N

N

Constructing Iceberg Lattices from Frequent Closures
Using Generators
Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin

» To cite this version:

Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin. Constructing Iceberg Lattices
from Frequent Closures Using Generators. 11th International Conference on Discovery Science - DS
’08, Oct 2008, Budapest, Hungary. pp.136-147. inria-00331524

HAL 1d: inria-00331524
https://inria.hal.science/inria-00331524
Submitted on 17 Oct 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00331524
https://hal.archives-ouvertes.fr

Constructing Iceberg Lattices from Frequent
Closures Using Generators

Laszlo Szathmary', Petko Valtchev', Amedeo Napoli?, and Robert Godin'

! Dépt. d’Informatique UQAM, C.P. 8888,
Succ. Centre-Ville, Montréal H3C 3P8, Canada
Szathmary.L@gmail.com, valtchev.petkoQugam.ca, godin.robert@ugam.ca
2 LORIA UMR 7503, B.P. 239, 54506 Vandoeuvre-lés-Nancy Cedex, France

napoli@loria.fr

Abstract. Frequent closures (FCIs) and generators (FGs) as well as
the precedence relation on FCIs are key components in the definition
of a variety of association rule bases. Although their joint computation
has been studied in concept analysis, no scalable algorithm exists for the
task at present. We propose here to reverse a method from the latter field
using a fundamental property of hypergraph theory. The goal is to extract
the precedence relation from a more common mining output, i.e. closures
and generators. The resulting order computation algorithm proves to
be highly efficient, benefiting from peculiarities of generator families in
typical mining datasets. Due to its genericity, the new algorithm fits an
arbitrary FCI/FG-miner.

1 Introduction

The discovery of frequent patterns and meaningful association rules is a key data
mining task [1] whereby a major challenge is the handling of the huge number of
potentially useful patterns and rules. As a possible remedy, various subfamilies
have been designed that losslessly represent the entire family of valid associa-
tions (see [2] for a survey). Some of the most popular bases involve subfamilies
of frequent itemsets (FIs), e.g. closures (FCIs) or generators (FGs), which them-
selves losslessly represent the entire FI family. Part of these bases further require
the precedence relation among closures as well (e.g. the informative basis).

The aforementioned three structural components, i.e. FCIs, FGs, and prece-
dence, have been targeted in various configurations and from diverging view-
points. A range of data mining methods compute generators and closures (e.g.
Titanic [3] and A-Close [4]), and at least one targets closures and their order
(e.g. Charm-L [5]). In concept analysis, in turn, the focus has been on computing
both closures and order in the concept lattice [6], whereas a few methods also
output the generators (e.g. [7,8]). Dedicated methods for precedence computa-
tion exist as well, yet their reliance on transaction-wise operations hurts their
scalability (e.g. [9]).

Here we tackle the efficient computation of all three components. More pre-
cisely, we concentrate on the task of computing precedence links from the families

2 Laszlo Szathmaryet al.

of FCIs and FGs, i.e. from the output of some miners from the literature (see
above). In our analysis of the problem, we reverse an argument of Pfaltz for com-
puting generators from closures and precedence [7], using a fundamental result
from hypergraph theory. The restated problem amounts to the computation of
the minimal transversal graph of a given hypergraph, a popular problem that
nevertheless withholds some secrets [10]. Based on an adaptation of a classical
algorithm for the task, we provide our algorithm called Snow for efficient ice-
berg lattice construction. OQur preliminary experiments show that the strategy
is very suitable as the order computation cost is only a fraction of the one for
discovering all FCIs and FGs.

The contribution of the paper is therefore threefold. First, we put forward an
important interplay between precedence and generators with respect to closures.
Second, we show that in practice it can be efficiently exploited to yield either the
generators given the FCIs and the precedence relation, or the precedence relation
given the FCIs and the generators. Third, the proposed concrete algorithm,
Snow, provides the capabilities of iceberg lattice construction to any FCI/FG-
miner.

The paper is organized as follows. Section 2 provides the basic concepts of
frequent itemset mining, concept analysis, and hypergraph theory. In Section 3,
we introduce the Snow algorithm. Finally, conclusions and future work are dis-
cussed in Section 4.

