)) = R
J
Since R; |, this reduction can be matched by

K{Q} — alQ] | a(X) Y _(K;{X} & dj) = 5

J

for some i. From here, this case is similar to the one above.

P ™, P’. Similar to the case above.

P % F. There exists a concretion C' = vZ.(T)U such that for all F' such
that Q = F’, we have F’ o C =}, F o C. Since = is image-finite, the set
{F!|Q % F!} is finite (let N be its cardinality). By induction, there are
contexts K; such that K;{F} ¢ C'} =, K;{F o C}. We define:

K =0[0 | v2a(T)(U | 2.0)] | eb(X) Y (Ki{ X} & dy)

?

where b, (d;), e are all distinct, and do not occur free in T,U, P,Q. We
have

K{P} — b[F o C'|2.0] | eb(X)> (K;{X} @ d;) = Ry
J
Since R; |g, it can only be matched by a
K{Q} — b[F] o C | 2.0] | e.b(X) Y (Ki{X} B d)) =5

J

for some 7. Now we have

Ry — bF o C] | b(X) Y (K, {X} @ d;) = R,

J

which can only be matched by

S — b[F] ¢ O] | b(X) Z(Kj{X} ®dj) =52

J

We have then
Ry — Y (K;{F e C} & d;) = Rs
J

which can only be matched by

Sy —> Z(Kj{F; e Cl®dj) =S;
J
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since “R3 |p. In turn, we have

Ry —N~K{FeCl@®d; =Ry
We have R4 |4, so it can only be matched by

Sy —N K {F e CY@®d; = Sy

Finally we have Ry — K,;{F e C'}, which is matched by Sy — K;{F] e
C'}. Hence a contradiction since by assumption we have K;{F o C}
K;{F! ¢ C}. So we have K{P} », K{Q} as required.

« PL(C= vZ.(U)V. There exists an abstraction F = (Y)T such that for
all ¢’ such that Q = C’, there exists an evaluation context E such that
F o E{C} =, F e E{C'}. Since = is finite, the set {C;|Q" % C;} is
finite (let N be its cardinality). For each ¢ we write E; the corresponding

“distinguishing context”. By induction, there exists contexts K; such that
K A{F o E;{C}} = Ki{F ¢ E;{C;}} for all i. We define

K = ble[0] | a(Y)(T'| 2.0) | e(X) Y (B X}&d)] | eb(X) D (Ki{X}od;)

7 K2

where b, ¢, e, (d;) are all distinct and do not occur free in T, P, Q. Trigger-
ing the communication on a, we have:

K{P} — blvz.(c[V] | T{U/Y} | 2.0 | «(X) Z(Eg‘{X} ©d;))] | K' =R,y
with K" = e.b(X) >, (K;j{X} @ d;). Since Ry |e, it is matched for some i
by

K{Q} — bly@i.(c[Vi] | T{U/Y} [ 2.0 | o(X) Y _(B{X} @ di))] | K =

with C; = vz;.(U;)V;. By triggering the passivation on ¢, then choosing
the appropriate 7 in the sum, we have

Ry —3—N~be0 | FeE{C} | K' = Ry

using the properties of & and the fact that ~ is a congruence. This
sequence of reduction can only be matched by

S —2—N e | FeE{C;}] | K' = Ss

From here, the proof is similar to the abstraction case. Triggering the
communication on e and the passivation on b, we have

Ry —? ) (K{F ¢ E{C}} @ d;) = Ry

J
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which can only be matched by

Sy —* Y (K{F e E{Ci}} @ d;) = S5

J

We have
Ry — N~ K{F eE;{C}} ®d; = Ry

which is matched only by

Finally we have Ry — K,{F o E,{C}}, which is matched by Sy —
K;{F e E;{C;}}. Hence a contradiction since by assumption we have
KA{F o E{C}} =y Ki{F o E;{C;}}. So we have K{P} ~, K{Q} as
required.

O

C.2 Adaptation to strong input-early bisimilarity

We explain here how to adapt the previous proof to input-early bisimilarity. We
define the slicing of ~;. as follow:

Definition 32. The relation ~j. ., is defined on closed processes by:
1. P ~o Q iff fn(P) = fr(Q)
2. P ~icr1 Q iff fn(P) = f(Q) and
e If P 4 P’, then there exists Q' such that Q 4 Q' and P~ 1 Q'
and conversely if Q 4 Q.

e If P 5 F, then for all closed concretions C and evaluation context
E, there exists F' such that Q = F' and E{F} @ C' ~;.x, E{F'} ¢ C,
and conversely if Q = F.

o If P 5 C, then there exists C' such that Q < C' and for all closed
abstractions F' and all closed evaluation contexts E, we have F e

E{C} ~ier F ¢ E{C'}, and conversely if Q % .
3. ~iew= [\ ~iek
Lemma 24. The relation ~;. and ~;c, coincide.
The proof is the same as above.

Lemma 25. Let P, () two closed processes. For all integers k, if P ~;c , () then
there exists a context K such that K{P} ~, K{Q}.

Proof. The proof is the same as the one of Lemma [23] except in the abstraction
and concretion cases.
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e P % F. There exists a concretion C' = vZ.(T)U and an evaluation context
IE such that for all F” such that Q < F’, we have E{F'} @ C <} E{F'} o C.
Since % is image-finite, the set { F/|Q < F/} is finite. By induction, there
are contexts K; such that K, {E{F} e C'} =, K;{E{F;} e C}. We define:

K = b[E | vZ.a(T)(U | 2.0)] | e.b(X) Z(Ki{X} @ d;)

3

where b, e, (d;) are all distinct, and do not occur free in T,U, P, Q. From
here the proof is similar to the early version.

e P % C = vz.(U)V. For all C" such that Q % C’, there exists an
abstraction F' and an evaluation context E such that F @ E{C} »; F e
E{C"}. Since = is finite, the set {C;|Q" % C;} is finite (let N be its
cardinality). For each ¢ we write F;, E; the corresponding distinguishing
abstraction and context. By induction, there exists contexts K; such that
K {F; ¢ E;{C}} »p Ki{F; @ E;{C;}} for all i. We write C; = vz; .(U;)V;
and F; = (X;)T;. We define

K = b[c[O] | a(Y)(d(Y)0 | d(X) Z(Ti{X/Xi} S d;) | Ky)] | Ko

7

where b, ¢, d, e, (d;) are all distinct and do not occur free in T}, P, Q. The
main idea is to add a bogus forward on a, to enforce @ to chose a reduction.
When @ has chosen a C;, P is able to chose the corresponding index i in
its sequence of reduction (here after the communication on d).

Triggering the communication on a, we have:
K{P} — blv@.(c[V] | d(U)0 | d(X) D (T}{X/X;} @ d;) | K1)] | K2 = Ry
J
Since we have Rs |. (in K), it is matched for some ¢ by
K{Q} — blvz;.(c[Vi] | d(U:)O | d(X) Y (Ty{X/X;}0d;) | K1)] | Ko = S
J
With the communication on d, we have
Ry — bva.(c[V] | Y (T{U/X;} @ d;) | K1)] | K2 = Rs
J
Since we have —Rj3 |4, it is matched by
Sy — b (c[V] | D (TH{Ui/X;} & di) | K1)] | K2 = Ss
J

Using properties of the sum and the fact that ~;. is a congruence, we have

Ry —N i vz (c[V] | TH{U/ X} @ d; | K1) | K2 = Ry
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Since we have Ry |q4,, it is matched only by:
Sy —N e bvE(c[V] | Ti{U;/ X} © d; | K1)] | Ko = Sy
By property of @, we have:
Ry — bz (V] | TiI{U/X;} | K1)] | K2 = Rs
We have - R5 |4,, s0 it is matched by:

Sy — b[vE.(c[V] | T{U:/X:} | K1)] | K2 = S5

From here, the proof is identical to the early version at stage Ry, Si.

D Soundness proofs for HOP

We prove soundness of early context bisimilarities for HOP in the strong and
weak cases. We use progress technique for the strong case and Howe’s method
for the weak case (it works in the strong case t00).

D.1 Strong case
We have to adapt the definition [28 of progress:

Definition 33. Let R,U be binary relations on closed processes. Relation R is
said to strongly progress towards U, noted R~~U iff the following holds:
For all closed processes such that P R (Q, we have:

e IfP 4 P!, then there exists Q' such that Q 5 Q' and P' U Q'.

o If P % F, then for all closed processes R, there exists F' such that Q % F'
and Fo RU F’ o R.

e If P % (R)S, there exists R',S' such that Q' % (R)S', RU R’ and
sus'.

Lemma 26. Let R be a reflexive binary relation on closed processes, let U be
its reflexive and transitive closure. If R~~U, then U is a strong simulation.

Proof. The proof is similar to the one for Lemma except in the concretion
case, hence we detail this case only. With the same notations as Lemma [10]

assume we have P % (R)S. By induction, there exists R/, S, such that P, %
(R})S], and RU R), and SU S),. Since R~U and P, R Q, there exists R’, S’

such that @ % (R)S" and R, U R’ and S,, U S’. The result then holds by
transitivity of U. O
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For the rest of this section, we note R= {(P{Q/X}, P{R/X}),fv(P) =
X,Q ~ R} and its closure U=R*. We use these relations to prove the substi-
tution lemma. We first give some properties of these relations.

Lemma 27. If P U Q, then for all names a, for all closed processes T we
have P | T U Q | T,a[P] U a|Q],a(P)T U a(Q)T,a(T)P U a{Q)T,a(X)P U
a(X)QILPUILQ,'PUQ,P+TUQ+T.

Proof. We proceed by induction on n, proving that P R™ @ implies P | T R™
QIT, ...

For n =1, let P R Q with P = U{R/X} and Q = U{S/X}. Since T is
closed, we have P | T = U{R/X} | T = (U | T){R/X} U U |TH{S/X}=Q|
T and a[P] = a[U{R/X}] = a[U ]{R/X} U alU }{R/X} = a[Q]. By the same
technique we have the result for the other contexts.

Assume now that the result holds up to n. We show that it holds for n + 1.
Let P R"*! Q. Then there exists P, such that P R™ P, R Q. By induction
assumption, we have P | T R™ P, | T. Also we have P,, | T R Q | T, hence we
conclude P | T R™ Q | T. We have the same for the other contexts.

O

A direct corollary from lemma [27]is if P U @, then for all abstractions F,
we have Fo PU F o Q.

Lemma 28 (Substitution lemma). Let P be a process such that fu(P) C X,

and let Q and R two sets of closed processes with the same number of element
than X, and such that Q ~ R. Then P{Q/X} ~ P{R/X}.

Proof. We show that the transitive and reflexive closure U of R is a strong
simulation. As U is symmetrical, it will imply that U/ is a strong bisimulation.
By lemma [26] it suffices to show that R~U. _

For all process P such that fv(P ) X and for all closed processes R with
the same number of elements than X, we write Pg for P{R/X}.

We proceed by induction on the derivation Py <+ Ag. A common subcase
is the case P = X, and the derivation comes from (). In this case, we have
Py = Q,Pr = R with @ ~ R. Since ~CRCU, we have Q U R. Therefore we
consider P # X in the following cases.

LTS-PRrEFIX. In this case, we have Py = [.Sg. So Pr = 1.5k and Pr 4, Sk.
We have Sg R Sr, so we have Sg U Sgr as required.

LTS-ABSTR. In this case, we have Py = a(X)Sq, and Ag is an abstraction
Fg = (X)Sq. Then Pp = a(X)Sgr. Let T be a closed process. We have
Pr % Fpg. Since T'is closed, we have Fg o T = (F o T)g R (FoT)r = Fro T.
Hence we have Fop o T'U Fr o T as required.

