
HAL Id: inria-00332390
https://inria.hal.science/inria-00332390

Submitted on 20 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Characterization of NCk by First Order Functional
Programs

Jean-Yves Marion, Romain Péchoux

To cite this version:
Jean-Yves Marion, Romain Péchoux. A Characterization of NCk by First Order Functional Programs.
5th International Conference on Theory and Applications of Models of Computation - TAMC 2008,
Xidian University, Apr 2008, Xian, China. pp.136-147, �10.1007/978-3-540-79228-4�. �inria-00332390�

https://inria.hal.science/inria-00332390
https://hal.archives-ouvertes.fr


A Characterization of NCk by First Order
Functional Programs

Jean-Yves Marion and Romain Péchoux
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Abstract. This paper is part of a research on static analysis in order
to predict program resources and belongs to the implicit computational
complexity line of research. It presents intrinsic characterizations of the
classes of functions, which are computable in NCk, that is by a uniform,
poly-logarithmic depth and polynomial size family of circuits, using first
order functional programs. Our characterizations are new in terms of first
order functional programming language and extend the characterization
of NC1 in [9]. These characterizations are obtained using a complexity
measure, the sup-interpretation, which gives upper bounds on the size of
computed values and captures a lot of program schemas.

1 Introduction

Our work is related to machine independent characterizations of functional com-
plexity classes initiated by Cobham’s work [14] and studied by the Implicit com-
putational complexity (ICC) community, including safe recursion of Bellantoni
and Cook [4], data tiering of Leivant [23], linear type disciplines by Girard et
al. [17, 18], Lafont [22], Baillot-Mogbil [2], Gaboardi-Ronchi Della Rocca [16]
and Hofmann [19] and studies on the complexity of imperative programs using
matrix algebra by Kristiansen-Jones [21] and Niggl-Wunderlich [28]. Traditional
results of the ICC focus on capturing all functions of a complexity class and
we should call this approach extensional whereas our approach, which tries to
characterize a class of programs, which represents functions in some complex-
ity classes, as large as possible, is rather intensional. In other words, we try to
delineate a broad class of programs using a certain amount of resources.

Our approach relies on methods combining term rewriting systems and inter-
pretation methods for proving complexity upper bounds by static analysis. It
consists in assigning a function from real numbers to real numbers to some
symbols of a program. Such an assignment is called a sup-interpretation if
it satisfies some specific semantics properties introduced in [27]. Basically, a
sup-interpretation provides upper bounds on the size of computed values. Sup-
interpretation is a generalization of the notion of quasi-interpretation of [10].
The problem of finding a quasi-interpretation or sup-interpretation of a given
program, called synthesis problem, is crucial for potential applications of the
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method. It consists in automatically finding an interpretation of a program in
order to determine an upper bound on its complexity. It was demonstrated
in [1, 8] that the synthesis problem is decidable in exponential time for small
classes of polynomials. Quasi-interpretations and sup-interpretations have al-
ready been used to capture the sets of functions computable in polynomial time
and space [26, 7] and capture a broad class of algorithms, including greedy algo-
rithms and dynamic programming algorithms. Consequently, it is a challenge to
study whether this approach can be adapted to characterize small parallel com-
plexity classes. Parallel algorithms are difficult to design. Employing the sup-
interpretation method leads to delineate efficient parallel programs amenable to
circuit computing. Designing parallel implementations of first order functional
programs with interpretation methods for proving complexity bounds, might be
thus viable in the near future.