2 Background on Frequent Itemsets, Iceberg Lattices,
and Hypergraphs

Here we recall the basic notions of frequent itemset mining, formal concept
analysis, and hypergraph theory on which our approach is based.

2.1 Frequent Itemsets and Their Distinguished Subfamilies

Consider the following 5 x 5 sample dataset: D = {(1, ACDE), (2, ABCDE),
(3, AB), (4, D), (5, B)}. Throughout the paper, we will refer to this example
as “dataset D”.

We consider a set of objects or transactions O = {01,09,...,0,}, a set of at-
tributes or items A = {a1,as,...,a,}, and a relation R C O x A. A set of items
is called an itemset. Each transaction has a unique identifier (tid), and a set of
transactions is called a tidset.®> For an itemset X, we denote its corresponding
tidset, often called its image, as t(X). For instance, in dataset D, the image of
AB is 23, i.e. t(AB) = 23. Conversely, i(Y) is the itemset corresponding to a
tidset Y. The length of an itemset is its cardinality, whereas an itemset of length
k is called a k-itemset. The support of an itemset X, denoted by supp(X), is the
size of its image, i.e. supp(X) = [t(X)|- An itemset X is called frequent, if its

3 For convenience, we write an itemset {A, B, E} as ABFE, and a tidset {2,3} as 23.

Constructing Icebergs from Closures and Generators 3

12345 (b) {1 (c)
X |
{} {}
235 123 124
X X X
B A D
23 12
X X
AB ACDE
ABCDE (1)
2 |
x BC # BD # BE
@) ABCDE

Fig. 1. Concept lattices of dataset D. (a) The entire concept lattice. (b) An
iceberg part of (a) by min_supp = 3 (indicated by a dashed rectangle).
(c) Although generators are not a formal part of the lattice, they are drawn
within the respective nodes

support is not less than a given minimum support (denoted by min_ supp), i.e.
supp(X) > min_supp. The image function induces an equivalence relation on
p(A): X =2 Z iff t(X) = t(Z) |11]. Moreover, an equivalence class has a unique
maximum w.r.t. set inclusion and possibly several minima, called closed itemset
(a.k.a. concept intents in concept analysis [12]) and generator itemsets (a.k.a.
key-sets in database theory or free-sets), respectively. The support-oriented def-
initions exploiting the monotony of support upon C in p(.A) are as follows:

Definition 1 (closed itemset; generator). An itemset X is closed* (gen-
erator) if it has no proper superset (subset) with the same support (respectively).

The closure operator assigns to an itemset X the maximum of its equivalence
class. For instance, in dataset D, the sets AB and AD are generators, and their
closures are AB and ACDE, respectively (i.e. the equivalence class of AB is a
singleton).

The families of frequent closed itemsets (FCIs) and frequent generators (FGs)
are well-known reduced representations [13] for the set of all frequent itemsets
(FIs). Furthermore, they underlie some non-redundant bases of valid association
rules such as the generic basis [2]. Yet for other bases, the inclusion order between
FCls is essential, and, in some cases, the precedence order between those. The
precedence relation <, henceforth referred to as merely precedence, is defined
the following way: X < Z iff (i) X C Z, and (4i) there exists no Y such that
X CY C Z. Here, X is called the (immediate) predecessor of Z.

4 In the rest of the paper, closed itemsets are abbreviated as “CIs”.

4 Laszlo Szathmaryet al.

The FCI family of a dataset together with < compose the iceberg lattice,
which is a complete meet-semi-lattice (bottomless if () is the universal itemset).
The iceberg corresponds to the frequent part of the CI lattice, also known in
concept analysis [12] as the intent lattice of a context. It is dually isomorphic to
the concept lattice of the same context (in data mining terms, the lattice of all
pairs (tidset, itemset) where both are closed and mutually corresponding). We
shall use here the latter structure as visualization basis hence the effective order
on our drawings is D rather than C. In Figure 1, (a) and (b) depict the concept
lattice of dataset D and its iceberg part, respectively.