LTS-CoNcR. In this case, we have Py = a(Sg)Tq, and Py 4, (Sq)Tq = Cq.

Hence Pr = a(Sg)Tr. We have Py g, Cr, and Sg R Sr,Tg R Tg, hence the
result holds.
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LTS-FO. In this case, we have Py = Sq | To with Sg 2= Ug, To = V. So
Py L Ug | V.

By induction, there exists Uy such that Sg —~ Uy and Ug U Uk, and
there exists V}, such that T , Vi and Vo U V}. By LTS-FO we have
Sr | Tr = Uy | V. By lemma we have Ug | Vo U Uy | Vo U Ug, | Vi, so
by transitivity we have Uqg | Vo U U}, | Vi, as required.

LTS-REPLIC-FO. Similar to he case above.
LTS-HO. In this case, we have Py = Sg | T with Sg % F, Tg = C = (V)W,
and Py - F e C.

By induction, there exists U’ such that Sg — F' and F oV U F' oV, and
there exists €’ = (V/)W’ such that Tr % C’ and VU V/,W U W'. By LTS-
HO we have Sg | Tr — F' @ C'. By lemma we have Fe CU F o V' | V.
Since W U W', we have F/ o V! | W U F' o V' | W = F e (', so by
transitivity we have F ¢ C' U F’ o C’ as required.

LTS-RepLIC-HO. Similar to the case above (with one additional use of the

lemma

LTS-PAR. In this case, we have Py = Sq | Tg, Aqg = Bg | Tg with Sg =, Bg.
We have to discuss on the shape of Bg:

e Bg is a process U: then Sg LU. So by induction, there exists U’ such

that S - U’ and U U U’. By rule LTS-PAR, we have Py & U’ | Tg,
and by lemma 27, we have U | To U U’ | Tg. As To U Tg, we have
U ToUU | Tg by lemma Finally we have Pg Lo | Tr and by
transitivity of U, we have U | Tgo U U’ | Tr as required.

e Bg is an abstraction F: then Sp > F. Let V be a closed process. By
induction, there exists F’ such that Sp = F’ and F o VU F' o V.
By LTS-PAR, we have Pr % F’ | Tr. By lemma [27 we have (F |
Tg) o VU F' oV | Tg and since Tg R Tr, we have F' o V | T U
F' oV | Tg = (F' | Tgr) o V. Hence by transitivity of U, we have
(F|Tg)oVU(F'|Tg) oV as required.

e Bg is a concretion C' = (U)V. By induction, there exists C' = (U")V’

such that Sp 2 €' and U U U',V U V'. Since V U V', by lemma 27} we
have V | To U V' | Tg, and from Ty U Tr we have V' | To U V' | Tr. By
transitivity, we have V' | To U V' | Tg as required.

LTS-Loc. In this case, we have Py = a[Sg] with Sg =+ Bg. We have three
cases to consider:

e Bg is a process U: we have Sg Lu. By induction there exists U’ such

that Sp & U’ and U U U’. By LTS-Loc we have Pr - a[U’] and by
lemma 27 we have a[U] U a[U’] as required.
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e Bg is an abstraction F: we have Sg 2 F. Let V be a closed process. By
induction there exists F' such that Sz > F' and F o VU F' o V. By

LTS-Loc, we have Pp 2 a[F']. By lemma , we have a[F] oV =alF o
V]U alF’" o V] = a[F’] o V, hence the result holds.

e Bg is a concretion C' = (U)V: then Sg L e By induction, there exists

C' = (U")V' such that S % C" and U U U’,V U V'. We have P, > a[C']
by LTS-Loc, and by lemma 27] we have a[V]| U a[V'] as required.

LTS-Passiv. In this case, we have Py = a[Sg] and Py 5, (Sg)0. We have
Pr % (Sg)0, and we have Sg R Sk and 0 R 0, hence the result holds.

LTS-REPLIC. In this case, we have Py =!Sg with Sg — Ag and Py = Ag |
Pg. We have three cases to consider:

e Ag is a process T: we have Sg LT By induction there exists 7" such

that Sp = T’ and T U T’. By LTS-REPLIC we have Pg - T’ |!Sg. By
lemma 27, we have T | Po U T' | Pq U T" | Pg (since Po U Pg). We have
the result by transitivity.

e Bg is an abstraction F: we have Sg 2 F. Let V be a closed process. By
induction there exists F’ such that Sy Y Fand FoVUF oV. By

LTS-REPLIC, we have Pr 2 F’ |'Sgr. By lemmaﬁ we have (F | Pg) o
V=FoV|PQUF oV |Pgand F' oV |PoU F' oV | Pp = (F'|
Pg) o V, hence the result holds by transitivity.

e Bg is a concretion C' = (U)V: then Sg 2, €. By induction, there exists

C' = (UV’ such that Sg 2 C" and U U U',V U V'. We have Pp >
C" | Pr by LTS-Loc, and by lemma 27 we have Py | V U Pr | V and
Pr |V U Pgr | V', hence the result holds by transitivity.

LTS-Sum. In this case, we have Pg = Sq + Tg, Ag = Bg with Sg = Bg. We
have to discuss on the shape of Bg:

e Bg is a process U: then Sg LU so by induction, there exists U’ such

that Sg LuandUuu. By rule LTS-SuM, we have Pr 4 U’, hence
the result holds.

e Bg is an abstraction F: then Sg %, F. Let V be a closed process. By

induction, there exists F’ such that S — F’ and F o VU F' o V. By
LTS-SuM, we have Pr = F’, hence the result holds.
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Figure 8: Compatible refinement for HOP processes

e Bg is a concretion C' = (U)V. By induction, there exists C' = (U)V’

such that Sg S andU U U,V U V' ByLTS-SuM, we have P = (",
hence the result holds.

O

From the substitution lemma, we have directly the theorem:
Theorem 11. If Q ~ R then for alla,l,T, we have Q | T ~ R | T, a|Q] ~ a[R],
a(Y)Q ~ a(Y)R, a(Q)T ~a(R)T, a(ThQ ~a(T)R, l.Q ~I.R, Q+T ~ R+T,
1Q ~R.
D.2 Weak case
In the proofs, we use the following property:

Lemma 29. If P ~° Q then:

o IfP iy P’, then there exists Q' such that Q 4 Q' and P' &° Q.

o If P= F, for all R, there exists F', Q' such that Q = F', F' o R = @',
and F o RA° Q'

o If P 2 (R)S, there emists R',S',S" such that Q = (R')S", " = &',
RA° R, and S~° S

Proof. By induction on P = A O

The compatible refinement for HOP is given Fig. The Howe’s closure
definition and properties (Lemma [I5) can be found in Appendix

Lemma 30. Let (%)% be the restriction of &=° to closed terms. If P (%)% Q
then :

e IfP 4 P’, there exists Q' such that Q L Q' and P’ (=) Q'.

c
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o If P % F, for all closed processes T (%)% T', there exists [, Q' such that
Q3F,F ol 5Q,and FoT (%) Q'

o IfP % (R)S, there exists R', S’, S" such that Q 2 (RS", 8" = &,
R (=)* R, and S (=)2 5.

Proof. Let P,Q be processes such that P (%)® Q and P % A. We proceed by
induction on the derivation P = A. As pointed out in the proof of Lemma
(Appendix , we suppose that the intermediate processes introduced by
Howe’s closure definition are closed. We also work with A" instead of & when
all the processes are closed.

LTS-PReFIX. P =P’ L P'. By definition there exists R such that P’ =° R
and I.R ~° Q. By LTS-PREFIX we have [.R 4 R, so there exists Q' such that

Q L Q' and R ~° Q'. By OPEN RIGHT we have P’ %" ', and since P’ and Q'
are closed, we have P’ (=) Q' as required.

LTS-ABSTR. P = a(X)P" % (X)P'. By definition there exists R such that
P =" R and a(X)R ~° Q. Let T (%)% T’ be closed processes. By LTS-
ABSTR we have a(X)R % (X)R, so by bisimilarity there exists F’, Q' such
that Q= F/, F' o T' = @', and (X)Ro T" A° Q.

We have P’ 2° R and T &° T’ so by SUBST we have (X)P' o T (%)*
(X)R o T'. By OPEN RIGHT, we have (X)P' o T (~)® @)’ as required.

LTS-CoNcRr. P = a(R)S 5, (R)S. By definition there exists T, U such that
RA°T,S A" Uanda(T)U ~° Q. By LTS-CONCR we have a(T)U % (T)U, so
there exists R',5’, S” such that Q = (R)S”, 5" = &', TA° R, and U &° §'.
We have R (=~)® R and S (=)? S’ using OPEN RIGHT.

LTS-ParR. P=U |V % A |V with U = A. By definition there exists U’, V'
such that U ~° U, V A" V' and U’ | V' =° Q. We have three cases to consider
for A:

e Ais a process T: therefore we have U L By induction, there exists T’
such that U’ & T" and T (%)* T'. Using CONG, we have T | V ~° T | V'.
By several applications of rule LTS-PAR we have U’ | V' L7 | V', and
since U’ | V! &° Q, there exists Q' such that Q 2N Q and T' | V' &° Q.
We have T' | V (~)® Q' by OPEN RIGHT.

e Ais an abstraction F: therefore we have U % F. Let T (%)% T" be closed
processes. By induction, there exists G, U” such that U’ = G, G o T =
U’,and FoT (=) U". By CONG, we have (F | V)o T (=)sU" | V"

a

By several application of rule LTS-PAR, we have U’ | V' = G | V’, and
since U’ | V' &° Q, there exists F', Q" such that Q = F', F' o T' = Q"
and (G | V') o T" =° Q". Since G o T' = U”, we have (G | V') o T' =
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U” | V' by LTS-PAR. We have (G | ") o T' &° Q", so there exists Q'
such that Q” = Q" and U” | V' &° Q'. We then have (F | V) o T (=)® Q'
by OPEN RIGHT.

e Aisa concretion (R)S: therefore we have U 5, (R)S. By induction, there
exists (R”)U”, S” such that U’ & (R\U", U" = S”, R (=)* R", and
S (=)2 S”. By CoNgG, we have S |V (=) §" | V.

By several application of rule LTS-PAR we have U’ | V! & (R"\U" | V',

and since we have U’ | V! &° Q, there exists (R')Q’ such that Q = (R")Q’,
R"A° R, and U" | V! &° (/. By LTS-PAR, we have U” | V' 5 §" | V",

so there exists S’ such that @' — S’ and S” | V' A~° §'. Finally we have
R (%) R and S|V (=)2 S’ by OPEN RIGHT.

LTS-FO. P=R| S 5 U |V with R ™ U and S = V for some m. By
definition there exists R’, S’ such that R ~° R', S & S and R’ | S A7 Q.
By induction, there exists U’, V' such that R’ = U’ and S’ = V' such that
U (=): U and V (=) V'. By LTS-FO and rule LTS-PAR to handle 7 steps,
we have R’ | §" = U’ | V'. Since R’ | $" &° Q, there exists Q' such that Q = Q'
and U' | V' A2° Q.

We have U (&) U’ and V (%)% V', so by CONG, we have U | V &° U’ | V.
By OPEN RIGHT we have U | V (=)¢ Q' as required.
LTS-REPLIC-FO Similar to the case above.

LTS-HO. P=U |V 5 F e (R)S, with U % F and V % (R)S for some a. By
definition there exists U, V' such that U ~° U’, V &° V' and U’ | V' &° Q.

By induction, there exists (R')S”, S’ such that V' = (R')S", §" = ',
R (=)® R, and S (=)? S’. Since we have R (=)2 R/, there exists F’, U" such
that U' = F') F' o R" = U"”, and F o R (%)® U". Since S (=)® S’, we have
F e (R)S (=) U"|S" by Cona.