A circuit Cn is a directed acyclic graph built up from Boolean gates And,
Or and Not. Each gate has an in-degree less or equal to two and an out-degree
equal to one. A circuit has n input nodes and g(n) output nodes, where g(n) =
O(nc), for some constant c ≥ 1. Thus, a circuit Cn computes a function fn :
{0, 1}n → {0, 1}g(n). A family of circuits is a sequence of circuits C = (Cn)n,
which computes a family of finite functions (fn)n over {0, 1}∗. A function f is
computed by a family of circuits (Cn)n if the restriction of f to inputs of size
n is computed by Cn. A uniformity condition ensures that there is a procedure
which, given n, produces a description of the circuit Cn. Such a condition is
introduced to ensure that a family of circuits computes a reasonable function.
All along, we shall consider UE∗ -uniform family of circuits defined in [29]. The
complexity of a circuit depends on its depth (the longest path from an input to
an output gate) and its size (the number of gates). The class NCk is the class
of functions computable by a UE∗ -uniform family of circuits of size bounded by
O(nd), for some constant d, and depth bounded by O(logk(n)). Intuitively, it
corresponds to the class of functions computed in poly-logarithmic time with
a polynomial number of processors. Following [3], the main motivation in the
introduction of such classes was the search for separation results: “NC1 is the
at the frontier where we obtain interesting separation results”. NC1 contains
binary addition, substraction, prefix sum of associative operators. Buss [11] has
demonstrated that the evaluation of boolean formulas is a complete problem
for NC1. A lot of natural algorithms belong to the distinct levels of the NCk

hierarchy. In particular, the reachability problem in a graph or the search for a
minimum covering tree in a graph are two problems in NC2.

In this paper, we define a restricted class of first order functional programs,
called fraternal and arboreal programs, using the notion of sup-interpretation
of [27]. We demonstrate that functions, which are computable by these pro-
grams at some rank k, are exactly the functions computed in NCk. This result
generalizes the characterization of NC1 established in [9]. To our knowledge,
these are the first results, which connect small parallel complexity classes and
first order functional programs.
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2 First order functional programs

2.1 Syntax of programs

We define a generic first order functional programming language. The vocabulary
Σ = 〈Var,Cns,Op,Fct〉 is composed of four disjoint sets of symbols. The arity
of a symbol is the number n of arguments that it takes. A program p consists
in a vocabulary and a set of rules R defined by the following grammar:

(Values) T (Cns) 3 v ::= c | c(v1, · · · ,vn)
(Patterns) T (Var,Cns) 3 p ::= c | x | c(p1, · · · , pn)
(Expressions) T (Var,Cns,Op,Fct) 3 e ::= c | x | c(e1, · · · , en)

| op(e1, · · · , en) | f(e1, · · · , en)
(Rules) R 3 r ::= f(p1, · · · , pn)→ e

where x ∈ Var is a variable, c ∈ Cns is a constructor symbol, op ∈ Op is an op-
erator, f ∈ Fct is a function symbol, p1, · · · , pn ∈ T (Var,Cns) are patterns and
e1, · · · , en ∈ T (Var,Cns,Op,Fct) are expressions. The program’s main function
symbol is the first function symbol in the program’s list of rules.

Throughout the paper, we only consider orthogonal programs having disjoint
and linear rule patterns. Consequently, each program is confluent [20]. We will
use the notation e to represent a sequence of expressions, that is e = e1, . . . , en.

2.2 Semantics

The domain of computation of a program p is the constructor algebra Values =
T (Cns). Set Values∗ = Values∪{Err}, where Err is a special symbol associated
to runtime errors. An operator op of arity n is interpreted by a function JopK
from Valuesn to Values∗. Operators are essentially basic partial functions like
destructors or characteristic functions of predicates like =.

Set Values# = Values ∪ {Err,⊥}, where ⊥ means that a program is non-
terminating. Given a program p of vocabulary 〈Var,Cns,Op,Fct〉 and an expres-
sion e ∈ T (Cns,Op,Fct), the computation of e, noted JeK, is defined by JeK = w
iff e

∗→w and w ∈ Values∗, otherwise JeK = ⊥, where ∗→ is the reflexive and
transitive closure of the rewriting relation → induced by the rules of R. By def-
inition, if no rule is applicable, then an error occurs and JeK = Err. A program
of main function symbol f computes a partial function φ : Valuesn → Values∗

defined by ∀u1, · · · ,un ∈ Values, φ(u1, · · · ,un) = w iff Jf(u1, · · · ,un)K = w.

Definition 1 (Size). The size of an expression e is defined by |e| = 0, if e is a
0-arity symbol, and |b(e1, · · · , en)| =

∑
i∈{1,...,n} |ei|+ 1, if e = b(e1, · · · , en).

