
HAL Id: inria-00331914
https://inria.hal.science/inria-00331914

Submitted on 20 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometry Textures and Applications
Rodrigo de Toledo, Bin Wang, Bruno Lévy

To cite this version:
Rodrigo de Toledo, Bin Wang, Bruno Lévy. Geometry Textures and Applications. Computer Graphics
Forum, 2008, 27 (8), pp.2053-2065. �10.1111/j.1467-8659.2008.01185.x�. �inria-00331914�

https://inria.hal.science/inria-00331914
https://hal.archives-ouvertes.fr

Volume 0 (1981), Number 0 pp. 1–12

Geometry Textures and Applications †

Rodrigo de Toledo1 and Bin Wang2 and Bruno Lévy3

1Tecgraf – PUC-Rio, Rio de Janeiro - RJ, Brasil
2School of Software, Tsinghua University, China

3INRIA – ALICE, Villers-lès-Nancy, France

Abstract
Geometry textures are a novel geometric representation for surfaces based on height maps. The visualization is
done through a GPU ray casting algorithm applied to the whole object. At rendering time, the fine-scale details
(mesostructures) are reconstructed preserving original quality. Visualizing surfaces with geometry textures allows
a natural LOD behavior. There are numerous applications that can benefit from the use of geometry textures. In this
paper, besides a mesostructure visualization survey, we present geometry textures with three possible applications:
rendering of solid models, geological surfaces visualization and surface smoothing.

1. Introduction

A set of geometry textures can be used to represent com-
plex surfaces as an alternative for triangle mesh representa-
tion [dTWL07]. The goal is to interactively display finely
tessellated geometric models. Geometry texture visualiza-
tion is implemented on the GPU and the main rendering ef-
fort is on the pixel pipeline. Transferring the workload to
the pixel pipeline brings the benefit of a natural LOD, since
rendering time is proportional to the number of rendered pix-
els. Therefore, when a complex object is far away from the
viewer, less computation must be done.

The main idea in our technique is to reconstruct the fine-
scale geometric details over a simple proxy of the original
model. Fine-scale geometric details are known in the litera-
ture as mesostructures. Mesostructures are commonly simu-
lated as a pattern in visualization systems. In a different sit-
uation, we want to reconstruct the complete object. In our
case, the mesostructure changes along the object surface,
and memory becomes an issue. For this reason we are in-
terested in height maps, which are a compact way to repre-
sent surfaces. The input of our rendering technique is a set of
height maps generated from the original model to represent

† This paper is based on Geometry Textures, by Rodrigo de Toledo,
Bin Wang, and Bruno Lévy, which appeared in th eProceedings of
SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics
and Image Processing.

the real geometry information. We directly use the maps dur-
ing rendering, executing a ray-casting algorithm on the GPU.
In our approach, the geometry is passed to the GPU as a tex-
ture (the geometry texture), which is used by the fragment
shader. Geometric details are reconstructed with the correct
shading, self-occlusion and silhouette.

There are many applications that can benefit from visu-
alization with intrinsic LOD behavior. We have investigated
two of them: complex solid objects rendering and geological
surfaces visualization. In the first one, models are partitioned
to produce several geometry textures. On the second appli-
cation, we are able to visualize a set of geological horizons,
each one rendered as a geometry texture. Finally, we also re-
search a third application that make use of image operations
on geometry textures to smooth detailed surfaces.

The remaining of this paper is organized as follows:

• Section 2 classifies major work on mesostructure vi-
sualization according to how the techniques represent
mesostructures. We conclude by demonstrating the reason
for choosing height maps as our mesostructure represen-
tation.

• In Section 3, we discuss previous work that also use a set
of height maps to represent and render solid models.

• The basic rendering algorithm for geometry textures is ex-
plained in Section 4.

• Section 5 presents how to convert complex solid models
into our geometry-texture representation.

c© The Eurographics Association and Blackwell Publishing 2008. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

• Then, Section 6 describes three possible applications for
our technique.
• Finally, in Section 7, we draw some conclusions and dis-

cuss different future work.

2. Mesostructure

The appearance of an object is a result of the microstruc-
ture in its surface. A complete model that takes into account
the microstructure and all the physical events occurring in
this scale would be impractical and far from interactive rates.
For this reason a lot of effort was dedicated in representing
the appearance in a mesoscale level, between the micro and
macro scales. The surface structure we need to represent in
this level is named mesostructure.

When touching an object, one can feel its texture. Actu-
ally, textures give both tactile and visual information in such
a way that we can imagine the sensation of touch by just
looking at an object. The texture is a result of the object
mesostructure and it can be simulated in several ways in vi-
sualization systems. Its simplest representation is the color
map, which is a simple 2D image applied over a virtual ob-
ject [Cat74,BN76]. Blinn extended texture mapping with the
bump mapping technique [Bli78], which gives visual effects
of bumps and depressions by disturbing surface normals ac-
cording to a bump map.

More complex mesostructure representations store meso-
information in other formats: height maps, volume data,
shading functions and polygonal meshes (see Figure 1). We
describe some major work in the following sections.

2.1. Height-map mesostructure

The first technique that used a height map to represent and
render mesostructures was displacement mapping [Coo84].
It subdivides the macro geometry into a large number of
small polygons whose vertices are displaced in the normal
direction according to the associated displacement map. Its
drawback is the excessive number of generated polygons.

To avoid extra polygons, the VDM method (View-
dependent Displacement Mapping [WWT∗03]) adopts the
idea of previously sampling mesostructure appearance un-
der various lighting and view directions. In preprocessing, a
height map is taken as input and synthesizes a set of VDM
images for different view directions and different curvatures,
recording the VDM data as a 5D function. Although result-
ing in good quality, this method transforms a 16KB map into
a 64MB volume of data, which prevents its application for
our purpose, since we use hundreds of maps.

Policarpo et al. [POC05] use height maps to interactive
mesostructure visualization. Their method is the most sim-
ilar to ours, using GPU ray casting. However, they do not
devote attention to complex and highly-tessellated surfaces.