As we tackle here the computation of an FG-decorated iceberg, i.e. an ice-
berg lattice where generators are explicitly associated to their closure (see also
Figure 1 (c)), existing approaches for related tasks are of interest. In the data
mining field, FCIs together with associated FGs have been targeted by a growing
set of levelwise FCI-miners such as Titanic [3], A-Close [14], etc. In contrast, the
only case of mining FCIs with precedence that we are aware of is Charm-L [5].
The research in concept analysis algorithms has put the emphasis on the set of
concepts, or ClIs, and less so on precedence (see [6] for a good coverage of the
topic). Few methods also compute the generators [7,8], whereas focused proce-
dures retrieve precedence from the concept set, as in [9]. However, all but few
concept analysis methods perform at least part of the computation transaction-
wise, which makes them impractical for large datasets.

Yet a close examination of the most relevant approaches, i.e. those computing
generator-decorated lattices such as in [7], reveals an interesting property that we
shall exploit in our own method. In fact, as the latter paper indicates, from the
set of all closures and their precedence, one may easily compute the generators
for each closure.

The key notion here is the blocker of a family of sets (equivalent to a hyper-
graph transversal as we show below). Thus, given a ground set X and a family of
subsets X C p(X), a blocker of X is a set Z C X which intersects every member
thereof to a non-empty result (VI' € X, ZNT # 0). A minimal blocker is the
one which admits no other blocker as a proper subset. Blockers are brought into
the closure lattice using the associated faces, i.e. the differences between two
adjacent closures within the lattice. Formally, given two CIs X; and X, of a
dataset such that X7 < Xo, their associated face is F' = X5 \ X;.

ExAMPLE. Consider the closure lattice in Figure 1 (c). In a node, it depicts the
corresponding CI, its support and the list of its generators. Let us consider the
bottom concept with the closure ABCDE. It has two predecessors, thus its faces
are: F1 = ABCDE\ AB = CDE and F», = ABCDE\ ACDE = B.

A basic property of the generators of a CI X states that they are the minimal
blockers of the family of faces associated to X [7]:

Theorem 1. Assume a CI X and let F = {Fy,Fs,...,F} be its family of
associated faces. Then a set Z C X is a minimal generator of X iff X is a
minimal blocker of F.

Constructing Icebergs from Closures and Generators 5

D i

Fig. 2. A hypergraph H, where V = {A, B,C,D} and £ = {4, BC, ACD}

EXAMPLE. The minimal blockers of the family {CDE, B} are {BC, BD, BE},
which is exactly the set of minimal generators of ABCDE (see Figure 1 (c)).

From Theorem 1, Pfaltz devised a method for computing the generators of a
closed set from its predecessors in the lattice [15]. Although the precedence links
are assumed as input there, their computation, as indicated above, requires ex-
pensive manipulations of tidsets. Thus, even though the algorithm itself employs
scalable operations, its input is impossible to provide at low cost.

However, this apparent deadlock can be resolved by transposing the problem
setting into the more general framework of hypergraphs and transversals.

2.2 Hypergraphs and Their Transversal Graphs

A hypergraph [16] is a generalization of a graph, where edges can connect arbi-
trary number of vertices.

Definition 2 (hypergraph). A hypergraph is a pair (V,E) of a finite set
V = {v1,v9,...,0,} and a family € of subsets of V.. The elements of V are
called vertices, the elements of £ edges. A hypergraph is simple if none of its
edges is contained in any other of its edges, i.e. V&;,E; € £: 5 CE =i =7.

ExXAMPLE. The hypergraph H in Figure 2 is not simple because the edge A is
contained in the edge ACD.

A transversal of a hypergraph H is a subset of its vertices intersecting each edge
of H. A minimal transversal does not contain any other transversal as proper
subset.

Definition 3 (transversal). Let H = (V,€) be a hypergraph. A set T C V is
called a transversal of H if it meets all edges of H, i.e. VE € E :TNE #0. A
transversal T is called minimal if no proper subset T' of T is a transversal.

Clearly, the notion of (minimal) blocker in the work of Pfaltz [7] is equivalent
to the notion of (minimal) transversal.