Example 1. Consider the following program which computes the logarithm func-
tion over binary numbers using the constructor symbols {0,1, ε}:

f(x)→ rev(log(x))
log(i(x))→ if(Msp(Fh(i(x)),Sh(i(x))),0(log(Fh(i(x)))),1(log(Fh(i(x)))))

log(ε)→ ε
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where if(u, v, w) is an operator, which outputs v or w depending on whether u
is equal to 1(ε) or 0(ε), rev is an operator, which reverses a binary value given
as input, Msp is an operator, which returns 1(ε) if the leftmost |x| 	 |y| bits of
x (where ∀x, y ∈ N, x 	 y = 0 if y > x and x − y otherwise) are equal to the
empty word ε and returns 0(ε) otherwise, Fh is an operator, which outputs the
leftmost b|x|/2c bits of x, and Sh is an operator, which outputs the rightmost
d|x|/2e bits of x.

The algorithm tests whether the number b|x|/2c of leftmost bits is equal to
the number d|x|/2e of rightmost bits in the input x using the operator Msp.
In this case, the last digit of the logarithm is a 0, otherwise it is a 1. Finally,
the computation is performed by applying a recursive call over half of the input
digits and the result is obtained by reversing the output, using the operator rev.
For any binary value v, we have Jlog(v)K = u, where u is the value representing
the binary logarithm of the input value v. For example, Jlog(1(0(0(0(ε))))K =
1(0(0(ε))).

2.3 Call-tree

We now describe the notion of call-tree which is a representation of a program
state transition sequences induced by the rewrite relation→ using a call-by-value
strategy. In this paper, the notion of call-tree allows to control the successive
function calls corresponding to a recursive rule. First, we define the notions of
context and substitution. A context is an expression C[�1, · · · , �r] containing
one occurrence of each �i, with �i new variables which do not appear in Σ.
A substitution is a finite mapping from variables to T (Var,Cns,Op,Fct). The
substitution of each �i by an expression di in the context C[�1, · · · , �r] is noted
C[d1, · · · , dr]. A ground substitution σ is a mapping from variables to Values.
Throughout the paper, we use the symbol σ and the word “substitution” to de-
note a ground substitution. The application of a substitution σ to an expression
(or a sequence of expressions) e is noted eσ.

Definition 2. Suppose that we have a program p. A state 〈f,u1, · · · ,un〉 of p
is a tuple where f is a function symbol of arity n and u1, · · · ,un are values of
Values∗.

There is state transition, noted η1  η2, between two states η1 = 〈f,u1, . . . ,
un〉 and η2 = 〈g, v1, · · · , vm〉 if there are a rule f(p1, · · · , pn) → e of p, a sub-
stitution σ, a context C[−] and expressions e1, · · · , em such that ∀i ∈ {1, n}
piσ = ui, ∀j ∈ {1,m}, JejσK = vj and e = C[g(e1, · · · , em)]. We write ∗

 
to denote the reflexive and transitive closure of  . A call-tree of p of root
〈f,u1, · · · ,un〉 is the following tree:

– the root is the node labeled by the state 〈f,u1, · · · ,un〉.
– the nodes are labeled by states of {η | 〈f,u1, · · · ,un〉

∗
 η},

– there is an edge between two nodes η1 and η2 if there is a transition between
both states which label the nodes (i.e. η1  η2).
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A branch of the call-tree is a sequence of states of the call-tree η1, · · · , ηk such that
η1  η2 . . . ηk−1  ηk. Given a branch B of a call-tree, the depth of the branch
depth(B) is the number of states in the branch, i.e. if B = η1, . . . , ηi−1, ηi, then
depth(B) = i.

Notice that a call-tree may be infinite if it corresponds a non-terminating
program.

2.4 Fraternity

The fraternity is the main syntactic notion, we use in order to restrict the com-
putational power of considered programs.

Definition 3. Given a program p, the precedence ≥Fct is defined on function
symbols by f ≥Fct g if there is a rule f(p) → C[g(e)] in p. The reflexive and
transitive closure of ≥Fct is also noted ≥Fct. Define ≈Fct by f ≈Fct g iff f ≥Fct g
and g ≥Fct f and define >Fct by f >Fct g iff f ≥Fct g and not g ≥Fct f. We
extend the precedence to operators and constructor symbols by ∀f ∈ Fct, ∀b ∈
Cns ∪Op, f >Fct b.