By rule LTS-HO and rule LTS-PAR to handle 7 steps, we have U’ | V/ =
F’ e (R')S". Since F' o R' = U” and S” = S', we have F' @ (R\S" S U" | S’
by LTS-Par. From U’ | V’ ~° @, there exists Q' such that Q = Q' and
U” | S ~° Q'. Finally, we have the required result by OPEN RIGHT.

LTS-REPLIC-HO Similar to the case above.

LTS-Loc. P = a[U] < a[A] with U = A. By definition there exists U’ such
that U &° U’ and a[U’] #° Q. We have three cases to consider for A:

e A is a process T: therefore we have U Lo By induction, there exists
T’ such that U’ = T' and T ()2 T'. By several applications of rule
LTS-Loc we have a[U’] - a[T"], and since a[U’] &° Q, there exists Q'
such that @ N Q' and a[T"] ~° Q'. Using CONG, we have a[T] ~° a[T"],
so by OPEN RIGHT we have a[T] ()¢ Q' as required.
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o Ais an abstraction F: therefore we have U % F. Let T ()¢ T’ be closed

T

processes. By induction, there exists G, U"” such that U’ 2 G, GoTl =
U’,and FoT (=) U". By CONG, we have a[F] o T (=)® a[U"].

By several application of rule LTS-Loc, we have a[U’] 2 al@G], and since
a[U"] &° Q, there exists F', Q" such that Q = F', F' o T' = Q", and
alG) o T' &° Q". We have a[G] o T’ = a[U"], hence there exists Q' such
that Q” = Q' and a[U"] ~° Q'. We then have a[F] o T (%)% Q' by OPEN
RIGHT.

e Ais a concretion (R)S: therefore we have U LN (R)S. By induction, there
exists (R")U", S” such that U’ 2 (R"HU", U" = 8", R (~)* R", and

S (=)2 S”. By CoNg, we have a[S] (=) a[S"].

By several application of rule LTS-Loc we have a[U’] L (R")a[U"], and

since we have a[U’] &° Q, there exists (R)Q", Q' such that Q 2 (RHQ",
Q"3 Q, R'A" R, and a[U”] 2° Q. We have a[U”] = a[S”], hence
there exists S’ such that Q" = S’ and a[S”] &° §’. Finally we have
R (=)? R' and a[S] (=)¢ S’ by OPEN RIGHT.
LTS-Passiv. P = a[R] L, (R)0. By definition there exists T such that R ~° T
and a[T] ~° Q. By LTS-PAssIV we have a[T] = (T)0, so there exists R/, S", S"
such that Q = (R)S”, 8" = 8", T ~° R/, and 0 2° §’. We have R (*)® R/
and 0 (=) S’ using OPEN RIGHT and reflexivity.
LTS-Sum. P=U+V 5 A with U & A. By definition there exists U’, V'
such that U 2% U, V A" V' and U’ +V’ 2° Q. We have three cases to consider
for A:

e Ais aprocess T: therefore we have U LT By induction, there exists T’
such that U’ & T’ and T (=)2 T'. By rule LTS-SuM we have U’ + V' N
T’, and since U’ + V' &° Q, there exists Q' such that Q iy Q' and
T’ %° Q'. We have the required result by OPEN RIGHT.

e A is an abstraction F: therefore we have U % F. Let T (=) T’ be

closed processes. By induction, there exists G, U” such that U’ 2 G,
GoT' & U" and FoT (%)*U".
By LTS-SuM, we have U’ +V’ = G, and since U’ + V' &° Q, there exists
F', Q" such that Q = F/, F' o T' = @Q”, and G o T" 2° Q". We have
G o T = U”, hence there exists Q' such that Q” = Q' and U” ~° Q.
We then have F o T (%=)2 Q' by OPEN RIGHT.

e Ais a concretion (R)S: therefore we have U % (R)S. By induction, there
exists (R")U”, S” such that U’ & (R")U"”, U" = S”, R (=) R", and
S (=) S".
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By LTS-SUM we have U/ +V’ 2 (R"\U", and since we have U'+V’ &° Q,
there exists (R)Q”, Q' such that Q = (R)Q", Q" = Q', R" &° R', and
U" %4° Q'. We have U” = S”, hence there exists S’ such that Q' = S’
and S” ~° §’. Finally we have R (&) R’ and S (%)% S’ by OPEN RIGHT.

LTS-REPLIC. P =IU % A |IU with U < A. By definition there exists U’ such
that U 2° U’ and U’ 2° Q. We have three cases to consider for A:

e A is a process T: therefore we have U L By induction, there exists
T’ such that U’ = T’ and T (=)e T'. By LTS-REPLIC and several
applications of LTS-PAR, we have U’ Lo ['U’, and since U’ ~°Q,
there exists @’ such that Q L Q' and T" |\U’ 2° Q'. Using CONG twice,
we have T |!lU &% T’ |!U’, so by OPEN RIGHT we have a[T] (%) Q' as
required.

e A is an abstraction F: therefore we have U % F. Let T (=) T’ be
closed processes. By induction, there exists G, U” such that U’ 2 G,
GoT = U" and F o T (=) U”. By CONG used twice, we have
(F U)o T (%) U" WU
By LTS-REPLIC and several application of rule LTS-PAR, we have U’ 2
G |'U’, and since U’ ~° Q, there exists F/, Q" such that Q = F,
F'loT' 5 Q" and (G |IU') o T' #° Q". We have G o T' = U”, so by
LTS-PaR we have (G |!U’) o T' = U" |!U’. Hence there exists Q" such
that Q" = Q" and U” |!U’ ~° Q'. We then have F o T' (%)* Q' by OPEN
RIGHT.

e Ais a concretion (R)S: therefore we have U % (R)S. By induction, there
exists (R")U”, S” such that U’ & (R")U"”, U" = S”, R (=) R", and
S ()2 S”. By CoNG used twice, we have S |IU (=)2 S" |IU’.

By LTS-REPLIC and several application of rule LTS-PAR, we have U’ X
(R"YU" |IU', and since we have U’ ~° Q, there exists (RHYQ", Q' such
that Q = (RNQ", Q" = @', R" &° R, and U” WU’ &° Q. We have

T

U" = S so by LTS-PAR we have U” [\U’ = S” |\U’. Hence there exists
S’ such that Q' = S’ and S” |!U’ ~° S'. Finally we have R (~)® R’ and
S |WU (=)2 S’ by OPEN RIGHT.

O

As a corollary, we have

Lemma 31. If P (=)® Q then:

o IfP A P’, then there exists Q' such that Q 4 Q' and P’ (=) Q'.

C
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o I[f P2 F, for all R, there exists F', Q' such that Q = F', F' o R = Q'
and F o R (=)2 Q'

e If P £ (R)S, there exists R',S’,S"” such that Q £ (RS", S" & 9,
R (=) R, and S (=)2 5.

Proof. By induction on P = A. In the abstraction case, we also use the reflex-
ivity of (/)¢ (we have R (%)% R for all closed process R). O

C

With this result we can show the following lemma:

> is an early weak bisim-

Lemma 32. The transitive and reflezive closure of (=)
ulation.

Proof. With property SymM it is enough to show that ((=)2)* is a simulation.
Let P,Q such that P((~)%)*Q. There exists k& > 0 such that P((%~)%)*Q. The
proof is by induction on k. There is nothing to show for k = 0 since ((=)2)* is
reflexive.

We suppose the result holds up to k. We have P (%)% P;...P,_1 (=) Q

and P % A. We have three cases to consider.

e Ais a process P'. By induction there exists P;_; such that P, xY P,
and P'((=)?)"P,_,. By lemma there exists Q' such that Q = Q' and
P, (=)2 Q. We have P'((=)2)*Q’ by transitivity.

e A is an abstraction F. Let R be a closed process. By induction there
exists Fj_1, Pj_; such that Py_; 2 Fy1, F_i o R > P/, and F o
R((~)2)*P/_,. By lemma there exists F', Q" such that Q = F’,
F'oR= Q" and F,_; o R (=)* Q". Since F,_; o R = P[_,, there
exists Q" such that Q” = Q' and P}_, (=) Q'. We have F o R((=)?)*Q’
by transitivity.

e Ais a concretion (R)S. By induction there exists Ry_1,Sk—1,5}_, such
that Py_1 = (Rk—1)S_1» Si 1 = Sk—1, R((Z)®)*Ri_1, and S((=)?

)*Sk—1. By lemma there exists (R')Q"”, Q" such that Q 2 (RHYQ",
Q" = Q' Ri—1 (2)2 R, and S, | ()2 Q'. Since S,_; = Sk_1, there

exists S’ such that Q" = S’ and Sj,_; (%)® S’. We have R((=)?)*R’ and
S((=)2)*S’ by transitivity.

O

To prove that ~ is a congruence, it is enough to prove the following lemma:

.0 . 0
Lemma 33. ~ =~

Proof. By lemmawe have ()" C&, so we have (~)*"°C~°. We now prove
that é'g(é);o. Let P,Q such that P ~° Q. For all o which closes P, Q,
we have Po %~° Qo by SUBST. Since the considered processes are closed,
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. . [e]
we have Po (=)® Qo. Consequently, we have P (=)? (. Hence we have
.o . .O . .O* Bel . -0 Be) . . . .
~ C(r)2 C(=)r Cm ,ie. = C= . The reverse inclusion is given by OPEN,
.o - 0
so we have ~ ==~ .

O

E Completeness proofs for HOP

E.1 Strong case
Lemma 34. For all actions «, the relation = is image-finite.

Proof. By induction on the shape of P, as in HO7P. We just add the case
P =@+ R. By LTS-SuM, the possible reductions from P are the one from @
and the one from R, which are finite by induction hypothesis.

O

Definition 34. The relation ~,, is defined on closed processes by:

1. We have P ~q Q for all processes P, Q.
2. P ’;’k:—&-l Q Zﬁ

o IfP 4 P’, then there exists Q' such that Q 4 Q' and P’ ~p @', and
conversely if Q 4 Q.

e If PS5 F, then for all closed processes R, there exists F' such that
Q5 F and F' o R~y F o R, and conversely if Q = F.

o If P L (R)S, there exists R',S" such that Q % (R')S’ and R ~,
RS~ S', and conversely if Q % C.

8. ~w= Ny ~k
Lemma 35. The relations ~ and ~,, coincide.

The proof is similar to the HO7P one. In the following, we write 7.P 4 s for
(1.P) + s.0.

Lemma 36. Let P,Q two closed processes. For all integers k, if P ) Q) then
there exists a context K such that K{P} =, K{Q}.