EXAMPLE. The hypergraph H in Figure 2 has two minimal transversals: AB
and AC. The sets ABC and ACD are transversals but they are not minimal.

6 Laszlo Szathmaryet al.

Definition 4 (transversal hypergraph). The family of all minimal transver-
sals of H constitutes a hypergraph on V called the transversal hypergraph of H,
which is denoted by Tr(H).

ExAMPLE. Considering the hypergraph H in Figure 2, Tr(H) = {AB, AC}.

An obvious property of Tr(H) is that it is necessarily simple. Next, a duality
exists between a simple hypergraph and its transversal hypergraph [16]:

Proposition 1. Let G and H be two simple hypergraphs. Then G = Tr(H) if
and only if H =Tr(G).

Consequently, computing twice the transversal hypergraph of a given simple
hypergraph yields the initial hypergraph.

Corollary 1 (duality). Let H be a simple hypergraph. Then Tr(Tr(H)) = H.

ExAMPLE. Consider the following simple hypergraph: G = {A, BC}. Then, G’ =
Tr(G) =Tr({A,BC}) = {AB, AC}, and Tr(G') = Tr({AB, AC}) = {A, BC}.

From a computational point of view, the extraction of T'r(G) from G is a tough
problem as the former can be exponentially larger than the latter. In fact, the
exact complexity class of the problem is still not known [10]. Yet many algorithms
for the task exist and perform well in practice since the worst case rarely occurs.
For instance, an incremental algorithm due to Berge [16] computes the Tr(G) as
the final member of a sequence of hypergraphs, each representing the transversal
hypergraph of a subgraph of G. It is noteworthy that the algorithm in [7] follows
a similar pattern in computing minimal blockers of a set family.

3 The Snow Algorithm

Snow computes precedence links on FClIs from associated generators by exploit-
ing the duality with faces.

3.1 Underlying Structural Results

As indicated in the previous section, a minimal blocker of a family of sets is an
identical notion to a minimal transversal of a hypergraph. This trivially follows
from the fact that each hypergraph (V,£) is nothing else than a family of sets
drawn from p(V'). Now following Theorem 1, we conclude that given a CI X, the
associated generators compose the transversal hypergraph of its family of faces
F seen as the hypergraph (X,F).

Next, further to the basic property of a transversal hypergraph, we conclude
that (X ,F) is necessarily simple. In order to apply Proposition 1, we must also
show that the family of generators associated to a CI, say G, forms a simple
hypergraph. Yet this holds trivially due to the definition of generators. We can
therefore advance that both families represent two mutually corresponding hy-
pergraphs.

Constructing Icebergs from Closures and Generators 7

Table 1. Input of Snow on dataset D by min_supp =1

[FCI (supp) [FGs ‘ [FCI (supp)[FGs ‘
AB (2) |AB B3 B
ABCDE (1)|BE; BD; BC ACDE (2)|E; C; AD
A (3) A D (3) D

Property 1. Let X be a closure and let G and F be the family of its generators
and the family of its faces, respectively. Then, for the underlying hypergraphs it
holds that Tr(X,G) = (X, F) and Tr(X,F) = (X, G).

ExAMPLE. Let us again consider the bottom concept in Figure 1 (c) with
ABCDE as its CI. It has three generators: BC, BD, and BE. The transversal
hypergraph of the generator family is Tr({BC, BD,BE}) = {CDE, B}. That
is, it corresponds exactly to the family of faces as computed above.

3.2 The Algorithm

The Snow algorithm exploits Property 1 by computing faces from generators.
Thus, its input is made of FCIs and their associated FGs. Several algorithms can
be used to produce this input, e.g. A-Close [4], Titanic [3], Zart [17], Eclat-Z [18],
etc. Table 1 depicts a sample input of Snow.

On such data, Snow first computes the faces of a CI as the minimal transver-
sals of its generator hypergraph. Next, each difference of the CI X with a face
yields a predecessor of X in the closure lattice.