Definition 4. Given a program p, an expression C[g1(e1), . . . , gr(er)] is a fra-
ternity activated by f(p1, · · · , pn) if:

1. f(p1, · · · , pn)→ C[g1(e1), . . . , gr(er)] is a rule of p,
2. For each i ∈ {1, r}, gi ≈Fct f,
3. For every symbol b in the context C[�1, · · · , �r], f >Fct b.

Notice that a fraternity corresponds to a recursive rule.

Example 2. if(Msp(Fh(i(x)),Sh(i(x))),0(log(Fh(i(x)))),1(log(Fh(i(x))))) is
the only fraternity in the program of example 1. It is activated by log(i(x)) by
taking C[�1, �2] = if(Msp(Fh(i(x)),Sh(i(x))),0(�1),1(�2)) since log ≈Fct log.

3 Sup-interpretations

3.1 Monotonic, polynomial and additive partial assignments

Definition 5. A partial assignment I is a partial mapping from the vocabulary
Σ such that, for each symbol b of arity n in the domain of I, it yields a partial
function I(b) : (R+)n 7−→ R+, where R+ is the set of non-negative real numbers.
The domain of a partial assignment I is noted dom(I) and satisfies Cns∪Op ⊆
dom(I).

A partial assignment I is monotonic if for each symbol b ∈ dom(I), we have
∀i ∈ {1, . . . , n} , ∀Xi, Yi ∈ R+, Xi ≥ Yi ⇒ I(b)(X1, · · · , Xn) ≥ I(b)(Y1, · · · , Yn).

A partial assignment I is polynomial if for each symbol b of dom(I), I(b) is
a max-polynomial function ranging over R+. That is, I(b) = max(P1, . . . , Pk),
with Pj polynomials.

A partial assignment is additive if the assignment of each constructor symbol
c of arity n is of the shape I(c)(X1, · · · , Xn) =

∑n
i=1Xi + αc, with αc ≥ 1,

whether n > 0, and I(c) = 0 otherwise.
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If each function symbol of a given expression e having m variables x1, · · · , xm

belongs to dom(I) then, given m fresh variables X1, · · · , Xm ranging over R+,
we define the homomorphic extension I∗(e) of the assignment I inductively by:

1. If xi is a variable of Var, then I∗(xi) = Xi

2. If b is a symbol of Σ of arity 0, then I∗(b) = I(b).
3. If b is a symbol of arity n > 0 and e1, · · · , en are expressions, then

I∗(b(e1, · · · , en)) = I(b)(I∗(e1), . . . , I∗(en))

Given a sequence e = e1, · · · , en, we will sometimes use the notation I∗(e) to
denote I∗(e1), . . . , I∗(en).

3.2 Sup-interpretations

Definition 6. A sup-interpretation is a partial assignment θ which satisfies the
three conditions below:

1. θ is a monotonic assignment.
2. For each v ∈ Values, θ∗(v) ≥ |v|
3. For each symbol b ∈ dom(θ) of arity n and for each value v1, . . . , vn of

Values, if Jb(v1, . . . , vn)K ∈ Values, then

θ∗(b(v1, . . . , vn)) ≥ θ∗(Jb(v1, . . . , vn)K)

A sup-interpretation is additive (respectively polynomial) if it is an additive (re-
spectively polynomial) assignment.

Notice that if a sup-interpretation is an additive assignment then the sec-
ond condition of the above definition is always satisfied. Intuitively, the sup-
interpretation is a special program interpretation which bounds from above the
output size of the function denoted by the program, as demonstrated in the
following lemma:

Lemma 1 ([27]). Given a sup-interpretation θ and an expression e defined over
dom(θ), if JeK ∈ Values then we have |JeK| ≤ θ∗(JeK) ≤ θ∗(e)
Example 3. Consider the program of example 1. Define the additive assignment
θ by θ(1)(X) = θ(0)(X) = X + 1, θ(ε) = 0, θ(Msp)(X,Y ) = X 	 Y =
max(X − Y, 0), θ(Fh)(X) = X/2 and θ(Sh)(X) = X/2. We claim that θ is
an additive and polynomial sup-interpretation. Indeed, all these functions are
monotonic. Moreover, for every binary value v, we have θ∗(v) = |v| since the
sup-interpretation of a value is equal to its size. Finally, such an assignment
satisfies the third condition of the above definition. In particular, we check that,
for every binary values u and v, if Msp(u,v) ∈ Values then we have:

θ∗(Msp(u,v)) = θ(Msp)(θ∗(u), θ∗(v)) By definition of assignments
= θ∗(u)	 θ∗(v) By definition of θ(Msp)
= |u| 	 |v| Since ∀w ∈ Values, θ∗(w) = |w|
= |JMsp(u,v)K| By definition of Msp

= θ∗(JMsp(u,v)K) Since ∀w ∈ Values, θ∗(w) = |w|
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Notice that θ is a partial assignment since it is not defined on the symbols if and
log. However, we can extend θ by θ(if)(X,Y, Z) = max(Y, Z) and θ(log)(X) = X
in order to obtain a total, additive and polynomial sup-interpretation.

4 Arboreal and fraternal programs

In this section, we give two restrictions on programs (i) the arboreal condition
which ensures that the number of successive recursive calls corresponding to a
function symbol (in the depth of a call-tree) is bounded logarithmically by the
input size (ii) and the fraternal condition which ensures that the size of each
computed value is polynomially bounded by the input size.

4.1 Arboreal programs

An arboreal program is a program whose recursion depth (number of successive
recursive calls) is bounded logarithmically by the input size. This logarithmic up-
per bound is obtained by ensuring that some complexity measure, corresponding
to the combination of sup-interpretations and motononic and polynomial partial
assignments, is divided by a fixed constant K > 1 at each recursive call.

Definition 7. A program p is arboreal iff there are a polynomial and additive
sup-interpretation θ, a monotonic and polynomial partial assignment ω and a
constant K > 1 such that for every fraternity C[g1(e1), . . . , gr(er)] activated by
f(p), the following conditions are satisfied:

– For any substitution σ, ω(f)(θ∗(pσ)) ≥ 1
– For any substitution σ and ∀i ∈ {1, . . . , r}, ω(f)(θ∗(pσ)) ≥ K×ω(gi)(θ

∗(eiσ))
– There is no function symbol h ∈ ei such that h ≈Fct f.

Example 4. In the program of example 1, there is one fraternity:

if(Msp(Fh(i(x)),Sh(i(x))),0(log(Fh(i(x)))),1(log(Fh(i(x)))))

activated by log(i(x)). Taking the additive and polynomial sup-interpretation θ
of example 3, the polynomial partial assignment ω(log)(X) = X and the constant
K = 2, we check that the program is arboreal:

ω(log)(θ∗(i(x))) = X + 1 ≥ 2× (X + 1)/2 = K × ω(log)(θ∗(Fh(i(x)))) ≥ 1

Lemma 2. Assume that p is an arboreal program. Then p is terminating. That
is, for every function symbol f and for any values u in Values, Jf(u)K is in
Values∗.

Moreover, for each branch B = 〈f,u1, · · · ,un〉, . . . , 〈g, v1, · · · , vm〉 of a call-
tree corresponding to one execution of p and such that f ≈Fct g, we have:

depth(B) ≤ α× log(ω(f)(θ∗(u1), . . . , θ∗(un))), for some constant α
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Proof. Consider an arboreal program p, a call-tree of p and one of its branch
of the shape 〈f,u1, · · · ,un〉  〈g,v1, · · · ,vm〉, with f ≈Fct g. We know, by
definition of a call-tree, that there are a rule of the shape f(p1, · · · , pn) →
C[g(e1, · · · , em)] and a substitution σ such that piσ = ui and JejσK = vj . We
obtain:

ω(f)(θ∗(u1), . . . , θ∗(un)) = ω(f)(θ∗(p1σ), . . . , θ∗(pnσ))
≥ K × ω(gi)(θ

∗(e1σ), . . . , θ∗(emσ)) By definition 7
≥ K × ω(gi)(θ

∗(v1), . . . , θ∗(vm)) By lemma 1

Applying the same reasoning, we demonstrate, by induction on the depth of a
branch, that for each branch B = 〈f,u1, · · · ,un〉 . . . 〈g,v1, · · · ,vm〉, with
f ≈Fct g and depth(B) = i:

ω(f)(θ∗(u1), . . . , θ∗(un)) ≥ Ki × ω(g)(θ∗(v1), . . . , θ∗(vm))

Consequently, the depth is bounded by logK(ω(f)(θ∗(u1), . . . , θ∗(un))), because
of the first condition of definition 7, whenever 〈f,u1, · · · ,un〉 is the first state
of the considered branch. It remains to combine this result with the equality
log(x) = logK(x)

logK(2) in order to obtain the required result. Since every branch corre-
sponding to a recursive call has a bounded depth and we are considering confluent
programs, the program is terminating. ut

4.2 Fraternal programs

Definition 8. A program p is fraternal if there is a polynomial and additive
sup-interpretation θ such that for each fraternity C[g1(e1), . . . , gr(er)] activated
by f(p1, · · · , pn) and for each symbol b of arity m appearing in C or in ej, there
are constants αb

i,j , β
b
j ∈ R+ satisfying:

θ(b)(X1, · · · , Xm) = max
j∈J

(
m∑

i=1

αb
i,j ×Xi + βb

j )

where J is a finite set of indices.

In other words, a program is fraternal if every symbol in a context or in an
argument of a fraternity admits an affinely bounded sup-interpretation.

Example 5. C[log(Fh(i(x))), log(Fh(i(x)))] is the only fraternity in the program
of example 1, where C[�1, �2] = if(Msp(Fh(i(x)),Sh(i(x))),0(�1),1(�2)). Con-
sequently, we have to check that the symbols if, Msp, Fh, Sh, 0 and 1 ad-
mit affine sup-interpretations. This is the case by taking the polynomial sup-
interpretation of example 3 and, consequently, the program is fraternal.

Lemma 3. Given a sup-interpretation θ and a monotonic and polynomial par-
tial assignment ω for which the program p is arboreal and fraternal, there is
a polynomial P such that for each sequence of values u1, · · · ,un and for each
function symbol f of arity n, we have: |Jf(u1, · · · ,un)K| ≤ P (maxi=1..n(|ui|))
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Proof (Sketch). Lemma 2 states that the number of successive recursive calls
occurring in the depth of the call-tree is logarithmically bounded by the input
size. By definition 8, the contexts and arguments of a recursive call (fraternity)
of a fraternal program are affinely bounded by the input size. Consequently,
a logarithmic composition of affinely bounded functions remains polynomially
bounded. ut

5 Characterizations of NCk and NC

Similarly to Buss’ encoding [11], we represent constructors and destructors (im-
plicitly used in pattern matching definitions) by UE∗ -uniform circuits of con-
stant depth and polynomial size. Given such an encoding code and a function
φ : Valuesn → Values∗ computed by some program p, we define a function
φ̃ : {0, 1}∗ → {0, 1}∗ by ∀u ∈ Valuesn φ̃(code(u)) = code(φ(u)). A function φ of
Values is computable in NCk relatively to the encoding code if and only if φ̃ is
computable by a UE∗ -uniform family of circuits in NCk.

Now, we define a notion of rank in order to make a distinction between the
levels of the NCk hierarchy:

Definition 9. Given a program p composed by a vocabulary Σ, a set of rules
R and an encoding code, the rank of a symbol b, rk(b), and the rank of a symbol
b relatively to an expression e, ∇(b, e), are partial functions ranging over N and
defined by induction over the precedence ≥Fct:

– If b is a variable or a constructor symbol then rk(b) = 0.
– If b is an operator, which can be computed by a UE∗-uniform family of circuits

of polynomial size and depth bounded by logk relatively to the encoding code,
then rk(b) = k.

– If b is a function symbol we define its rank relatively to an expression e by:
• If ∀b′ ∈ e, b >Fct b

′ then ∇(b, e) = maxb′∈e(rk(b′))
• Otherwise ∃b′′ ∈ e such that b ≈Fct b

′′ and e = b′(e1, · · · , en):
∗ If b >Fct b

′ then ∇(b, e) = max(rk(b′) + 1,∇(b, e1), . . . ,∇(b, en))
∗ Otherwise b ≈Fct b

′ then ∇(b, e) = max(∇(b, e1), . . . ,∇(b, en)) + 1
– Finally, we define the rank of a function symbol b by:
• rk(b) = maxb(p)→e∈R(∇(b, e))

where b ∈ e means that the symbol b appears in the expression e. The rank of a
program is defined to be the highest rank of a symbol of a program.