(a) (b) (c)

(d) (e)

(f)

Figure 1: Different representations for mesostructures:
(a) color maps, (b) normal maps, (c) height maps, (d)
volumetric mesostructure [CTW∗04], (e) polygonal mesh
[ZHW∗06], and (f) shading function (picture from Columbia
University website).

Hirche et al. work [HEGD04] is also centered in a height-
map ray-casting per-pixel implementation. However, they
extrude some prisms from the base mesh (their macro-
geometry), and the ray casting is done by using the prism
walls, quadrupling the number of faces, which is unneces-
sary in our method.

2.2. Volumetric mesostructure

The use of volumetric mesostructure brings a more flexible
way to represent details. The mesostructures found in real
world are better approximated by volumes, which have no
overlapping restriction. Another advantage is the possibility
to add opacity per-voxel information, which can be used for
simulating more complex lighting phenomena as refraction
and subsurface scattering.

Most of the rendering applications use prism extrusion
from the base mesh to create a 3D parameterized space. This
can lead to self-intersections near concave features, which is
solved by some methods [PKZ04, PBFJ05].

In Lensch et al. work [LDS02] volumetric textures are ap-
plied over arbitrary macro-geometry mesh. They use back
to front slicing technique, drawing the polygons inside each
prism formed by the intersection of the orthogonal viewing
slices. To produce a fast intersection computation, they have
created a structure based on normal edge classification. So,

c© The Eurographics Association and Blackwell Publishing 2008.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

the slices are rapidly computed. They have created 3 differ-
ent implementations: in software, in hardware, and a hybrid
one, which is the fastest.

Wang et al. work [WTL∗04] is a generalization of VDM
that accepts volume mesostructure definition. Their main
structure, named GDM (Generalized Displacement Maps),
is also a five-dimensional function accessed in real-time, but
as opposed to VDM they use prisms, computing the ray exit
point and evaluating the intersection in each prism domain.

In Shell Texture Function (STF [CTW∗04]), Chen et al.
compute subsurface scattering, using photon tracing in pre-
processing and ray tracing for final visualization, but the ren-
dering are not interactive (images are generated in about 100
seconds). In their subsequent work, SRTF (Shell Radiance
Texture Functions) [SCT∗05], the visualization achieves in-
teractive frame rates. However, it is not possible to reproduce
detailed silhouettes since SRTF is rendered without ray trac-
ing. Indeed, these techniques are a hybrid approach between
ray casting and shading functions (described in Subsection
2.4).

2.3. Polygonal mesostructure

Zhou et al. [ZHW∗06] have developed interactive good re-
sults by rasterizing polygonal mesh mesostructure. They
carefuly stitch together geometry elements finding corre-
sponding elements in adjacent mesostructures patches. They
succesfully align elements through local deformation al-
though presenting some distortion on regions with very high
curvature.

In contrast to Zhou et al. work, Shell Maps [PBFJ05] do
not render the final geometry. They create prisms arround the
surface (similar to some previously mentioned techniques)
and map them on their counterpart prisms in texture space.
They create a general procedure to ray cast mesostructures
in texture space. Although the possibility to apply their pro-
cedure for different mesostructure representations, in their
examples they use polygonal and procedural ones, rendered
in non-interactive rates.

2.4. Representations of the Shading Function

Shading models are a very complex and important subject
in visualization domain. Its complexity comes from the fact
that these models try to represent and simulate the lighting
phenomena happening in microscale level to obtain results in
macro and mesoscale levels. Generally, in interactive appli-
cations, the shading model in use is the diffuse/specular one,
which is only an approximation of real lighting effects. For
more accurate shading, a bidirectional reflection distribution
function (BRDF) is more appropriate to categorize how light
is reflected from a point on the surface.

BRDF = f (θin,φin,θout ,φout) (1)

So, based on the BRDF model, to compute the outgoing
light Lo in a given direction ~ωo we need to integrate the in-
coming light in all directions:

Lo(~ωo) =
∫

Ω

BRDF(~ωi,~ωo)Li(~ωi)cos(θi)d~ωi (2)

where Ω represents the hemisphere vectorial space since the
light beams coming from the back are not considered. ~ω de-
scribes the spherical coordinate angles (θ,φ) of a given di-
rection vector.

This subsection covers the methods based on BRDF prin-
ciples. Most of them use a set of images as the input informa-
tion about the mesostructure shading function. This image
collection is the result of capturing real pictures of the de-
sired materials from different points of view, uniformly dis-
tributed in a hemisphere. In some methods [LYS01, VT04]
this is done synthetically.

Dana et al. [DvGNK99] introduced BTF (bidirectional
texture function) in an experimental work based on the
BRDF principles. They captured a set of images, using dif-
ferent material samples and varying the light and viewing
directions. The images are stored in a publicly available
database. So, the BTF is a 6D function, which has the same
4 BRDF variables (Equation 1) plus 2 for position on the
image:

BT F = f (θin,φin,θout ,φout ,u,v) (3)

Some methods have extended the BTF approach. Liu et
al. [LYS01] address two related problems: the synthesiza-
tion of a continuous BTF and the specification of new syn-
thesized BTF’s without the captured images. In [TZL∗02],
Tong et al. succeeded in rendering arbitrary surfaces with
BRDF material although in low speed (about 1 frame per
second).

Applying BTF on surfaces for real-time rendering is not
easy; the lookup value at (u,v) is a hard task since BTF
original information consists of a large amount of images.
Polynomial Texture Maps [MGW01] is a BTF simplification
since it removes the viewing direction from the equation, re-
ducing the number of images taken for each surface.

PT Mr,g,b(θin,φin,u,v) (4)

Instead of recording and accessing all the pictures, which
would still be very costly, they do a convenient approxima-
tion to store per-texel information: split chromaticity per-
texel luminance approximated as a biquadratic expression.