Ezample 1. Consider again ABCDFE with its generator family { BC, BD, BE}.
First, we compute its transversal hypergraph: Tr({ BC, BD, BE}) = {CDE, B}.
The two faces F; = CDE and F; = B indicate that there are two predeces-
sors for ABCDE, say Z; and Zs, where Z; = ABCDE \ CDE = AB, and
Zy = ABCDE\ B = ACDE. Application of this procedure for all Cls yields
the entire precedence relation for the CI lattice. (|

The pseudo code of Snow is given in Algorithm 1. As input, Snow receives
a set of CIs and their associated generators. The identifyOrCreateTopCI pro-
cedure looks for a CI whose support is 100%. If it does not find one, then it
creates it by taking an empty set as the CI with 100% support and a void fam-
ily of generators (see Figure 1 (c) for an example). The getMinTransversals
function computes the transversal hypergraph of a given hypergraph. More pre-
cisely, given the family of generators of a CI X, the function returns the family
of faces of X. It is noteworthy that any algorithm for transversal computation in
a hypergraph would be appropriate here. In our current implementation, we use
an optimized version of Berge’s algorithm henceforth referred to as BergeOpt
that we do not present here due to space limitations. The getPredecessorCIs

8 Laszlo Szathmaryet al.

Algorithm 1 (Snow):

Description: build iceberg lattice from FCIs and FGs
Input: a set of ClIs and their associated generators

1) identifyOrCreateTopCl(setO f FCIsAndFGSs);

2) // find the predecessor(s) for each concept:

3) for all ¢ in setO fFCIsAndFGs {

4) setO f Faces — getMinTransversals(c.generators);

5) predecessorCls «— getPredecessorCls(c.closure, setO f Faces);
6) loop over the CIs in predecessorCls (p) {

7) connect(c, p);

8)

9)

}

}

function calculates the differences between a CI X and the family of faces of X.
The function returns the set of all CIs that are predecessors of X. The connect
procedure links the current CI to its predecessors.

For a running example, see Example 1.

3.3 Experimental Results

The Snow algorithm was implemented in Java in the CORON data mining plat-
form [19].> The experiments were carried out on a bi-processor Intel Quad Core
Xeon 2.33 GHz machine with 4 GB RAM running under Ubuntu GNU/Linux.
All times reported are real, wall clock times.

For the experiments, we used several real and synthetic dataset benchmarks.
Database characteristics are shown in Table 2 (top). The chess and connect
datasets are derived from their respective game steps. The MUSHROOMS database
describes mushrooms characteristics. These three datasets can be found in the
UC Irvine Machine Learning Database Repository. The pumsb, C20D10K, and
C73D10K datasets contain census data from the PUMS sample file. The syn-
thetic datasets T20I6D100K and T25110D10K, using the IBM Almaden genera-
tor, are constructed according to the properties of market basket data. Typically,
real datasets are very dense, while synthetic data are usually sparse.

Table 2 (bottom left and right) provides a summary of the experimental
results. The first column specifies the various minimum support values for each
of the datasets (low for the sparse dataset, higher for dense ones). The second
and third columns comprise the number of FCIs and the execution time of Snow
(given in seconds). The CPU time does not include the cost of computing FCIs
and FGs since they are assumed as given.

As can be seen, Snow is able to discover the order very efficiently in both
sparse and dense datasets. To explain the reason for that, recall that the only

® http://coron.loria.fr

Constructing Icebergs from Closures and Generators 9

Table 2. Top: database characteristics. Bottom: response times of Snow

database # records|# non-empty|# attributes| largest
name attributes |(in average) |attribute
T20I16D100K | 100,000 893 20 1,000
T25I10D10K | 10,000 929 25 1,000
chess 3,196 75 37 75
connect 67,557 129 43 129
pumsb 49,046 2,113 74 7,116
MUSHROOMS 8,416 119 23 128
C20D10K 10,000 192 20 385
C73D10K 10,000 1,592 73 2,177
min_supp # concepts Snow min_supp # concepts Snow
(including top) | (finding order) (including top) | (finding order)
T20I6D100K pumsb
0.75% 4,711 0.11 80% 33,296 1.95
0.50% 26,209 0.36 8% 53,418 4.10
0.25% 149,218 3.24 76% 82,539 7.08
T25I10D10K MusHROOMS
0.40% 83,063 1.07 20% 1,169 0.05
0.30% 122,582 2.73 10% 4,850 0.17
0.20% 184,301 4.48 5% 12,789 0.47
chess C20D10K
65% 49,241 0.85 0.50% 132,952 3.04
60% 98,393 1.77 0.40% 151,394 4.37
55% 192,864 3.95 0.30% 177,195 4.29
connect C73D10K
65% 49,707 0.54 65% 47,491 1.51
60% 68,350 0.78 60% 108,428 3.97
55% 94,917 1.82 55% 222,253 10.13