Proof. We proceed by induction on k. There is nothing to prove for n = 0.
Assume the property holds for all £ < n. We now prove it for n + 1. We
distinguish the following cases :

e P L P For all Q' such that Q = @', we have P’ %, Q. Since —
is image-finite, the set {Q%|Q N Q}} is finite. By induction, there are
contexts K; such that K;{P'} », K;{Q}} for all i. We define:

K = a[0] | a(X) Z (T K{X} + d;)

2
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where (d;);,a do not occur in P,Q. Assume that K{P} ~, K{Q}. Since
P — P, we have

K{P} — a[P'] | a(X) ) 7.(rK{X} +d;) = Ry
J
This reduction can only be matched by
K{Q} — a[Qi] | a(X) ZT~(T-KJ’{X} +d;j) =5

for some ¢. We now have

R — ZT.(T.KJ‘{P/} + d]) =Ry
J

which can only be matched by

Sl — ZT(TKJ{Q;} + dj) = SQ

since “"Ry |, We have Ry — 7.K;{P'} + d; = R3, which can only
be matched by S3 — 7.K;{Q}} + d; = Ss, since Rz |4,- Finally we
have R3 — K;{P’'}, which is matched by S35 — K;{Q}}. Hence a
contradiction, since K;{P'} =), K;{Q}}, so we have K{P} ~, K{Q} as
required.

e P P/ For all Q' such that Q = Q', we have P’ %) Q'. Since 4
is image-finite, the set {Q’|Q > @/} is finite. By induction, there are
contexts K; such that K;{P'} », K;{Q;} for all i. We define :

K = a[0] | m.a(X) ZT.(T-Ki{X} + d;)

3

where (d;);,a do not occur in P, Q. Assume that K{P} ~, K{Q}. We
have
K{P} — a[P'] | a(X) ) 7.(rK{X} +d;) = Ry
J

Since R; |4, it can only be matched by

K{Q} — alQi] | a(X) ) m.(rK{X} +dj) = 5

J
From here, the proof is similar to the previous case.

e P P’ Similar to the case above, with m instead of m in K.
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e P % F = (X)V. There exists a process T such that for all F’ such that

Q% F', we have F o T ), F' o T. Since % is image-finite, the set
{F!/|Q % F!} is finite. By induction, there are contexts K; such that
K A{F] oT} o, Ki{F o T}. We define:

K = b[0] | a(T)b(X) Z (T Ki{X} + di)

3

where b, (d;) are all distinct, and do not occur in T, P,Q. We have

K{P} — b[F o T] | b(X) Y 7.(rK;{X} +d;) = Ry

Since R; |p, it can only be matched by a

K{Q} — b[F! o T] | b(X) Z (T KX} +d;) =S

J

for some ¢. Now we have

Ry — ZT.(T.KJ'{FOT} +dj) = Ry
J

Since =Ry |y, it is matched by :

ST — ZT(TKJ{F; o T} —|—dj) =5
J

In turn, we have
Ry —>T.K1{FOT}—|—d1 = R3

Since R3 |q4,, it can only be matched by the reduction
52 — TKI{F; o T} + dz = Sd

Finally we have Rs — K;{F o T}, which is matched by S3 — K, {F] o
T}. Hence a contradiction since by assumption we have K;{F o T}
K {F] o T}. So we have K{P} ~, K{Q} as required.

P % (R)S. For all (R)S such that Q % (R')S’, we have R ), R’
or S ¢ S'. Since % is image-finite, the set {C;|Q < C;} is finite.

By induction, there exists contexts K; such that K;{R} =, K;{R;} or
K;{S} ~p K;{S;} for all i. We define then :

K =b[0] | a(X)b(Y) Y r(r.(rK{X} +e) + m.(rKi{Y} + f) + di)

i

where b, (d;), e, f are all distinct and do not occur in P, Q). We have:
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K{P} — b[S] | b(Y) Z (.t K {R} + &) + (T K {Y} + )+ d;j) = P,

Since P, |, it is matched by

K{Q} — b[S;] | b(Y) ZT.(T.(T.Kj{Ri}Jre)+T.(T.Kj{Y}+f)+dj) =Q>
for some i. Now we have

Py — Y r(r.(rK{R} + e) + . (rK;{S} + ) + d;) = P
J
which is matched by:

Q2 — ZT.(T.(T.Kj{Ri} +e)+1.(rKi{Si} + f)+d;) = Q3

since =P |;. We have now:
Py — 1. (tK{R} + )+ 1.(rKi{S} + f) + di = P»
Since Py l4,, it is matched by:
Qs — 17.(TK{R;} +e) + .(tK{S;} + f) + di = Q4
We suppose that for this particular ¢ we have K, { R} = K;{R;}. We have:

P4—>T.Ki{R}+€:P5

since Ps |., it is matched by:

Q4 — TKZ{R,L} +e= Q5

We have P; — K;{R}, which is matched by Q5 — K;{R;}. We have
K;{R} ~p K;{R;}, hence a contradiction.

We suppose now that K;{S} ~, K;{S;}. We have:
P4—>TK1{S}—|—f=P5

since Ps | ¢, it is matched by:

Qs — 7K {Si} + f = Qs

We have P; — K;{S}, which is matched by Q5 — K;{S;}. We have
K;{S} =y K;{S;}, hence a contradiction.

O
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E.2 Weak case

Definition 35. The relation ~,, is defined on closed processes by:

1. We have P =g Q for all processes P, Q.
2. P~p Qiff

o If P 4 P’, then there exists Q' such that Q iN Q' and P’ =, Q’', and
conversely if Q 4 Q.

e If P 5 F, then for all closed processes R, there exists F', Q' such
that Q = F', F' o R = Q' and Q' =, F o R, and conversely if
Q% F.

e IfP % (R)S, there exists R',S',S" such that Q 2 (RS", 8" = 8,
R&, R, S S, and conversely if Q % C.

- Re= M Rk

Lemma 37. The relation =~ and =, coincide on image-finite processes.

Proof. From the definition of =, we already have that ~C=,. We show the
converse by proving that =, is a weak bisimulation. Let P, Q be image-finite
processes such that P =, Q. Since the relation is symmetrical, we make the
proof for the transitions from P only. We have three cases to check:

o Assume P 5 P’. For all integers k, there exists Qi such that Q L Qk

and P’ =~ Q. Since @ is image-finite, the set {Q;|Q 2N Q;} is finite.
We now prove by contradiction that there exists @’ such that Q L Q'
and for all k, P’ &), Q. Assume that for all Q; such that Q = Q;, there
exists k; such that P’ %, Q;. Since =,,C~y if | < m, for all m > k;,
we have P’ #,, Q;. Since {Q;|Q & Q;} is finite, the set {k;} is finite
and has a greatest element M. For all Q' such that Q iN @', we have

P’ %, Q' for all m > M. But for all k, there exists Q such that Q & Qr
and P’ =}, i, hence a contradiction. Therefore there exists @’ such that

Q LN Q' and for all k, P’ =~ @', i.e. P' =, Q' as required.

Assume P % F. Let R be a closed process. For all k, there exists Fy, Qy
such that Q = Fj,, F, o R = Qj, and F o R &}, Q). Since Q is image-
finite, the sets {F;|Q = F;} and {Q;|3F;,Q = F; and F; o R = Q;} are
finite. By contradiction we can show that there exists F’, Q" such that
Q=2F ,FoR=Q andforal k, Q ~, FoR,ie Q ~,FoR as
required.

Assume P % C = (R)S. For all k, there exists Cj, = (Rk)S}., Sk such that
Q= Cy, S = Sk, R~y Ry and S &~ Sj. Since Q is image-finite, the
sets {C;|Q = C;} and {S;|3(R;)S!,Q = (R;)S! and S; = S;} are finite.
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By contradiction we can show that there exists C' = (R’)S”, S such that
Q2,83 S andforal k, R~, R, S~, S, ie R~,R,S~~,5
as required.

O

Lemma 38. Let P,Q two closed image-finite processes. For all integers k, if
P %y Q then there exists a context K and a name d such that K{P} 4+ d %,

K{Q} +d.

Proof. We proceed by induction on k. There is nothing to prove for n = 0.
Asgsume the property holds for all £ < n. We now prove it for n + 1. We
distinguish the following cases :

e P L P'. For all Q' such that Q = @', we have P’ 5, Q'. Since Q
is image-finite, the set {Q}|Q = @'} is finite. By induction, there are
contexts K; and names d; such that K;{P'} + d; % Ki{Q}} + d; for all 7.
We define:

K =al0] | a(X)(s + ZT.(Ki{X} +di))

where a,s do not occur in P,@Q. Let ¢ be a fresh name. Assume that
K{P} +t =, K{Q} +t. Since P — P’, we have

K{P} 4+t — a[P'] | a(X)(s + Zr.(Kj{X} +d;)) = R,

Since =Ry |; and =Ry |, (the passivation of locality a is not triggered),
it can only be matched by

K{Q} +t = alQ]] | a(X)(s + Y _ m.(K;{X} +d;)) = S
J
for some [. We now have
Ry — s+ Y m.(K{P'} +d;) = Ry
J

Since we have ~Rs |, and Ry |, it can only be matched by:

S = s+ m(K{Qi} +d;) = S>
J
with Q] = Q) for some i. We have Ry — K;{P'} + d; = Rs, which
can only be matched by S; = K;{Q}} + d; = Ss, since R3 |4,. Hence a
contradiction, since K;{P'} +d; %y K;{Q}} + d;, so we have K{P} +t %,
K{Q} + t as required.
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e P P’ For all Q' such that Q = @', we have P’ %, Q'. Since Q

is image-finite, the set {Q}|Q = Q'} is finite. By induction, there are
contexts K; and names d; such that K;{P'} + d; % Ki{Q}} + d; for all 7.
We define :

K = a[0] | m.a(X s+z (Ki{X} +dy))

where s,a do not occur in P,Q. Let ¢ be a fresh name. Assume that
K{P} +t =, K{Q} +t. We have

K{P} +t — a[P’ 8+Z (Ki{X}+d;j) =Ry

Since R; |q, it can only be matched by

K{Q} +t = a|Q)] | a(X s+Z (K;{X}+dj) =5

From here, the proof is similar to the previous case.

P ™, P’ Similar to the case above, with m instead of m in K.

P % F = (X)V. There exists a process T such that for all F/, Q' such
that Q = F’ and F' o T = @Q’, we have F o T #;, @Q’'. Since Q is image-
finite, the sets {F/|Q = F/} and {Q}|3F;,Q = Fyand F; o T = Q'}
are finite. By induction, there are contexts K; and names (d;) such that
KZ{Q;} + dl 7”91, KZ{F o T} + dz We define:

K=b[0]|a 5—|—Z (KA{ X} +dy))

where b, s are distinct, and do not occur in T, P, Q. Let ¢ be a fresh name.
We have

K{P}+t— b[F o T] | b(X s—l—z (K;{X}+d)) = Ry
Since R; |, it can only be matched by a

K{Q} +t = b[Q; s+z (K;{X}+d;) =5,

for some . From here, the proof is similar to the P — P’ case.

P % (R)S. For all (R')S”, S’ such that Q@ = (R')S” and S” = §', we
have R %, R’ or S 3, S’. Since Q is image-finite, the sets {C;|Q = C;}
and {S; ;|3(R)S,,Q = (R)S! and S! = S;;} are finite. By induction,
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for i € I such that R %, R;, there exists contexts K; and names d; such
that K;{R} + d; %, K;{R;} + d;. Otherwise, for i € J such that R ~; R;,
there exists contexts K, ; and names d; ; such that K, ;{S} + di; #»
K; ;j{Si;} + d;; for all j. We define:

K = b[0] | a(X)b(Y)(s + D (KX} +di) + 3 > m(Kij {Y} +dij))

iel ieJ j

where b, s are distinct and do not occur in P, Q. Let ¢t be a fresh name.
We have:

K{P} +t — b[S] | b(Y)(s + Y _ 7.(Ki{R} + di) + K') = P,
iel
with K" =37, ;> 7.(Ki j{Y} + d; ;). Since P, |y, it is matched by

K{Q} +t = b[Sim] | B(Y)(s + Y m.(Ki{Ri} +di) + K') = Q2
1€l
for some [, m. Now we have:

Py — s+ (KR} +di)+ > > 7.(Kij{S}+dij) = P

i€l ieJ J

Since P; |4, it is matched by:

Q2 =5 +Z (Ki{Ri} +di) + ZZT-(Ki,j{Sl,n} +d; ;) =Q3

iel i€ j

for some n such that S ,, = S,,. We suppose that [ € I, i.e. we have
R %, R;. We have
Py — K{R}+d =Py

which is matched by:
Qs = K{Ri} +di=Qu

since Py |q,. We have Py %, Q4 by induction hypothesis, hence we have
K{P} +t %, K{Q} + t as required.