TensorTexture [VT04] technique uses synthetic
mesostructure. It also differs from BTF in storing in-
formation. It applies a dimensionality reduction after a

c© The Eurographics Association and Blackwell Publishing 2008.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

multilinear analysis of the image data tensors. However,
this approach had proved to be too slow for interactive
rendering. The CPU implementation has an average time of
1.6 seconds per image.

2.5. Comparing mesostructure techniques

Technique [Reference] Effects Characteristics

D
et

ai
le

d
L

ig
ht

in
g

D
et

ai
le

d
Si

lh
ou

et
te

Se
lf

-o
cc

lu
si

on
Se

lf
-s

ha
do

w
In

te
rr

efl
ec

tio
n

E
xt

ra
M

em
or

y
E

xt
ra

Po
ly

go
ns

Fa
ct

or
Pr

ep
ro

ce
ss

in
g

R
en

de
ri

ng
Sp

ee
d

Color
Texture Mapping [Cat74] 3 1 ↑↑

Normal
Bump Mapping [Bli78] X 3 1 ↑

Height Map
Displacement Map [Coo84] X X X 1 103 —
VDM [WWT∗03] X X X X 212 1 X ↑
Ray-casting [POC05] X X X X 1 1 —
Prism Ray-casting [HEGD04] X X X 1 4 —

Volumetric Mesostructure
Semi-Transparent [LDS02] X X X 27 3 —
GDM [WTL∗04] X X X X 214 4 X —
Shell Texture F. [CTW∗04] X X X X X 10 NA X ↓↓

Polygonal mesh
Shell Maps [PBFJ05] X X X X NA 4 X ↓↓
Mesh Quilting [ZHW∗06] X X X NA 103 X ↓

Shading Function
BTF [DvGNK99] X X X X 29 1 X ↓
PTM [MGW01] X X X 5 1 X ↑
TensorTexture [VT04] X X X X 211 1 X ↓↓

Table 1: Comparison between different interactive
mesostructure visualization. Negative points are marked
with a red background.

We summarize the visual effects and characteristics of
some of the main mesostructure visualization techniques in
Table 1. Some of the presented numbers are approximations,
but they are meaningful to compare different techniques. For
example, in Extra Memory, we have evaluated how much
per-texel information is needed to represent the mesostruc-
ture (computing the uncompressed data). Preprocessing
marks those that present expressive pre-computations. In
Rendering Speed column, up arrows mean fast rendering
while down arrows mean slow rendering (no arrows are used
for average speed).

Based on Table 1 we decide to use height-map ray-casting

algorithm for mesostructure rendering. It is the best option
in number of visual effects that do not contain significant
negative points (those in red boxes).

3. Related Work on Multiple Height Maps

The use of multiple height maps for representation of a com-
plex model is an interesting idea due to the compactness. For
rendering, the use of GPU height-map primitives is promis-
ing. The drastic reduction of vertices in the scene (the usual
bottleneck for complex object visualization) may result in
better performance. On the other hand, the GPU height-
map primitives visualization converges the effort in the pixel
shader. For this reason they have a natural LOD behavior. In
this section, we describe some work previously done that are
related to this approach.

RTM (Relief Texture Mapping [OBM00]) is the first work
on object visualization based on multiple height maps. RTM
starts by capturing the depth of an object from six orthogonal
points of view. In rendering time, a warping-based technique
is applied on the faces of the bounding box to reconstruct the
original model.

Badoud and Décoret [BD06] use multiple height maps to
represent and render complex objects. They store the height
maps of the six orthogonal points of view using an adapted
perspective frustum, which increases the detail information
about features that are almost perpendicular to the view
point. During rendering, they use a clipped frustum to re-
duce the number of discarded fragments.

Porquet et al. [PDG05] have developed a technique to ren-
der complex surfaces by using a rough geometric approxi-
mation on which colors and normals are applied according
to previously captured information, including height maps.
In preprocessing, they capture the maps from several points
of view. In rendering time, the three closest views to the cam-
era projection are used by the fragment shader. Based on the
height maps, the fragment shader reconstructs the equivalent
information of the three points of view to finally find which
one is the nearest sample to the current fragment, defining
the color and the normal to be used. The main disadvantage
of this method is the lack of silhouette details.

The multi-chart geometry images method [SWG∗03] is
similar to our geometry textures method, although it does
not use height maps. It extends Geometry images [GGH02]
by splitting a model into multi charts before parameterizing
each one onto a square. It is especially different from our
method during rendering. To render the geometry images, it
is necessary to reconstruct many triangles from the images,
overcharging the vertex pipeline, which is exactly what we
want to avoid. Since geometry image patches are defined on
the surface itself rather than height maps, they cannot apply
any optimization at the GPU fragment shader.

c© The Eurographics Association and Blackwell Publishing 2008.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

4. Geometry Texture Rendering

4.1. Height-map GPU ray casting

A height map (a.k.a. height field, relief map or depth tex-
ture) is a 2D regular table where a height is specified for each
entry. One way of representing a height map is a grayscale
image with brightness representing height (see Figure 1(c)).
Terrains are an example of a surface well suited to be repre-
sented by height maps.

A height map can be represented by the function:

hm(x,y) : [0,1]2→ [0,1].

We can define a Boolean function z(P), for (P.x,P.y,P.z)∈
[0,1]3, as:

z(P) ⇐ (P.z ≤ hm(P.x,P.y)) ? true : false,

In our implementation, we use the faces of a paral-
lelepiped to generate the fragments that will ray cast the
height map. The coordinates of its vertices are between 0
and 1 (as in a canonical cube), defining the local coordinate
space. The height map data is passed to the GPU through
a grayscale texture. The x and y axes of the parallelepiped
are exactly coincident with the u and v coordinates of the
texture, while z coincides with the height direction.

In GPU, the vertex shader sends to the fragment shader
the viewing direction already in local space. This way, each
fragment knows the path of the ray inside the canonical cube,
and can easily compute its exit point. The fragment-shader’s
main task is to answer the two ray-casting questions: is there
an intersection between the ray and the height map? Where
is the closest hit point?