computationally intensive step in Snow is the transversal hypergraph construc-
tion. Thus, the total cost heavily depends on the efficiency of that step. Further-
more, to find out why the underlying algorithm BergeOpt performs so well, we
investigated the size of its input data. Figure 3 shows the distribution of hyper-
graph sizes in the datasets T20I6D100K, MUSHROOMS, chess, and C20D10K.6
Note that we obtained similar hypergraph-size distributions in the other four
datasets too. Figure 3 indicates that most hypergraphs only have 1 edge, which
is a trivial case, whereas large hypergraphs are relatively rare. As a consequence,
BergeOpt and thus Snow perform very efficiently.

We interpret the above results as an indication that the good performance of
Snow is independent of the density of the dataset. In other terms, provided that
the input hypergraphs do not contain too many edges, i.e. there are only few

6 For instance, the dataset T20I6D100K by min_supp = 0.25% contains 149,019
1-edged hypergraphs, 171 2-edged hypergraphs, 25 3-edged hypergraphs, 0 4-edged
hypergraphs, 1 5-edged hypergraph, and 1 6-edged hypergraph.

10 Laszlo Szathmaryet al.

T2016D 100K Mushrooms
min_supp=0.25% min_supp=5%
160000 10000
140000 9000
8000
120000
7000
100000
o o 6000
g e
g 80000 o 5000
3
38 8 4000
© 60000 ©
3000
40000 000
20000 1000
a4 - =/ 0 rrTEiy
° 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
1 2 3 4 5 6 1 3 5 7 9 111315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
hypergraph size hypergraph size
chess C20D10K

. - o
min_supp=55% min_supp=0.30%
140000

200000 120000
180000 100000
160000
140000 8 80000
§ 120000 5
g 100000 § 60000
8 — O 40000
o 60000
40000 20000 I
20000 B | FESEA RN ——— al
2 4 6 8 10 12 14 16 18 20 22 24 26
1 2 13 5 7 9 11 13 15 17 19 21 23 25 27
hypergraph size hypergraph size

Fig. 3. Distribution of hypergraph sizes

FGs per FCIs, the computation is very fast. A natural question arises with this
observation: does the modest number of FGs in each class hold for all realistic
datasets in the literature? If not, could one profile those datasets which meet
this condition?

4 Conclusion

The computation of precedence of FCIs is a challenging task due to the poten-
tially huge number of these. Indeed, as most of the existing algorithms rely on
dimensions that may grow rapidly, they remain impractical for large datasets.
We presented here an approach for elegantly solving the problem starting
from a rather common mining output, i.e. FCIs and their FGs, which is typi-
cally provided by levelwise FCI-miners. To that end, we reverse a computation
principle initially introduced by Pfaltz in closure systems by translating it before-
hand within the minimal transversal framework of hypergraph theory. Although
the cost of the transversal hypergraph problem is potentially non-polynomial,

Constructing Icebergs from Closures and Generators 11

the contributed algorithm, Snow, proved to be highly efficient in practice largely
due to the low number of FGs associated to an FCI.

Based on this observation, we claim that Snow can enhance in a generic yet
efficient manner any FCI/FG-miner, thus transforming the latter into an iceberg
lattice constructor. Beside the possibility to compute valuable association rule
bases from its output, the resulting method could also compete on the full-fledged
concept lattice construction field.