Example 6. In the program of example 1, the operators if, Fh, Sh, rev and Msp
are of rank 0 since they all belong to NC0 (Cf.[5] for Fh, Sh and Msp) using
an encoding code which returns the binary value in T ({0,1, ε}) corresponding
to a binary string in {0, 1}∗. Consequently, we obtain that:

rk(log) = ∇(log, if(Msp(Fh(i(x)),Sh(i(x))),0(log(Fh(i(x)))),1(log(Fh(i(x))))))
= max(rk(if) + 1,∇(log,0(log(Fh(i(x))))),∇(log,1(log(Fh(i(x))))))
= max(1, rk(0) + 1, rk(1) + 1,∇(log, log(Fh(i(x)))))
= max(1,∇(log,Fh(i(x))) + 1) = 1
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Theorem 1. A function φ from Valuesn to Values∗ is computed by a fraternal
and arboreal program of rank k ≥ 1 (resp. k ∈ N) if and only if φ is computable
in NCk (resp. NC).

Proof (Sketch). We can show, by induction on the rank and the precedence
≥Fct, that an arboreal and fraternal program of rank k can be simulated by
a UE∗ -uniform family of circuits of polynomial size and logk depth, using a
discriminating circuit of constant depth which, given some inputs, picks the
right rule to apply. The logk depth relies on a logarithmic number of logk−1

depth circuits compositions by lemma 2. The polynomial size is a consequence
of lemma 3. Conversely, we use the characterization of Clote [12] to show the
completeness. Clote’s algebra is based on two recursion schemas called Concate-
nation Recursion on Notation (CRN) and Weak bounded Recursion on Notation
(WBRN) defined over a function algebra from natural numbers to natural num-
bers when considering the following initial functions zero(x) = 0, s0(x) = 2×x,
s1(x) = 2 × x + 1, πn

k (x1, · · · , xn) = xk, |x| = dlog2(x + 1)e, x#y = 2|y|×|x|,
bit(x, i) = bx/2ic mod 2 and a function tree, which computes alternations of
bitwise conjunctions and bitwise disjunctions. All Clote’s initial functions can
be simulated by operators of rank 1 since they are in AC0 ([12]). We show that
a function of rank k in Clote’s algebra can be simulated by an arboreal and
fraternal program of rank k + 1, using divide-and-conquer algorithms (This re-
quirement is needed because of the arboreal property). A difficulty to stress here
is that Clote’s rank differs from the notion of rank we use because of the function
tree and the CRN schema. ut

6 Comparison with previous works

This work extends the characterization of NC1 in [9] to the NCk hierarchy. For
that purpose, we have substituted the more general notion of fraternal program
to the notion of explicitly fraternal of [9] and we have introduced a notion of rank.
In the literature, there are many characterizations of NC1 using several compu-
tational models, like ATM or functions algebra. Compton and Laflamme [15]
gave a characterization of NC1 based on finite functions. Bloch [5] used ramified
recurrence schema relying on a divide and conquer strategy to characterize NC1.
Leivant and Marion [25] have established another characterization using rami-
fied recurrence over a specific data structure, well balanced binary trees. We can
show that our characterization strictly generalizes the ones of Bloch and Leivant-
Marion since they both rely on divide-and-conquer strategies. The characteriza-
tions of the NCk classes by Clote [13], using a bounded recurrence schema à la
Cobham, are distinct from our characterizations since they do not rely on a di-
vide and conquer strategy. However, like Cobhams’ work, Clote’s WBRN schema
requires an upper bound on the computed function which is removed from our
characterizations. Other characterizations of NC are also provided in [24, 6]. All
these purely syntactic characterizations capture a few algorithmic patterns. On
the contrary, our work tries to delineate a broad class of algorithms using the
semantics notion of sup-interpretation.
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