As explained in [POC05], one strategy is to uniformly
sample this ray path in N points Pi and use function z(P) to
find the ray-surface intersection. This could be implemented
by a conditional loop varying Pi, from the entering to the
exit point, and stopping when z(Pi) is false. In each step Pi
is translated by ∆, which is the ray path divided by N.

When a ray does not intersect any height sample, the frag-
ment should be discarded without any contribution to the
frame buffer or to the z-buffer. For fragments not discarded,
the actual color can be retrieved from a color texture, and the
normal can be either computed directly from the height map
or given as a third texture to be used for shading. The co-
ordinates used in the texture lookup are (P.x,P.y) right after
the iterations. Finally, the depth is computed to register the
correct z-value for the z-buffer.

Two-step searching. Even if ∆ is short enough not to miss
a sample, the point where the ray touches the object is not
exactly computed. As proposed in [POC05], we use a second
searching step between points Pi−1 and Pi. This second step
is a binary search that divides the searching domain by two

in each step. Therefore, with M steps in the binary search we
multiply the precision by a 2M factor. Notice that this second
searching procedure is done in the same fragment code, it is
not a multi-pass algorithm.

We propose the following improvements for the height-
map GPU visualization:

Non-rectangular height map domain. A height sample
with value equal to 0 can be considered either as the surface
base or as a representation of empty space. We have chosen
the last case, since representing empty space is essential for
geometry textures. Figure 4(d) has an example.

Balancing between steps. Binary search is much more ef-
ficient than linear search. However, it cannot be exclusively
executed because, along the ray path, there could be several
intersections. In other words, the z(P) function may change
different times along the parametric ray for each fragment.
On the other hand, when the ray is totally perpendicular to
the height map (in a perfect top view), z(P) will change sign
at most once. In this case, the binary search can perfectly and
efficiently compute the intersection without the previous lin-
ear search. Based on this observation, we have implemented
a balance between the linear and the binary steps according
to the viewing slant. When in a vertical view, we reduce the
linear search iterations while increasing the binary search
iterations (N↓, M↑). For an almost horizontal viewing direc-
tion we do the opposite, prioritizing the linear search (N↑,
M↓). This way, we achieve up to two times faster rendering
for some cases (see Figure 2) than without balancing.

Some other methods were proposed to accelerate GPU ray
casting of height maps [Don05, PO07]. However, they need
extra information about distance functions.

4.2. Geometry Textures

The problem approached in our work is different from stan-
dard mesostructure rendering. We are interested in recon-
structing the details of an entire object, which is a non-
repetitive pattern, since it changes over the model domain.
In our case, the input is a set of height maps converted from
the original model to represent the complete geometrical in-
formation.

Geometry texture is a geometric representation for sur-
faces. Its domain is a parallel hexahedron and in its interior
a height-map represents the surface (see Figure 3). The do-
main is not restricted to a perfect rectangle, so empty sam-
ples are expected in each geometry texture. The construc-
tion of geometry texture patches from a complex model has
no global folding restriction and the patches are well fitted
around the surface contour. In rendering time, geometry tex-
tures use our ray-casting algorithm implemented in a frag-
ment shader. As a result, the geometry is correctly recon-
structed and rendered.

c© The Eurographics Association and Blackwell Publishing 2008.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

Figure 2: Comparing not-balanced and balanced searches
(right column). With balanced search, we obtain better per-
formance (85 fps × 66 fps on a GeForce 6800) when seen
from above and better quality when seen in a profile view.

Figure 3: Geometry texture sample. A height map defined
inside a hexahedron’s domain.

5. Conversion

The input for our conversion procedure is a polygon mesh
and the output is a set of geometry textures. There are three
main steps when converting triangle meshes into geometry
textures (see Figure 4(a)): mesh partitioning, bounding-box
determination and maps extraction.

Among the three conversion steps, mesh partitioning is
the most difficult and critical for the success of the algo-
rithm. Some conditions are expected when partitioning the
input model mesh into charts:

• The chart must not contain a folding situation in its~z.
• The chart domain should be as square as possible to re-

duce empty spaces.
• For visualization purposes, neighboring charts must share

their boundary, resulting in some overlapping between
them. Right after partitioning we add an extra triangle
ring around each chart (see Figure 4b). As explained in
[dTWL07], the overlap area is necessary to avoid cracks,
while in rendering time, z-buffer information is correctly
generated to achieve a seamless reconstruction.

Bounding-box determination includes finding a good or-
thonormal coordinate system and domain for each one of the
charts. Direction~z is taken as the median normal of all tri-
angles in one chart, with this we minimize the occurence
of self-folding partitions. Then, ~x and ~y must be chosen
based on the minimization of empty spaces in the domain.
We have used the 2D-PCA (Principal Component Analysis)
algorithm to determine directions ~x and ~y projected on the
plane defined by ~z. Finally, we project the coordinates of
all triangles to obtain the exact domain in each direction.
(~x,~y,~z) forms the local coordinate system of the chart.

In the map extraction phase, there are three maps we want
to obtain: height, color and normal maps. We have devel-
oped a GPU solution to extract the three maps from one
chart. Based on the local coordinate system of each chart,
we render its triangles in an orthogonal view projection per-
pendicularly to direction ~z, filling out the viewport with a
user-defined resolution (for example, 256×256). We repeat
the procedure three times capturing the image buffer:

• To obtain the color map we render the colors without illu-
mination.

• To generate the normal map we assign (x,y,z) global co-
ordinates of normal~ni of each vertex vi to (r,g,b). During
rasterization, within each triangle, the normals are inter-
polated and then normalized again.

• To obtain the height map we start by finding in CPU the
maximum and minimum coordinates (hmax and hmin) in
direction ~z. We assign a value hi ∈ [0,1], computed as
hi = vi.z−hmin

hmax−hmin
, to each vertex vi. This value is interpolated

inside the triangles and outputted as luminance.