We suppose now that [ € J, i.e. we have R ~;, R;. We have
P; — K {S}+din=Ps
which is matched by:
Qs = Kin{Sin} +din =Qu

since Py |q, .- We have Py %, Q4 by induction hypothesis, hence we have
K{P} +t %y K{Q} +t as required.

O
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F Normal bisimulation

F.1 Strong case

Lemma 39. Let E be an evolution context and P > A. Then E{P} % E'{A}
and the hole in E' is not under a replication or choice operator.

Proof. Immediate by induction on E, and considering the rules LTS-PAR, LTS-
Loc, LTS-REPLIC, LTS-SUM.
O

Lemma 40. Let P,Q such that fu(P,Q) C {X} and m,n two names which
do not occur in P,Q. Suppose we have P{m.n.0/X} ~; Q{m.n.0/X} and
P{mn.0/X} = P'{mn.0/X}{n.0/Y} = P, matched by Q{m.n.0/X} =
Q' {mn.0/X}{n.0/Y} = Q, with P, ~; Q. One of the following holds:

o There exists P, Q1 such that P, = n.0 | Py, Q,, = n.0 | Q1 with P; ~; Q1.

e There exists ay,...ag, P1... Pyy1, Q1...Qky1 such that
Pn = al[. . .ak,l[ak[n.o | Pk+1} ‘ Pk] | Pk,1 .. ] | P1

and

Qn =a1]...ap—1]axn.0 | Qr1] | Qkl | Qr—1...] | Q1
and for all 1 <5 <k+1, P; ~ Q.

Proof. Since P, can only perform one — transition, we can detect if n.0 is in a
locality or not: if there exists a transition P, < (R'n)S/, for some a such that
R! may perform a transition —, then the transition is a passivation and the
process n.0 is in a locality in P,,. Otherwise, n.0 is not in a locality.

By lemma [39] 7.0 is only under localities and parallel compositions in P,
and Q.

We show that if 7.0 is not under a locality in P,, it is also not under a
locality in @,. Suppose n.0 is not in a locality in P, and is in a locality in

Q. We have Q,, = (E{n.0})Q" for some a,E,Q". These transitions can only
be matched by a passivation of n.0 in P,, which is impossible by hypothesis,
hence a contradiction. We have the same reasoning if 7.0 is in a locality in P,
and not in a locality in @,. Therefore if n.0 is not in a locality in P,, it is
not in a locality in @,,. Consequently in this case, there exists Py, Q1 such that
P,=n.0| P, and Q,, = n.0 | Q;. Hence we have P, = P;, which can only be
matched by Q,, — Q1, so we have P; ~; Q.

We suppose now that 7.0 is under a locality in P, and @Q,,. We prove that
n.0 is under the same hierarchy of localities in P,,Q,, and the existence of
the pairwise bisimilar processes defined in the lemma. Suppose n.0 is under
k localities ai,...ar in P, and under [ localities by,...b; in @Q,, with k >

I. We have P, “% (P{{n.0/X;})P1, so there exists Q1,Q} such that Q, LN
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(Q1{n.0/X,;})Q1 with a1 = b; and P{{n.0/X;} ~; Q}{n.0/X,}. The process is
under k — 1 localities in P] and under [ — i localities in @}, with ¢ > 1. After [
passivation, we have P/ such that the process n.0 is under k — localities, and a
process @) such that the process 7.0 is not under a locality and with P/ ~; @7,
which is not possible (same proof as in the first case). If k < I, we have a similar
contradiction by reasoning on @, consequently we have k = [.

Therefore there exists ay...ax, Pi...Py, Q1...Qk, such that P, =
al[...ak._l[ak[n.ﬂ | Pk+1] | Pk} | Pk—l ] ‘ P1 and Qn = al[...ak_l[ak[n.O |
Qr+1] | Qi) | Qe—1-..] | Q1. Let P! (resp Q}) be the process inside the lo-

1
cality a; in P, (resp Q,). We have P, *% (P{)Py, with P{ %, which is
matched by a passivation @, -~ (Q})Q’ such that P, ~; Q', P| ~; Q) and
Q, . If i # 1, we have the process under k& — 1 localities in P and in
k —i < k —1 localities in @}, with P/ ~; Q}: contradiction. Hence we have
i=1 P ~ Q = Q; and P| ~; Q). By induction on 1 < j < k, we have
P; ~; Q; and P, = n.0 | Pypq1 ~; n.0 | Qg1 = Q). Since the reduction
P SLN Py41 can only be matched Qj BEN Qx+1, we have Pyy1 ~; Qpy1, cOnse-

quently we have the required result.
O

In the following, we write X; the i-th occurrence of X in a process P.

Lemma 41. Let P,Q two open processes such that fu(P,Q) C {X} and m,n
two names which do not occur in P,Q. Let R, R’ two closed processes such that
R ~; R'. Suppose we have P{m.n.0/X} ~; Q{m.n.0/X} and P{m.n.0/X}
P'{m.n.0/X}{n.0/X;} = P, is matched by the transition Q{m.n.0/X} =
Q' {mn.0/X}H{n.0/X;} = Q, (with P, ~; Q). Then we have the relation
P {mn.0/X}H{R/X;} ~ Q' {mn.0/X}{R'/X;}.

Proof. By lemma [0 we have two cases to consider:

e Suppose we have P, = n.0 | P, Q, = n.0 | Q; with P; ~; @Q;. Since
P, ~; Q1, R ~; R and ~; is a congruence we have R | P, ~; R’ | Q; by
transitivity, consequently the result holds.

e Suppose we have P, = a1]...ar—1[ax[n.0 | Pet1] | Pl | Po—1...] | P1
and @, = a1]...ap—1[ag[n.0 | Qrt1] | Qk] | Qr-1...] | Q1 and for all
1 <5< k+1, Pj ~ Qj. Since Pri1 ~p Qpy1, R ~ R/, ~y is a
congruence and is transitive, we have R | Pyy1 ~; R’ | Qg+1. So we have
ag[R | Pis1] | Pr ~1 ag[R' | Qr+1] | Qr. By induction on 1 < j < k, we

have aj[. ak[R | Pk+1] | Pk .. ] | Pj ’\"‘l aj[. ..ak[R' ‘ Qk+1] | Qk .. ] ‘ Qj,
so we have the required result with j = 1.

O

Theorem 12. Let P, Q) two open processes such that fu(P,Q) C {X} and m,n
two names which do not occur in P,Q. If P{m.n.0/X} ~; Q{m.n.0/X?}, then
for all closed processes R, we have P{R/X} ~; Q{R/X}

RR n°® 6664



88 Lenglet, Schmitt € Stefani

Proof. We show that the relation R= {(P{R/X},Q{R/X}),P{m.n.0/X} ~,
Q{mmn.0/X}, m,n not in P,Q} is a strong bisimulation. Since the relation is
symmetrical, it is enough to prove that it is a simulation. We make a case
analysis on the transition from P{R/X }:

The transition comes only from P. We have P{R/X} % A{R/X} with
P % A. Hence we have P{m.n.0/X} % A{m.n.0/X}. We distinguish the
three cases for A:

e Process case P'. Since P{m.n.0/X} ~; Q{m.n.0/X}, there exists Q' such
that Q{m.n.0/X} % Q" and P'{m.n.0/X} ~; Q'. Since m does not occur
in P,Q, we have a # m, so the transition Q{m.n.0/X} % Q' comes only
from Q. Therefore Q' can be written Q' = Q"”{m.n.0/X} for some Q"
and we have Q{R/X} % Q"{R/X}. We have P'{R/X} R Q"{R/X},
hence the result holds.

e Abstraction case F. Since P{m.n.0/X} ~; Q{m.n.0/X}, there exists
F' such that Q{m.n.0/X} % F’ and (F{m.n.0/X}) o T <~y F' o T
for all processes T. Since the transition is on a higher-order name, we
have o # m, so the transition Q{m.n.0/X} < F’ comes only from Q.
Therefore F’ can be written F' = F"{m.n.0/X} for some F”, and we have
Q{R/X} % F"{R/X}. Since T is a closed process, we have (F{R/X}) o
T=(FoT){R/X} R (F'"oT){R/X} = (F'{R/X}) o T, hence the
result holds.

e Concretion case C = (T)S. Since P{m.n.0/X} ~; Q{m.n.0/X}, there
exists C' = (T")S’ such that Q{m.n.0/X} = C', T{mn.0/X} ~,
T and S{m.n.0/X} ~; S’. We have o # m, so the transition
Q{m.n.0/X} % C' comes only from Q. Therefore 7,5’ can be writ-
ten T/ = T"{m.n.0/X} and S’ = S”"{m.n.0/ X} for some T",S"”, and we
have Q{R/X} = ((T")S"){R/X}. We have T{R/X} R T"{R/X} and
S{R/X} R S"{R/X}, hence the result holds.

The transition comes only from R. A copy of R is in an evaluation con-
text and perform a transition. We write X; the occurrence of X where the
copy of R performs the transition. We have P{R/X} % P{R/X}{A/X;}
with R = A. Since X; is in an evaluation context, we have P{m.n.0/X} ™
P'{m.n.0/X}{n.0/X;}. Since we have P{m.n.0/X} ~; Q{m.n.0/X}, there
exists a transition Q{m.n.0/X} = Q{m.n.0/X}{n.0/X;} (an occurrence of
X, noted Xj, is in an evaluation context in Q) with P'{m.n.0/X}{n.0/X;} ~;
Q'{m.n.0/X}{n.0/X;}. Consequently we have Q{R/X} = Q"{R/X}{A/X;}.
We distinguish three cases for A:

e Process case R'. Wehave P"{m.n.0/XH{R'/X;} ~; Q'{m.n.0/ X H{R'/X;}
by lemma (1] so we have P'{R/XHR'/X;} R Q{R/X}H{R'/X;} as re-
quired.
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e Abstraction case F. By lemma [1] we have P'{m.n.0/X}{F o T/X;} ~
Q{mn.0/XHF oT/X,} for all T. We have (P'{R/XHF/X;}) o T =
PAR/XHF o T/Xi} R Q{R/XHF o T/X;} = (Q{R/XHF/X;}) o T

as required.

e Concretion case (S)T. By lemma {1 we have P'{m.n.0/X}{T/X;} ~
Q' {m.n.0/X}H{T/X,}, so we have P/{R/XHT/X,} R Q'{R/X}H{T/X,}.
Moreover we have S ~; S, and since ~;CR (with P, Q closed processes),

we have S R S and P{R/XHT/X,;} R Q{R/X}{T/X,} as required.

A higher-order communication takes place between R and P. A co
of R is in an evaluation context and communicate with a sub-process P’ of
We have two cases to consider.

The first possibility is R % F and P’ % (T{R/X})S{R/X} for some
We have the transition

P{R/X} = E1r{E2r{F o (T{R/X})} | Es,r{S{R/X}}}

Py
P.

a.

for some evaluation contexts Ei r,Es g, Es g (the subscript R means that oc-

currences of X in the context are filled with R). We have

P{mn.0/X} 2,
(T{m.1n.0/ X PE1 1m.n.0{E2.m.n.0{n-0} | Esm.n.o{S{m.n.0/X}}}
so by bisimilarity hypothesis, there exists 7', E’ such that we have
Q{m.n.0/X} 2% (T {m.n.0/ X })E 1 n.0{n.0}
and the messages and continuations are bisimilar, i.e. we have
T{mmn.0/X} ~; T"{m.n.0/X}
and
Eimn0{E2mn0{n.0} | Esmno{S{m.n.0/X}}} ~ By no{n.0}
From the relation on messages, we have
Fo (T{mmn.0/X})~;, Fo(T'"{mn.0/X})

Hence by lemma {1] and the relation on continuations, we have

]El,m.n.O{]EQ,m.n.O{F o (T{mn()/X})} ‘ ]ES,mnO{S{mnO/X}}}
~ B pno{F o (T"{m.n.0/X})}

We have Q{R/X} = E'g{F o (T"{R/X})} and
E1 r{E2,r{F o (T{R/X})} | B3 r{S{R/X}}} RE'r{F o (T'{R/X})}
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hence the result holds.

