Controlling the Global Behaviour of a Reactive MAS : Reinforcement Learning Tools

François Klein 1 Christine Bourjot 1 Vincent Chevrier 1
1 MAIA - Autonomous intelligent machine
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Reactive multi-agent systems present global behaviours uneasily linked to their local dynamics. When it comes to controlling such a system, usual analytical tools are difficult to use so specific techniques have to be engineered. We propose an experimental dynamical approach to control the global behaviour of a reactive multi-agent system. We use reinforcement learning tools to link global information of the system to control actions. We propose to use the behaviour of the system as this global information. The controllability is evaluated in terms of rate of convergence towards a target behaviour. We compare the results obtained on a toy example with the usual approach of parameter setting.
Type de document :
Communication dans un congrès
9th Annual International Workshop "Engineering Societies in the Agents World" - ESAW 08, Sep 2008, Saint-Etienne, France. 2008
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00331891
Contributeur : François Klein <>
Soumis le : lundi 20 octobre 2008 - 08:54:59
Dernière modification le : jeudi 11 janvier 2018 - 06:19:50
Document(s) archivé(s) le : mardi 28 juin 2011 - 17:15:38

Fichier

esaw2008_submission_16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00331891, version 1

Collections

Citation

François Klein, Christine Bourjot, Vincent Chevrier. Controlling the Global Behaviour of a Reactive MAS : Reinforcement Learning Tools. 9th Annual International Workshop "Engineering Societies in the Agents World" - ESAW 08, Sep 2008, Saint-Etienne, France. 2008. 〈inria-00331891〉

Partager

Métriques

Consultations de la notice

213

Téléchargements de fichiers

104