Note that for space-reduction purposes, the image buffer
is captured and stored using 8-bit precision.

The rendering algorithm loads the maps as textures. How-
ever, before that, we apply a texel-dilation procedure to pre-
vent sampling problems when using mip-mapping. These
problems may occur when the graphics hardware access bor-
der information for non-rectangular domain, using a null
value (from out of the domain) to interpolate the returning
value. Our dilation algorithm fills empty texels around the
map domain with interpolated values. The procedure is done
for normal and color maps. See Figure 4.

In the following subsections we discuss two different
strategies we have implemented for mesh partitioning: PGP
(Periodical Global Parameterization [RLL∗06]) and VSA
(Variational Shape Approximation [CSAD04]).

c© The Eurographics Association and Blackwell Publishing 2008.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

Mesh Partioning Bounding-box determination Maps extraction

Partioning

Overlapping

Verify
folding

z definition
(normal median)

x, y definition
(PCA analysis)

bbox domain in 3D

color, normal, height
maps extraction

maps dilation

Geometry Texture set

mesh

(a)

(b) (c)

(e) · · ·

(d)

(f)

Figure 4: (a) Complete procedure for converting polygon meshes into a set of geometry textures. (b) Mesh partitioning.
(c) Bounding-box determination. (d) Height-map extraction (e) Height and normal maps of a patch. (f) Map dilation (two-
pixel dilation).

5.1. Partitioning with PGP

Periodic Global Parameterization is a globally smooth pa-
rameterization method for surfaces. PGP can be applied to
meshes with arbitrary topology, which is a restriction in
other parameterization methods [RLL∗06]. Moreover, we
can extract a quadrilateral chart layout from this parameter-
ization, which is based on two orthogonal piecewise linear
vector fields defined over the input mesh. This orthogonality
is especially interesting to guide our partitioning procedure
in order to reduce empty spaces in the domain. These vec-
tor fields are obtained by computing the principal curvature
directions, resulting in a parameterization that follows the
natural shape of the surface (left picture on Figure 5).

PGP avoids excessive empty spaces. However, often
charts obtained with PGP partitioning present some fold-
ing problems. For this reason we have decided to investigate
VSA as an alternative partitioning method.

5.2. Partitioning with VSA

Variational Shape Approximation is a clustering algorithm
for polygonal meshes that can be used for geometry sim-
plification [CSAD04]. Our partitioning algorithm based on
VSA uses each cluster as an initial chart, which is further
increased to overlap neighboring domains (see Figure 4).

The main advantage of using VSA compared to PGP is
that it reduces the number of folding cases. VSA uses L1,2

metric, which is based on theL2 measure of the normal field.
This means that it takes into account the normal direction
of the vertices to cluster them. A folding situation occurs
only if vertices in a chart have a sharp difference in their
normal direction (over 90 degrees). With VSA, each chart
only contains vertices with similar normal directions.

In the next section we describe some experiments to com-
pare the PGP and the VSA methods.

5.3. Comparing PGP and VSA

In our tests we have partitioned with both PGP and VSA two
different models: bunny and buffle (Figure 5).

Our first test compares how good PGP and VSA are at
avoiding empty spaces. We have counted for each chart the
number of used and empty texels. This was done in the
four test cases (PGP bunny, VSA bunny, PGP buffle and
VSA buffle). For simplicity, the charts were extracted with-
out overlapping and the maps without dilation. The maxi-
mum map size was 128×128. A map could be smaller than
that (adapted to the chart size), as long as each dimension
remained a power of two (respecting OpenGL’s restriction).
Table 2 shows the results, indicating that PGP is better at
avoiding empty spaces.

Model Method Total texels Empty texels %
Bunny PGP 1008128 240357 23.84%
Bunny VSA 461312 179194 38.84%
Buffle PGP 2498048 563652 22.56%
Buffle VSA 979456 453069 46.25%

Table 2: Considering empty spaces, PGP is better than VSA.

In our second test we have counted how many charts have
folding problems, again in the four test scenarios. A way to
check if a chart has a folding situation is to verify if there
is any inverted triangle when rasterizing all triangles in lo-
cal direction~z. Given that the triangles in the mesh respect
a counterclockwise rotation, if at least one of them is ras-
terized clockwise then the mesh folds itself in direction ~z.
Figure 5 shows a partitioned buffle model with inverted tri-
angles marked in green. In Table 3 we present the number
of folding charts and the total number of inverted triangles
found. Clearly, VSA is more appropriate to avoid folding
problems.

In conclusion, both methods have their own advantages.

c© The Eurographics Association and Blackwell Publishing 2008.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

Figure 5: Buffle partitioning with PGP and with VSA. Triangles with folding problem have their vertices marked in green.

Model Method Initial Initial Inverted Folding
triangles charts triangles charts

Bunny PGP 69,451 224 817 45
Bunny VSA 69,451 222 3 3
Buffle PGP 117,468 403 2819 62
Buffle VSA 117,468 397 34 6

Table 3: VSA significantly reduces the number of folding
charts (identified by inverted triangles).

While PGP is better for reducing empty spaces, VSA is
much more efficient in avoiding self-folding charts. We con-
sider that the folding problem is the most important issue.
Self-folding charts cannot be represented by our geometry
texture, which is a strong restriction. On the other hand,
empty-space reduction is merely an optimization.

Based on these facts, we have chosen VSA as our par-
titioning method. The results presented in the next section
have been achieved using VSA.

6. Applications

Once we have obtained a set of geometry textures, we can
render them using the height-map ray-casting algorithm on
GPU. In the following sections we discuss some applications
using geometry textures visualization.