The second possibility is R (T)S and P' % F{R/X} for some a. We
have the transition

P{R/X} = E1,r{E2r{S} | Es r{(F{R/X}) o T}}
for some evaluation contexts Eq g,Eg r,E3 r. We have the transitions
P{m.n.0/X} 55 Eimn.o{E2mn.0{n.0} | E3mno{F{m.n.0/X}}}
so there exists F’ such that
Q{m.n.0/X} 5 E 1 ofE 2 mn.0{n.0} | E's o o{F'{m.n.0/X}}}

for some contexts and we have

]El,m.n.O{]EZm.n.O{n'O} | EB,mnO{(F{mnO/X}) © T}}
"\’l Ell,nL.n.O{]EIQ,HL.n.O{n-O} | ]EIS,m.n.O{(F/{m-n-O/X}) o T}}

By lemma (1] we have the relation

]El,m.n.O{EQ,m.nAO{S} ‘ ]EB,m.n.O{(F{m-n-O/X}) © T}}
';‘l Ell,m.n.O{E/Zm.n.O{S} | El?)mnO{(F/{mnO/X}) o T}}

We have Q{R/X} & E'y g{E's g{S} | E's g{(F'{R/X}) o T}} and

E1,r{E2,r{S} | E3 r{(F{R/X}) o T}}
RE' p{E'9,r{S} | E's r{(F'{R/X}) 0 T}}

hence the result holds.

A first-order communication takes place between R and P. This case
is similar to the case above.

A higher-order communication takes place between two copies of R.
Two copies of R are in evaluation contexts and communicate. There exists
F,(T)S such that R = F and R = (T)S for some a. We note X;, X; the two
occurrences of X in P where the transitions are performed: the transition can
be written P{R/X} = P"{R/X}{F o T/X;}{S/X;}.

We have P{R/X} % P'{R/X}{F/X;}. Since X; is in an evaluation con-
text, we have P{m.n.0/X} = P'{m.n.0/X}{n.0/X;}, so there exists Q' such
that Q{m.n.0/X} = Q' {m.n.0/X}{n.0/X;} and P {m.n.0/X}{n.0/X;} ~,
Q'{m.n.0/X}{n.0/Xy}. Since F o T ~; F o T, we have P'{m.n.0/X}{F o
T/X;} ~ Q{mmn.0/X}HF oT/X;} by lemma
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Since X is in an execution context, we have P'{m.n.0/X}{F o T/X,;}
P'"{mmn.0/XH{F oT/X,;}{n.0/X,}. Consequently by the previous equivalence
there exists Q" such that Q"{m.n.0/X}HF o T/X;} = Q"{m.n.0/X}{F o
T/Xk}{n.0/X;} and P"{m.n.0/X}{F o T/X;}{n.0/X,;} ~; Q"{m.n.0/X}{F o
T/Xi}H{n.0/X;}. Since S ~; S, by lemma we have P"{m.n.0/X}{F o
T/X:HS/X;} ~1 Q"{mmn.0/X}{F o T/X:}{S/X;}. We have Q{R/X} =
Q"{R/XH{F o T/X,}{S/X;} and the relation P"{R/X H{F o T/X;}{S/X;} R
Q"{R/X}{F o T/X}{S/Xi}, hence the result holds.

A first-order communication takes place between two copies of R.
This case is similar to the case above.
O

F.2 Weak case

Lemma 42. Let P,Q such that there exists P',Q’ such that Q = Q', P = P/,
P = Q and Q ~; P'. Then we have P ~; Q.

Proof. Suppose we have P %; (). We have two cases to consider. We suppose
first that there exists an action o and an agent A such that P = A, and the
transition is not matched by Q. Since we have P ~; @', there exists Q' = B
such that A ~; B. Hence we have Q = Q' = B, i.e. Q = B such that A ~; B:
we have a matching transition from @, contradiction.

The other possibility is an action from @ not matched by P. The proof is
similar using Q ~; P’. O

Lemma 43. Let P,Q two open processes such that fu(P,Q) C {X} and m,n
two names which do not occur in P,Q. Suppose we have P{m.n.0/X} =
Q{m.n.0/X} and P{m.n.0/X} % P'{m.n.0/X}{n.0/X;} = P, matched by
Q{mn.0/X} & Q{mn.0/X}{n.0/X;} = Q,. Then we are in one of the
following cases:

e There exists Py, Q1 such that P, =n.0 | Py, Q, = n.0 | Q1 with P; ~; Q.
e There exists ay,...ax, P1... Pey1, Q1...Qky1 such that
Pn = al[. . .ak,l[ak[n.o | Pk+1} ‘ Pk] | Pk,1 .. ] | P1

and

Qn=a1...ap_1[ag[n.0 | Qri1] | Qr] | Qr-1...]| Q1
There exists P[,... P, Q1,... Q) such that

P, = ail...ap_1[ax[n.0 | Pl | Py | Ph_y...] | P{

and
Qn = ar].ap—1[ax[n.0 | Q1] | Q4] | Qhoy -] | @
and for all 1 < j < k+1, we have P; = Q' and P} =~ Q;.
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Proof. The proof is similar to the strong case one. We just detail the differences.

Suppose n.0 is not under a locality in P,. Then it is not under a locality in
Qn, and there exists P;, Q1 such that P, = n.0 | P, and Q,, = n.0 | Q1. We
have P, = P;, hence there exists @ such that Q,, = Q' and P, &~ Q). Since
Q,, may perform only one - transition, we have in fact Q; = Q. Similarly,
there exists P| such that P, = P| and Q; ~; P/. By Lemma we have
Py =~; Q1 as required.

Suppose now n.0 is under the locality hierarchy a;...ar in P,. Then
it is under the same hierarchy in @,. There exists P;... P41, Q1...Qkt1
such that Pn = al[...ak_l[ak,[n.O ‘ Pk-‘rl} ‘ Pk-} ‘ Pk:—l-”} ‘ P1 and Qn =
ai[...ag—1[ak[n.0| Qrs1] | Qk] | Qr—1...] | Q1. Let T; gesp U;) be the process
inside the locality a; in P, (resp Q). We have P, -5 (T})P;, with T} =,
which can only be matched by Q,, = (U/)S’, S’ = Q}, T\ 2 Uj and P, =; Q.
More precisely, we have Q, = a1[U}] | 8" 5 (U/)S" and S’ = Q) hence we
have Q,, = a1[U]] | @ (using LTS-PAR).

From T & U{ we build similarly Uj, Q% such that Ty ~; U}, Ps ~; Q% and
Qn = a1[az[UL] | Q4] | Q). By induction on 1 < j < k, there exists %, U} such
that Pj m’*ﬁl Q; and Qn =T> al[...aj[Uj’-] | Q;} | Qll and Tk =n.0 | Pk+1 "&"l
n.0 | Qj,, = Uj. The reduction T, s Pgyq is matched by Uj = Q4+, With
Pry1 ~; Q). Since U;, may perform only one = transition, we have in fact
Qg1 = Qji41- Similarly by considering the transition Uy = Qlr1> We can
build Py, guch that Pyy1 = Pj,, and Q) ,, ~ P}, ,. Hence by lemma@ we
have Pk+1 ~ Q;H-l'

Finally, we have Q,, = a1[...a_1[ax[n.0 | Q1) | Q] 1 Q1 -] | Q) with
P; =~ Q; for all 1 < j < k+ 1 as required. By reasonning on transitions from
Qn, we build similarly P{,... P/, such that P, = a1[...ax_1[ax[n.0 | P[] |
P[] Pi_y...]| Pland P}~ Q; forall 1 <j <k+1.

O

Lemma 44. Let P,Q two open processes such that fu(P,Q) C {X} and m,n
two names which do not occur in P,Q. Let R, R’ two closed processes such that
R~ R'. Suppose we have P{m.n.0/X} = Q{m.n.0/X} and P{m.n.0/X}
P'{m.n.0/X}{n.0/X;} = P, is matched by the transition Q{m.n.0/X} =
Q' {mn.0/X}{n.0/X;} = Q, (with P, =; Q). Then we have the relation
P {mn.0/X}H{R/X;} ~ Q' {mn.0/X}{R'/X;}.

Proof. By lemma [3] we have two cases to consider:

e Suppose we have P, = n.0 | P, Q, = n.0 | @Q; with P, =; Q. Since
~ R

P, =; Q1, R ~; R and =~ is a congruence we have R | P, | @1 by
transitivity, consequently the result holds.

e Suppose we have P, = ai[...ai—1[ax[n.0 | Pxy1] | Pg] | Peo1-..] | P1
and Q, = ai[...ax_1[ax[n.0 | Qrs1] | Qi) | Qr-1...] | @1 and P, =
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arl...ap—1lagn.0 | Pl ] | P]| P{_;...]| P{ and Q, = a1[...ap_1[ag[n.o |
ear) | Q| Q-] | Q) with Pj = Q) and P] =; Q; for all
1<j<k+l

Since Pry1 =~ Q,,, R = R’, =~ is a congruence and is transitive, we
have R | Pry1 ~; R | Q). Hence we have ai[R | Pry1] | Pr ~i ax[R' |
%t1) | Q). By induction on 1 < j < k, we have a;[...ax[R | Ppy1] |

Py )| Pp~pajf..ap[R | Q] | Q.. ]| Q. With j =1, we have
P{mn0/XHR/X;} = ar]... ap-1far[R | Q)yq] | Q1) | @y -] | @F-
From Q, = ai[...ay_1[ax[n.0 | Qi) | Q] | Q-] | Qf, we have

Q{m.n.0/XHR'/X;} = ar...ap—1lax[R | Q] | Q4] | Qhy - 1 @5

Similarly, we have P'{m.n.0/XHR/X;} = ai...ap—1[ax[R | Pl.,] |
PPy )| Pl and arl.arfoxlR | Byl | P | Py | Pl R
Q{m.n.0/X}{R'/X;}. Consequently we can apply lemma2|and we have
P'{mn.0/X}H{R/X;} =~ Q'{m.n.0/X}{R'/X;} as required.

O

Lemma 45. Let P be an open process with fu(P) C {X} and m,n be names
which do not occur in P. If P{m.n.0/X} & P'{m.n.0/X}{n.0/X;} where
X, s in an evaluation context, then for all R such that R % A, we have
P{R/X} = P{R/X}{A/X,}.

Proof. The transition P{m.n.0/X} = P'{m.n.0/X}{n.0/X;} may be decom-
posed in P{m.n.0/X} = P {m.n.0/X}{n.0/X;} = P'{m.n.0/X}{n.0/X,}.
Since m,n do not occur in P, the 7-action between P;, P’ do not involve
synchronisations on m,n. Consequently the transition may be rewritten in
P{m.n.0/X} = P{m.n.0/X}{mn.0/X;} = P'{mn0/X}{mmn0/X;}
P'{m.n.0/X}{n.0/X;}. Using the same transitions, we have P{R/X} =
P{R/X}HR/X;} = P'{R/X}{A/X;}, hence we have the required result.