On the methodological side, our study underlines the duality between gen-
erators and order w.r.t. closures: either can be used in combination with FCIs
to yield the other one. It rises the natural question of whether FCIs alone could
be used to efficiently retrieve both precedence and FGs. Conversely, it would be
interesting to examine whether FCIs can in turn be easily computed from order
and generators, yet this is more of a discrete mathematics challenge rather than
data mining concern.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proc. of the 20th Intl. Conf. on Very Large Data Bases (VLDB
’94), San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1994) 487-499

2. Kryszkiewicz, M.: Concise Representations of Association Rules. In: Proc. of the
ESF Exploratory Workshop on Pattern Detection and Discovery. (2002) 92-109

3. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg
Concept Lattices with TITANIC. Data and Knowledge Engineering 42(2) (2002)
189-222

4. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed
Ttemsets for Association Rules. In: Proc. of the 7th Intl. Conf. on Database Theory
(ICDT ’99), Jerusalem, Israel (1999) 398-416

5. Zaki, M.J., Hsiao, C.J.: Efficient Algorithms for Mining Closed Itemsets and Their
Lattice Structure. IEEE Transactions on Knowledge and Data Engineering 17(4)
(2005) 462—478

6. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications.
John Wiley & Sons, Ltd (2004)

7. Pfaltz, J.L.: Incremental Transformation of Lattices: A Key to Effective Knowledge
Discovery. In: Proc. of the First Intl. Conf. on Graph Transformation (ICGT ’02),
Barcelona, Spain (Oct 2002) 351-362

8. Nehme, K., Valtchev, P., Rouane, M.H., Godin, R.: On Computing the Minimal
Generator Family for Concept Lattices and Icebergs. In Ganter, B., Godin, R.,
eds.: Proc. of the 3rd Intl. Conf. on FCA. LNCS 3403, Lens (France), Springer
(2005) 192-207

9. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process. Lett.
71(5-6) (1999) 199-204

10. Eiter, T., Gottlob, G.: Identifying the Minimal Transversals of a Hypergraph and
Related Problems. SIAM Journal on Computing 24(6) (1995) 1278-1304

11. Bastide, Y., Taouil, R., Pasquier, N.; Stumme, G., Lakhal, L.: Mining frequent
patterns with counting inference. SIGKDD Explor. Newsl. 2(2) (2000) 66-75

12. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations.
Springer, Berlin/Heidelberg (1999)

12

13.

14.

15.

16.

17.

18.

19.

Laszlo Szathmaryet al.

Calders, T., Rigotti, C., Boulicaut, J.F.: A Survey on Condensed Representations
for Frequent Sets. In Boulicaut, J.F., Raedt, L.D., Mannila, H., eds.: Constraint-
Based Mining and Inductive Databases. Volume 3848 of Lecture Notes in Computer
Science., Springer (2004) 64-80

Pasquier, N.: Mining association rules using formal concept analysis. In: Proc.
of the 8th Intl. Conf. on Conceptual Structures (ICCS ’00), Shaker-Verlag (Aug
2000) 259264

Pfaltz, J.L., Taylor, C.M.: Scientific Knowledge Discovery through Iterative Trans-
formation of Concept Lattices. In: Proc. of the Workshop on Discrete Applied
Mathematics in conjunction with the 2nd SIAM Intl. Conf. on Data Mining, Ar-
lington, VA, USA (2002) 65-74

Berge, C.: Hypergraphs: Combinatorics of Finite Sets. North Holland, Amsterdam
(1989)

Szathmary, L., Napoli, A., Kuznetsov, S.0.: ZART: A Multifunctional Itemset
Mining Algorithm. In: Proc. of the 5th Intl. Conf. on Concept Lattices and Their
Applications (CLA ’07), Montpellier, France (Oct 2007) 26-37

Szathmary, L., Valtchev, P.; Napoli, A., Godin, R.: An Efficient Hybrid Algorithm
for Mining Frequent Closures and Generators. In: Proc. of the 6th Intl. Conf. on
Concept Lattices and Their Applications (CLA ’08), Olomouc, Czech Republic
(2008) (submitted).

Szathmary, L.: Symbolic Data Mining Methods with the Coron Platform. PhD
Thesis in Computer Science, Univ. Henri Poincaré — Nancy 1, France (Nov 2006)