0

50

100

150

200

250

300

350

400

0 100000 200000 300000 400000 500000 600000

128x128
256x256
512x512
Mesh VBO
Mesh CVA

640x480 800x600 1024x768

1280x1024

Ray-casting area in number of pixels

F
P

S

Figure 7: We have compared three different geometry texture
resolutions (1282, 2562, 5122) and the original mesh ren-
dered with VBO (Vertex Buffer Object) and CVA (Compiled
Vertex Array) of the dragon model. Frame rates registered
on a GeForce 8800.

6.1. Rendering of solid models

We have used the dragon model with 871,414 triangles for
tests (see Figure 6). We have generated three sets of 453 ge-
ometry textures, varying their maximum resolution (1282,
2562 and 5122). The tests were done with a GeForce 8800
GTX graphics card.

Since geometry textures have their performance bottle-
necked per pixel, we have varied the zoom level in our tests.
We have plotted the results in Figure 7.

To compare performance between geometry textures and
common triangle-mesh visualization, we have measured the
rendering speed of the original dragon model in two special

c© The Eurographics Association and Blackwell Publishing 2008.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

Figure 6: The dragon model partitioned into 453 geometry textures and rendered with maximum resolution 256×256 for each
patch.

situations: with Compiled Vertex Array (CVA) and with Ver-
tex Buffer Object (VBO). Both methods are advanced fea-
tures in OpenGL and without them the speed would be less
than 1 FPS for such model size. For the dragon model with
871K triangles, we have obtained 27 FPS with CVA and 135
FPS with VBO (plotted as dashed lines in Figure 7).

The horizontal axis in Figure 7 represents the number of
pixels of the dragon’s ray-casting area, which is formed
by the rasterization of the geometry-textures bounding-
box faces (without recounting overlapping fragments). The
higher the number of pixels, the larger the model is on the
screen. For a practical idea, we have highlighted some win-
dow sizes (640×480, 800×600, 1024×768, 1280×1024)
which the model would fit.

The ray-casting algorithm is the same independently of
resolution. However, we have verified that the lowest max-
imum resolution (1282) was the fastest one. This is a result
of less graphics card memory in use (4.21MB), optimizing
caching and fetching. As we will see, for quality purposes,
2562 would be a good choice for maximum resolution for
the dragon’s 453 geometry textures used in test. Its perfor-
mance is better than the original mesh rendered with VBO
for resolutions smaller than 800×600.

6.2. Horizons visualization

Horizons are geological surfaces representing interfaces be-
tween two contiguous sediment layers. In general, horizons
are extracted from volumetric seismic data [OK04]. For each
seismic trace (a vertical column in the volume), at most one
sample belongs to the same horizon. Thus, height maps are
a natural choice to represent this surfaces, given that there
is a unique representation on vertical. In oil industry, a set
of horizons for one geographical region is very important to
determine possible bottom and top limits of a reservoir.

Figure 8 shows an example of horizons set that are rep-

Figure 8: Set of horizons on the same geographical region.
Each horizon is showing a different property mapped into a
color scale.

resented by height-maps. To visualize them we use our ge-
ometry texture technique. As a result, we obtain high perfor-
mance when this set is far from the camera. Figure 9 presents
rendering speed in three different situations: in top, profile
and oblique views.

Originally, these horizons are height maps with 1588×
1188 resolution, they could be reconstructed with about 16
million triangles. As already mentioned, the use of geome-
try textures brings a LOD behavior that can be once more
observed on horizons-rendering speed (see Figure 9). Hori-
zontal (or profile) view is not so efficient as top view because
of the linear-binary balance (see Section 4.1). Note that the
speed values are clearly slower than in dragon example be-
cause different graphics cards were used for tests.

c© The Eurographics Association and Blackwell Publishing 2008.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

0

20

40

60

80

100

120

0 100000 200000 300000 400000 500000 600000 700000
Ray-casting area in number of pixels

FP
S

Top

Horizontal

Oblique

Figure 9: Rendering speed of the scene in Figure 8 varying
screen resolution in three different point of views: viewing
from the top, in profile and obliquely. NVidia GeForce 7900
GTX.

6.3. Smooth surfaces

Once we have a new geometry representation based on im-
ages (height maps), image operations can be applied on these
maps to transform geometry . For example, one could use a
low-band filter to smooth the geometry (or a high-band filter
to highlight small geometric features).

We have experimented a Gaussian blur on both height and
normal maps to smooth the surface. The result is a surface
without most of its high frequency details as shown in Figure
10. However, it is clear that it is not possible to deliberately
apply the smooth operation because each geometry-texture
patch does not have complete information about the neigh-
bors. As a consequence, some undesirable features start to
appear on regions with strong curvature. This is not the only
issue. When applying Gaussian filter with significant radius,
as in Figure 10(d), each patch becomes more flat and it is
possible to see the seams.

7. Conclusion and Future Work

We have proposed a new representation for highly-
tessellated models using a set of geometry textures, which
are rendered using a GPU implementation of height-map ray
casting. Our results have shown that this new representation
is suitable for natural models (i.e. non-CAD models). The
final rendered images have similar quality compared to tra-
ditional polygonal rasterization methods.

The following items are some of the positive aspects of
our technique:

• The rendering speed naturally follows a LOD behavior.
This means that when the model is small on the screen
(i.e., far from the camera), rendering is faster. This is a re-
sult of relieving the vertex-stage burden, transferring com-
putation bottleneck to pixel stage.
• Depending on the chosen resolution, our representa-

tion requires less memory than polygonal representa-

(a) (b)

(c) (d)

Figure 10: Smoothing Buffle model. (a) Original (b) 2-texels
Gaussian blur (c) 4-texels Gaussian blur (d) 8-texels Gaus-
sian blur.

tion, without losing significant geometry information. See
[dTWL07] for more details.

• Our technique is compatible with polygon rasterization,
thus geometry-texture objects can be inserted in any vir-
tual scene composed by polygonal objects.

• It is possible to apply image operations to transform
model geometry.