O

Theorem 13. Let P, Q) two open processes such that fu(P,Q) C {X} and m,n
two names which do not occur in P,Q. If P{m.n.0/X} =; Q{m.n.0/ X}, then
for all closed processes R, we have P{R/X} ~; Q{R/X}

Proof. We show that the relation R= {(P{R/X},Q{R/X}), P{m.n.0/X} =
Q{m.n.0/X},m,n not in P,Q} is a weak bisimulation. Since the relation is
symmetrical, it is enough to prove that it is a simulation. We make a case
analysis on the transition from P{R/X }:

The transition comes only from P. We have P{R/X} % A{R/X} with

P % A. Hence we have P{m.n.0/X} = A{m.n.0/X}. We distinguish the
three cases for A:
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e Process case P'. Since P{m.n.0/X} ~; Q{m.n.0/X}, there exists Q' such
that Q{m.n.0/X} = Q' and P'{m.n.0/X} ~; Q. Since m does not occur
in P, Q, we have a # m, so the transitions Q{m.n.0/X} = Q' comes only
from Q. Therefore Q' can be written Q' = Q"”{m.n.0/X} for some Q"
and we have Q{R/X} & Q"{R/X}. We have P"{R/X} R Q"{R/X},
hence the result holds.

e Abstraction case F. Since P{m.n.0/X} = Q{m.n.0/X}, there exists F’
such that Q{m.n.0/X} = F’ and for all T, there exists Q' such that F’ o
T = @Q and (F{m.n.0/X}) o T ~; Q'. Since the transition is on a higher-
order name, we have a # m, so the transition Q{m.n.0/X} = F’ comes
only from @. Therefore F’, Q' can be written F’' = F"{m.n.0/X} and
Q' = Q"{m.n.0/X} for some F”, Q", and we have Q{R/X} = F"{R/X}
and F"{R/X} o T = Q"{R/X}. Since T is a closed process, we have
(F{R/X})oT =(F oT){R/X} R Q"{R/X?}, hence the result holds.

e Concretion case C = (T)S. Since P{m.n.0/X} =~; Q{m.n.0/X},
there exists C' = (T")U, S’ such that U = S’, Q{m.n.0/X} = C’,
T{m.n.0/X} ~; T" and S{m.n.0/X} ~; S’. We have a # m, so the tran-
sition Q{m.n.0/X} = C’ comes only from Q. Therefore T', U, S’ can be
written 77 = T""{m.n.0/X}, U = U'{m.n.0/X}, and S’ = S"{m.n.0/ X}
for some T",U’,S”, and we have Q{R/X} = ((T")U'){R/X} and
U{R/X} 2 S"{R/X}. We have T{R/X} R T"{R/X} and S{R/X} R
S"{R/X}, hence the result holds.

The transition comes only from R. A copy of R is in an evaluation con-
text and perform a transition. We write X; the occurrence of X where the
copy of R performs the transition. We have P{R/X} % P{R/X}{A/X;}
with R % A. Since X; is in an evaluation context, we have P{m.n.0/X} ™
P'{m.n.0/X}{n.0/X;}. Since P{m.n.0/X} =~; Q{m.n.0/X}, there exists a
Q{mn.0/X} = Q'{m.n.0/X}{n.0/X;} such that P'{m.n.0/X}{n.0/X;} ~;
Q'{m.n.0/X}{n.0/X;} (an occurrence of X, noted X}, is in an evaluation con-
text in Q) with P'{m.n.0/X}{n.0/X;} =~ Q'{m.n.0/X}{n.0/X;}. By lemma
we have Q{R/X} = Q{R/X}{A/X,}.
We distinguish three cases for A:

o Process case R'. Wehave P'{m.n.0/ X }{R'/X;} = Q{m.n.0/X{R'/X,}
by lemma (4] so we have P'{R/XHR'/X;} R Q{R/X}H{R'/X;} as re-

quired.

e Abstraction case I'. By lemma we have P'{m.n.0/X}HF o T/X;} =
Q'{mn.0/X}{F o T/X,} for all T. We have (P"{R/X}H{F/X;})oT =
PRI o /X R QURIE 0 /X0 = QURX)EF/ X)o7
as required.
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o Concretion case (S)T. By lemma we have P'{m.n.0/XH{T/X;} ~
Q'{m.n.0/X}{T/X,}, so we have P/{R/XHT/X,} R Q'{R/X}H{T/X,}.
Moreover we have S = S, and since ~;CR (with P, Q closed processes),
we have S R S and P{R/XH{T/X,;} R Q{R/X}{T/X,} as required.

A higher-order communication takes place between R and P. A copy
of R is in an evaluation context and communicate with a sub-process P’ of P.
We have two cases to consider.

The first possibility is R % F and P’ % (T{R/X})S{R/X} for some a.
We have the transition

P{R/X} = E1 p{Ea r{F o (T{R/X})} | Es r{S{R/X}}}
for some evaluation contexts Eq r,Es r,Es r. We have

P{m.n.0/X}
ﬂ}i (T{mnO/X}>E1,mnO{E2,mnO{n0} | Eg,mno{S{mnO/X}}}

so by bisimilarity hypothesis, there exists T’, E’, E such that Q{m.n.0/X} ne

(T"{mn.0/X}HE', E' = E'p, ».0{n.0}, and the messages and continuations are
bisimilar, i.e.
T{mmn.0/X} ~; T"{m.n.0/X}

and
Eimn.0{E2mn0{n.0} | Esmno{S{m.n0/X}}} ~ E',nof{n.0}
From the relation on messages and the congruence properties of ~;, we have
Fo(T{mn.0/X}) =~ Fo (T'{mn.0/X})

Using this relation and the one on continuations, we have

]El,m.n.O{EQ,m.nAO{F o (T{mnO/X})} ‘ ]E3,’rn.n.0{S{m-n~0/X}}}
~ B no{F o (T"{m.n.0/X})}
by lemma[14] We have Q{R/X} < E'p{F o (T"{R/X})} and
E1 r{E2r{F o (T{R/X})} | Es r{S{R/X}}} RER{F o (T'"{R/X})}
hence the result holds.

a

The second possibility is R — (T)S and P’ % F{R/X} for some a. We
have the transition

P{R/X} = E1,r{E2 r{S} | Es r{(F{R/X}) o T}}
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for some evaluation contexts Eq g,Eg r,E3 r. We have the transitions
P{m.n.0/X} .2, E1mn.0{E2mn.0{n.0} | Es mnof{F{m.n.0/X}}}
matched by @Q{m.n.0/X}. There exists F’, Q' such that
Q{mn.0/X} 22 E no{E 2mm.0{n.0} | E's mnof{ F'{m.n.0/X}}}

with

]Ell,m.n.O{E/Z,m.n.O{n'O} ‘ EISmnO{F/{mnO/X} o T}}
é Ellﬁm‘n.O{E/Zm.n.O{n-O} ‘ E/?),mnO{Q/{mnO/X}}}

and

E17m.n,0{E2)m,n_0{n.0} | Egmno{(F{mnO/X}) o T}}
gl Ell,m.n.O{E/2,m.n.0{n~0} | E/B,mnO{(Q/{mnO/X})}}

By lemma [d4] we have

]El,m.n.O{]EZm.n.O{S} ‘ ]ES,m,nO{(F{mnO/X}) o T}}
gl E/1,m.n.0{]EIQ,m.n.O{S} | E/3,m.n.0{(Q/{m-n~0/X})}}

We have Q{R/X} :T> Ell,R{E/ZR{S} | E/37R{(F/{R/X}) o T}} and
E1 r{E2,r{S} | Es r{(F{R/X}) o T}} R E'y p{E's r{S} | E's r{(Q{R/X})}}

hence the result holds.

A first-order communication takes place between R and P. This case
is similar to the case above.

A higher-order communication takes place between two copies of R.
Two copies of R are in evaluation contexts and communicate. There exists
F,(T)S such that R % F and R % (T)S for some a. We note X;, X; the two
occurrences of X in P where the transitions are performed: the transition can
be written P{R/X} = P"{R/X}{F o T/X;}{S/X;}.

We have P{R/X} % P'{R/X}{F/X;}. Since X; is in an evaluation con-
text, we have P{m.n.0/X} =% P'{m.n.0/X}{n.0/X;}, so there exists Q' such
that Q{m.n.0/X} = Q'{m.n.0/X}{n.0/X;} and P'{m.n.0/X}{n.0/X;} =~
Q'{m.n.0/X}{n.0/X;}. Since F o T = F o T, we have P'{m.n.0/X}HF o
T/X:} = Q' {mn.0/X}H{F o T/X}} by lemma [44]

Since X is in an execution context, we have P'{m.n.0/X}{F o T/X;} ™
P"{m.n.0/X}{F oT/X;}{n.0/X;}. Consequently by the previous equivalence
there exists Q" such that Q'{m.n.0/X}{F o T/Xy} & Q"{m.n.0/X}{F o

INRIA



Normal bisimulations 97

T/X,}{n.0/X;} and P"{m.n.0/ X }{F o T/X;}{n.0/X;} = Q"{m.n.0/X}{F o
T/Xp}{n.0/X;}. Since S ~; S, by lemma we have P"{m.n.0/X}{F o
T/X S/ X;} & Q"{mn.0/XHF o T/X;}{S/X;}. We have Q{R/X} =
Q"{R/XHF o T/X,}{S/X;} and the relation P"{R/X H{F o T/X;}{S/X;} R
Q"{R/X}{F oT/X}{S/X:}, hence the result holds.

A first-order communication takes place between two copies of R.
This case is similar to the case above.
O

G Abstraction equivalence in HO7P

We remind the definition of finite processes:

Definition 36. A finite process is a HOn P process built on the following gram-
mar:

PFIZZO | PF|PF | ZPF | Z/I.PF ‘ E<P>PF | a(X)PF | a,[PF]

A concretion vZ.(R)S is finite iff S is finite. An abstraction (X)P is finite iff
P is finite. We write Ap the set of finite agents.

We first prove some properties on finite processes:
Lemma 46. Let F be a finite abstraction. For all process P, F o P is finite.

Proof. We have F = (X)Pp for some finite process Pp, hence F' o P =
Pp{P/X}. Since Pr is finite, X appears in messages only, hence after substitu-
tion, P appears in messages only. Since any processes are allowed as messages,
F o P is a finite process.

O

Lemma 47. Let Pp be a finite process. If Pr = A for some «, then A is
finite.

Proof. By induction on Pg:
e Pr = 0: no available transition.

e Pp = P, | Py, where P; and P, are finite processes. The possible transi-

tions come from rules LTS-PAR, LTS-FO, LTS-HO, and their symmetric.
In the LTS-PAR case, we have P, = A, and Pr = A | P,. By induction,
A is finite, hence A | P, is finite. The proof is similar for the symmetric
rule.
In the LTS-FO case, we have P, ~ P, P, *% P}, and Pr — P} | P5.
By induction, P; and P are finite, hence so is P{ | P;. In the LTS-
HO case, we have P, % C = vi.(R)S, P, % F, and Pr = F e C.
By induction, F' and S are finite. By lemma F o R is finite, hence
vi.(FoR|S)=F eC(C is finite.
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e Pr = [.P', where P’ is finite. The possible transition comes from rule
LTS-PREFIX Pr - P'. Since P’ is finite, the result holds.

e Pr =vz.P’', where P’ is finite. The possibles transitions come from rule
LTS-RESTR: we have Pp 5 vz.A with P/ % A. By induction, A is
finite, hence vx.A is finite.

e Prp = a(R)S, where S is finite. The possible transition comes from rule
LTS-CoNCR Pr % (R)S. Since S is finite, (R)S is finite.

e Pp =a(X)P', where P’ is finite. The possible transition comes from rule
LTS-ABSTR Prp - (X)P'. Since P’ is finite, (X)P’ is finite.

e Pp = a[P’], where P’ is finite. The possible transitions comes from rules

LTS-Passiv and LTS-Loc. In the LTS-PAssiv case, we have Prg g,
(P)0. Since 0 is finite, (P’)0 is finite. In the LTS-Loc case, we have

(e

P' % A and Pr % a[A]. By induction, A is finite, hence a[A] is finite.