Our potential drawbacks are:

• Recent graphics cards that implement VBO extension
have very high performance for polygonal rendering. As
a consequence, when compared to VBO performance, our
technique is faster only if the model is not so big on
the screen. However, if the scene contains multiple mod-
els, polygonal rendering would proportionally lose perfor-
mance, while our solution would keep a stable frame rate.

• Another adverse point is the sophisticated conversion al-
gorithm. Our procedure is composed by multiple passes,
including the partitioning step, which is considerably
elaborate. This may be improved by using multilayer
height maps as shown in [SdTG08].

We suggest the following ideas for future work:

Self shadows

Self shadows for height-map ray casting is a straightforward
algorithm. However, in the case of geometry textures, mul-
tiple maps are in use simultaneously and they do not have
information about neighbor maps. Alternatively, it is always
possible to use shadow mapping [Wil78] to produce shad-

c© The Eurographics Association and Blackwell Publishing 2008.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

ows since geometry textures keep z-buffer up to date. How-
ever, shadow mapping suffers from aliasing problems and
needs sophisticated algorithms to overcome this problem
(see [BC07] for a survey about this subject). For this reason,
ray cast for shadows, including neighboring information, is
a valuable topic for future research.

Other image operations

We have implemented a simple blur operation to smooth sur-
faces represented by geometry textures (Section 6.3). It is
possible to use other operations that may result in different
geometry modifications. For example, a high-band filter can
be used to highlight small geometric features. Other possible
applications are operations to insert geometric patterns and
simulations of cellular network [GF06].

Combined use of explicit and implicit surfaces for GPU
ray casting

This work implements a GPU ray casting for height maps
that uses the faces of a bounding-box to trigger the algo-
rithm. This idea has also been explored for implicit surfaces
rendering [TL04,dTLP07,LB06]. We suggest, as a future re-
search, the combination of implicit and explicit algorithms.
For example, it is possible to produce some holes in nat-
ural models by subtracting some implicit spheres from the
geometry texture set. Another example could be rendering
implicit surface objects (e.g., a torus) applying height-map
mesostructure information.

8. Acknowledgement

To Tecgraf design group. To the anonymous reviewers for
their excellent contributions.

References

[BC07] BARROSO V. B. R. B., CELES W.: Improved
real-time shadow mapping for cad models. In SIBGRAPI
’07: Proceedings of the XX Brazilian Symposium on Com-
puter Graphics and Image Processing (SIBGRAPI 2007)
(Washington, DC, USA, 2007), IEEE Computer Society,
pp. 139–146. 11

[BD06] BABOUD L., DÉCORET X.: Rendering geometry
with relief textures. In GI ’06: Proceedings of the 2006
conference on Graphics interface (Toronto, Ont., Canada,
Canada, 2006), Canadian Information Processing Society,
pp. 195–201. 4

[Bli78] BLINN J. F.: Simulation of wrinkled surfaces. In
Computer Graphics (SIGGRAPH ’78 Proceedings) (Aug.
1978), vol. 12, pp. 286–292. 2, 4

[BN76] BLINN J. F., NEWELL M. E.: Texture and reflec-
tion in computer generated images. Communications of
the ACM 19 (1976), 542–546. 2

[Cat74] CATMULL E. E.: A subdivision algorithm for
computer display of curved surfaces. PhD thesis, 1974.
2, 4

[Coo84] COOK R. L.: Shade trees. In Proceedings of the
11th annual conference on Computer graphics and inter-
active techniques (1984), ACM Press, pp. 223–231. 2, 4

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN

M.: Variational shape approximation. ACM Transac-
tions on Graphics. Special issue for SIGGRAPH confer-
ence (2004), 905–914. 6, 7

[CTW∗04] CHEN Y., TONG X., WANG J., LIN S., GUO

B., SHUM H.-Y.: Shell texture functions. ACM Trans.
Graph. 23, 3 (2004), 343–353. 2, 3, 4

[Don05] DONNELLY W.: GPU Gems 2 - Per-Pixel Dis-
placement Mapping with Distance Functions. Addison
Wesley, 2005, ch. Per-Pixel Displacement Mapping with
Distance Functions, pp. 123–135. 5

[dTLP07] DE TOLEDO R., LEVY B., PAUL J.-C.: Itera-
tive methods for visualization of implicit surfaces on gpu.
In ISVC, International Symposium on Visual Computing
(Lake Tahoe, Nevada/California, November 2007), Lec-
ture Notes in Computer Science, Springer, pp. 598–609.
11

[dTWL07] DE TOLEDO R., WANG B., LEVY B.: Geom-
etry textures. In Proceedings of SIBGRAPI 2007 - XX
Brazilian Symposium on Computer Graphics and Image
Processing (Belo Horizonte, October 2007), SBC - So-
ciedade Brasileira de Computacao, IEEE Press, pp. 79–
86. 1, 6, 10

[DvGNK99] DANA K. J., VAN GINNEKEN B., NAYAR

S. K., KOENDERINK J. J.: Reflectance and texture of
real-world surfaces. ACM Transactions on Graphics 18,
1 (1999), 1–34. 3, 4

[GF06] GOBRON S., FINCK D.: Generating surface tex-
tures based on cellular networks. In GMAI (2006), IEEE
Computer Society, pp. 113–120. 11

[GGH02] GU X., GORTLER S. J., HOPPE H.: Geome-
try images. In SIGGRAPH ’02: Proceedings of the 29th
annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 2002), ACM Press,
pp. 355–361. 4

[HEGD04] HIRCHE J., EHLERT A., GUTHE S.,
DOGGETT M.: Hardware accelerated per-pixel dis-
placement mapping. In Graphics Interface (2004). 2,
4

[LB06] LOOP C., BLINN J.: Real-time gpu rendering of
piecewise algebraic surfaces. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers (New York, NY, USA, 2006),
ACM Press, pp. 664–670. 11

[LDS02] LENSCH H. P. A., DAUBERT K., SEIDEL H.-
P.: Interactive semi-transparent volumetric textures. In
Proceedings of Vision, Modeling, and Visualization VMV

c© The Eurographics Association and Blackwell Publishing 2008.

Rodrigo de Toledo, Bin Wang and Bruno Lévy / Geometry Textures and Applications This paper is based on Geometry Textures, by Rodrigo de Toledo, Bin Wang, and Bruno Lévy, which appeared in th eProceedings of SIBGRAPI 2007 - XX Brazilian Symposium on Computer Graphics and Image Processing.

2002 (Erlangen, Germany, 2002), Greiner G., Niemann
H., Ertl T., Girod B., Seidel H.-P., (Eds.), Akademische
Verlagsgesellschaft Aka GmbH, pp. 505–512. 2, 4

[LYS01] LIU X., YU Y., SHUM H.-Y.: Synthesizing bidi-
rectional texture functions for real-world surfaces. In SIG-
GRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 2001), ACM Press, pp. 97–106. 3

[MGW01] MALZBENDER T., GELB D., WOLTERS H.:
Polynomial texture maps. In SIGGRAPH ’01: Proceed-
ings of the 28th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 2001),
ACM Press, pp. 519–528. 3, 4

[OBM00] OLIVEIRA M. M., BISHOP G., MCALLISTER

D.: Relief texture mapping. In Proceedings of ACM SIG-
GRAPH 2000 (July 2000), Computer Graphics Proceed-
ings, Annual Conference Series, pp. 359–368. 4

[OK04] O’MALLEY S. M., KAKADIARIS I. A.: Towards
robust structure-based enhancement and horizon picking
in 3-d seismic data. In CVPR (2) (2004), pp. 482–489. 9

[PBFJ05] PORUMBESCU S. D., BUDGE B., FENG L.,
JOY K. I.: Shell maps. ACM Trans. Graph. 24, 3 (2005),
626–633. 2, 3, 4

[PDG05] PORQUET D., DISCHLER J.-M., GHAZANFAR-
POUR D.: Real-time high-quality view-dependent texture
mapping using per-pixel visibility. In GRAPHITE ’05:
Proceedings of the 3rd international conference on Com-
puter graphics and interactive techniques in Australasia
and South East Asia (New York, NY, USA, 2005), ACM
Press, pp. 213–220. 4

[PKZ04] PENG J., KRISTJANSSON D., ZORIN D.: Inter-
active modeling of topologically complex geometric de-
tail. ACM Trans. Graph. 23, 3 (2004), 635–643. 2

[PO07] POLICARPO F., OLIVEIRA M. M.: GPU Gems 3
- Relaxed Cone Stepping for Relief Mapping. Addison-
Wesley Professional, 2007, ch. 18, pp. 409–428. 5

[POC05] POLICARPO F., OLIVEIRA M. M., COMBA J.
L. D.: Real-time relief mapping on arbitrary polygonal
surfaces. In SI3D ’05: Proceedings of the 2005 sympo-
sium on Interactive 3D graphics and games (New York,
NY, USA, 2005), ACM Press, pp. 155–162. 2, 4, 5

[RLL∗06] RAY N., LI W. C., LÉVY B., SHEFFER A.,
ALLIEZ P.: Periodic global parameterization. ACM Trans.
Graph. 25, 4 (2006), 1460–1485. 6, 7

[SCT∗05] SONG Y., CHEN Y., TONG X., LIN S., SHI J.,
GUO B., SHUM H.-Y.: Shell radiance texture functions.
In PG ’05: Proceedings of the 9th Pacific Conference on
Computer Graphics and Applications (2005), IEEE Com-
puter Society. 3

[SdTG08] SANTOS P., DE TOLEDO R., GATTASS M.:
Solid height-map sets: modeling and visualization. In
SPM, ACM Solid and Physical Modeling Symposium

2008 (Stony Brook, New York, USA, June 2008), p. to
appear. 10

[SWG∗03] SANDER P. V., WOOD Z. J., GORTLER S. J.,
SNYDER J., HOPPE H.: Multi-chart geometry images.
In SGP ’03: Proceedings of the 2003 Eurographics/ACM
SIGGRAPH symposium on Geometry processing (Aire-
la-Ville, Switzerland, 2003), Eurographics Association,
pp. 146–155. 4

[TL04] TOLEDO R., LEVY B.: Extending the graphic
pipeline with new gpu-accelerated primitives. In 24th In-
ternational gOcad Meeting, Nancy, France (2004). also
presented in Visgraf Seminar 2004, IMPA, Rio de Janeiro,
Brazil. 11

[TZL∗02] TONG X., ZHANG J., LIU L., WANG X., GUO

B., SHUM H.-Y.: Synthesis of bidirectional texture func-
tions on arbitrary surfaces. In SIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 2002),
ACM Press, pp. 665–672. 3

[VT04] VASILESCU M. A. O., TERZOPOULOS D.: Ten-
sortextures: multilinear image-based rendering. ACM
Trans. Graph. 23, 3 (2004), 336–342. 3, 4

[Wil78] WILLIAMS L.: Casting curved shadows on
curved surfaces. In Computer Graphics (SIGGRAPH ’78
Proceedings) (Aug. 1978), vol. 12, pp. 270–274. 10

[WTL∗04] WANG X., TONG X., LIN S., HU S., GUO

B., SHUM H.-Y.: Generalized displacement maps. In
Proceedings of the Eurographics Workshop on Rendering
Techniques (2004). 3, 4

[WWT∗03] WANG L., WANG X., TONG X., LIN S., HU

S., GUO B., SHUM H.-Y.: View-dependent displacement
mapping. ACM Transactions on Graphics 22, 3 (July
2003), 334–339. 2, 4

[ZHW∗06] ZHOU K., HUANG X., WANG X., TONG Y.,
DESBRUN M., GUO B., SHUM H.-Y.: Mesh quilting for
geometric texture synthesis. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers (New York, NY, USA, 2006),
ACM, pp. 690–697. 2, 3, 4

c© The Eurographics Association and Blackwell Publishing 2008.