O
Lemma 48. Let Pr be a finite process.
e The set {a|3A, Pr % A} is finite.
e For all action «, the set {A|Pr < A} is finite.
Proof. Easy by induction on Pp. O

We now prove that a finite process “terminates”. To this end, we introduce
the size of a finite process Pr, written s(Pr), defined inductively as:

s(0)=0 s(P1|P)=s(P)+s(P) s(I.P)=1+s(P) s(vz.P)=s(P)

s@R)S) =1+5(S) s(a(X)P)=1+s(P) s(a[P]) =1+ s(P)

The size of a finite concretion vz.(R)Pr is defined by s(C) = s(Pr), and
the size of a finite abstraction F' = (X)Pr is defined by s(F) = s(Pg). By
definition, the size of an agent is a non-negative integer.

Lemma 49. Let F be a finite abstraction. For all processes P, we have s(F o
P) =s(F).

Proof. We have F = (X)Pp for some finite process Pp, hence FF o P =
Prp{P/X}. Since Pr is finite, X appears in messages only, hence after substi-
tution, P appears in messages only. Since the size of a message output depends
only on the size of the continuation, we have s(F o P) = s(F).

O

Lemma 50. Let Pp be a finite process. If Pr — A, then s(Pr) > s(A).

Proof. By induction on Pg:
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e Pr = 0: no available transition.

e Pp = P, | P», where P; and P, are finite processes. The possible transi-
tions come from rules LTS-PAR, LTS-FO, LTS-HO, and their symmetric.
In the LTS-PAR case, we have P, = A, and Pr = A | P,. By induc-
tion, we have s(A4) < s(P1), hence we have s(A | P2) = s(A) + s(P2) <
s(P1) + s(Py) = s(Pr) as required.

In the LTS-FO case, we have P, = P}, P, =, P}, and Pr = P| | P.
By induction, s(P]) < s(P;) and s(Py) < s(P2), hence we have s(P| |
P)) = s(P]) + s(Py) < s(P1) + s(Py) = s(Pr) as required.

In the LTS-HO case, we have P, - C = vZ.(R)S, P, % F, and Pr =
F e C. By induction, s(F) < s(P;) and s(C) < s(P:). By lemma {49} we
have s(F' o R) = s(F'), hence we have s(F ¢ C) =s(F o R|S) =s(F o
R) + s(S) = s(F) + s(S) < s(P1) + s(P2) = s(Pr) as required.

e Pr = I.P', where P’ is finite. The possible transition comes from rule
LTS-PREFIX Pr - P'. We have s(Pp) =1+ s(P’") > s(P’) as required.

e Pr =vz.P’', where P’ is finite. The possibles transitions come from rule
LTS-RESTR: we have Pp — vz.A with P <5 A. By induction, we have
s(A) < s(P’) hence we have s(vz.A) = s(A) < s(P') = s(Pr) as required.

e Pr = a(R)S, where S is finite. The possible transition comes from rule
LTS-CoNCR Pr % (R)S. We have s(Pr) = 1 + s(S) > s(S) = s((R)S)

as required.

e Pr = a(X)P’, where P’ is finite. The possible transition comes from
rule LTS-ABSTR Pp = (X)P'. We have s(Pp) = 1+ s(P') > s(P') =
s((X)P’) as required.

e Pp = a[P’], where P’ is finite. The possible transitions comes from rules
LTS-Passiv and LTS-Loc. In the LTS-PASSIV case, we have Pp -
(P")0. We have s(Pp) =1+ s(P") > 0= s((P’)0) as required.

In the LTS-LoOC case, we have P’ % A and Pr = a[A]. We have s(A) <
s(P’"), hence we have s(a[A]) =14+ s(A) < 1+ s(P’') = s(Pr) as required.
0

Lemma 51. Let Pr be a finite process. There is no infinite sequence of processes
(P;)i such that Py = Pr and for alli, P; 4, PiiorP, L vi(R)Pyy or P, S F
with F' o P = Py for some P.

Proof. Suppose we have a sequence of processes (P;); as defined in the lemma.
In this case, the sequence (s(P;)); is an infinite sequence of strictly decreasing

non-negative integers by lemma [50] which is not possible.
O
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All these properties allow us to define the depth of a finite process:

Definition 37. We define inductively the depth of a finite agent Ap, written
d(Ar), as:

d(Pr) = 0 if there is no transition from Pp.

d(Pr) = 1+ max {d(A)|3a, Pr < A} otherwise.

For all finite concretions vz.(P)Pg, we have d(vZ.(P)Pr) = d(Pp).

For all finite abstractions (X)Pr, we have d(F) = d(Pp).

We now prove that testing a finite process is not enough. We define:
A A
Fy = (X0)Xo,Go = (Xo0)(Xo | Xo)
and for n > 0, we define
Fn é (Xn)Van-(an[Xn] | an-Fn—l) + Rn

Gn 2 (Xn)van.(an[Xn] | an-Gn-1) + Sn

with R, = va,.7.G,_1 0 X,, and S,, = va,.7.F,_1 0 X,,.

Let (my) be a family of pairwise distinct fresh names which do not occur in
any F,, nor G,,. Let Q1 = m1.0 and Qpy1 = mgr1.Qy for all k > 1.

Let Pr be a finite process such that d(Pr) = 0. Consequently Pr cannot
perform any transition, and Pg | Pr neither. Hence we have Pr ~ Pp | Pp, i.e.
F00PFNG00PF.

We now prove that F,, o Pr ~ G,, o Pr for all Pp such that d(Pg) < n, for
n > 0. We define:

Ru2 {(P{Fx o Pu/X}, P{Gy o Po/X}),Vk,d(Py) < k < n}
Lemma 52. The relation R, is a bisimulation.

Proof. Let (P, Py) €R,,. We discuss on the possible transitions from P;:

e Transitions from P which do not involve any F) o P,. These are matched
by the same transitions in Ps.

e Passivation of locality ay, in a process Fj, o Pj,, i.e. we have P,
P{vay,.Fy,—1 © Pry/XoHFro Pe/X \ Xo} = P/ (the variable X; is in
an evaluation context). We distinguish two cases. We suppose first that
d(Pko) <ky—1. In P, we perform passivation of ag, in Gy, o Py,, i-e.

P 5 P{I/U,ko Fiy—1 0 Pko/Xo}{Gk o P,/X \ X} = P;. We rewrite P] in

P’{Fk o P,/X} and Pj in P’{Gk o P./X} (P' differs from P only in the
restriction on ag, ). Since we have d(Py,) < kg—1 < n, we have P{ R,, Pj.
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We suppose now that d(Py,) = ko. In P», we perform the T-action in the
sub-process Sk, o Pko of Gy, o Py,, i.e. we have P, . P{vay,.Fy,—1 ©
Pko/XO}{Gk @) pk/X \ Xo} = P2 Let P/ = P{Vako Fko 1 © PkU/Xo},
we rewrite Pj in P’{Fk o P,/X \ Xo} and P} in P’{Gk o Py/X \ Xo}.
Consequently we have P R, Pj.

. T .
¢ Internal action from sub-process Ry, o Py, — vag,.Gg,—1 © Pi, in a pro-

cess Fy, o Py, i.e. we have Py = P{vay,Gg,_1 0 Pko./Xo}{Fk/S_}k/)}\
Xo} = P/. In P, we perform passivation of ap, in Gg, o Py,, ie.

P2 —> P{l/ako Gk(} 1 © PkO/XO}{Gk OPk/X \ Xo} = P2 Let P/ =
P{vay,. Gko 1 0 Py, /Xo}; we rewrite P| in P'{Fk o P,/X \ Xo} and P}
in P'{Gk o P,/X \ Xo}. Consequently we have P| R, Pj.

o First order action Py, L Pina process Fy, o Py,, i.e. we have P, 4
P{F}, o Py, Fy, o P'/X} = P|. We perform the same action in P, i.e.
Py L P{G} 0 P, Gy, o P'/X} = P}. Since we have d(P') < d(Py,)—1 <
ko < mn, we have P| R,, P} as required.

e Higher-order input Py, = F in a process Fy, o Py, i.e. we have P,

P{F;_;/Pk,FkO o F/X} = Fy (with a little abuse of notation). Let
C = vi{R )S be a clos closed concretion. We perform the same action in

PQ, i.e. Pg —> P{Gk OPk;GkO o F/X} = FQ We have F1 [ ] C— vT. (S |
P{Fk o Py, F,, o (F o R)/X}) which we rewrite in P’ {F,C o Py, Fy, ©
(F o R)/X}. Similarly, we have F o C' = P'{G}, o Py, Gy, o (F o R)/X}.
We have d(F o R) = d(F) < d(Pg,) — 1 < ko < n, hence we have
F) ¢ C R, F, e (C as required.

o Higher-order output P, 4 ¢ = vZ.(R)S in a process Fy, o Py, ie.
we have P, & v3.(R)P{Fy o Py, Fy, o S/X} = C;. Let F,E be closed
abstraction and evaluatlon context. We perform the same action in P5, i.e.
P, % ViR )P{Gk o Py, Gy, o P’ /X} = (. We rewrite the e process F' e
E{C1} = vi.(F o R | ]E{P{Fk o Py, Fy, o S/X}}) in P’{F;€ o Py, Fy, o
S/X}. Similarly, we have F o E{Cy} = P’ {Gk o Py, Gy, o S/X}. Since
d(S) = d(C) < d(Py,) —1 < ko <n, we have F e E{C1} R,, F ¢ E{C>}
as required.

o First-order or higher-order interaction between two processes Py, and Py,
or between a process P, and P. We deals only with the case of a higher-
order interaction between two processes Py, and Pj,, the other cases are

similar or simpler. Suppose we have for instance P, % F and Py, <,
C = vZ.(R)S for some a. Then we have P, — P'{F} o Py, Fy, o (F o
R), Fy, 0 S/X, X0, X1} = P{. We perform the same transition in P, i.e.
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P, = P'{G), 0 Py, Gy o (F o R),Gy, o S/X,Xo, X1} = P,. We have
A(F o R) = d(F) < d(Pi,) — 1 < ko < n and d(5) = d(C) < d(Py,) — 1 <
k1 <mn, hence we have P; R,, Pj as required.

Similarly, the transitions from P, are matched by P;, hence R, is a strong

bisimulation.
O

Lemma 53. For all n, we have F,, 0 Qn11 % Gy 0 Qpy1.

Proof. We proceed by induction on n. For n = 0, we have Fy o m1.0 = m7.0 »
m1.0 | m1.0 = Go o m1.0 as required.

Let n > 0. We have F,, 0 Q11 ntt, Van.(an[Qn] | an-Frn—1) = Pi, which
can only be matched by G, 0 Qn11 RGEN Van (an[@Qn] | @n.Gn1) = Py. After
passivation on a,,, we have P, = va,,.(F,_; o Q,,), which can only be matched
by P = va,.(Gn_1 o Q). Since a, ¢ fn(F,_1 o Q,) (resp. a, ¢ fn(G,_; o
Qn)), we have va,.(F,—1 o Qn) ~; Fr_1 o Qn (resp. va,.(Gph—1 o Qn) ~
Gp-1 0 Q). By induction hypothesis, we have F,,_1 o @, » G;_1 o @y, hence
we have F}, o0 Q11 » G; 0 Q41 as wished.

O
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