R. Amadio, Synthesis of max-plus quasi-interpretations, Fundamenta Informaticae, vol.65, issue.12, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00146968

P. Baillot and V. Mogbil, Soft lambda-Calculus: A Language for Polynomial Time Computation, FOSSACS 2004, pp.27-41, 2004.
DOI : 10.1007/978-3-540-24727-2_4

URL : https://hal.archives-ouvertes.fr/hal-00085129

D. Barrington, N. Immerman, and H. Straubing, On uniformity within NC1, Journal of Computer and System Sciences, vol.41, issue.3, pp.274-306, 1990.
DOI : 10.1016/0022-0000(90)90022-D

S. Bellantoni and S. Cook, A new recursion-theoretic characterization of the polytime functions, Computational Complexity, vol.106, issue.2, pp.97-110, 1992.
DOI : 10.1007/BF01201998

S. Bloch, Function-algebraic characterizations of log and polylog parallel time, Computational Complexity, vol.22, issue.1, pp.175-205, 1994.
DOI : 10.1007/BF01202288

G. Bonfante, R. Kahle, J. Marion, and I. Oitavem, Towards an implicit characterization of N C k, CSL'06, 2006.

G. Bonfante, J. Marion, and J. Moyen, On Lexicographic Termination Ordering with Space Bound Certifications, LNCS, vol.2244, 2001.
DOI : 10.1007/3-540-45575-2_46

URL : https://hal.archives-ouvertes.fr/inria-00100523

G. Bonfante, J. Marion, and R. Péchoux, A Characterization of Alternating Log Time by First Order Functional Programs, LPAR, volume 4246 of LNAI, pp.90-104, 2006.
DOI : 10.1007/11916277_7

URL : https://hal.archives-ouvertes.fr/inria-00110014

G. Bonfante, J. Y. Marion, and J. Y. Moyen, Quasi-interpretations a way to control resources, Theoretical Computer Science, vol.412, issue.25, 2007.
DOI : 10.1016/j.tcs.2011.02.007

URL : https://hal.archives-ouvertes.fr/hal-00591862

S. Buss, The Boolean formula value problem is in ALOGTIME, Proceedings of the nineteenth annual ACM conference on Theory of computing , STOC '87, pp.123-131, 1987.
DOI : 10.1145/28395.28409

P. Clote, Sequential, machine-independent characterizations of the parallel complexity classes AlogTIME, AC k , NC k and NC, Workshop on Feasible Math, pp.49-69, 1989.
DOI : 10.1007/978-1-4612-3466-1_4

P. Clote, Computational models and function algebras, LCC'94, pp.98-130, 1995.

A. Cobham, The intrinsic computational difficulty of functions, Conf. on Logic, Methodology, and Philosophy of Science, pp.24-30, 1962.

K. J. Compton and C. Laflamme, An algebra and a logic for N C, Inf. Comput, vol.87, issue.12, pp.240-262, 1990.

M. Gaboardi and S. Rocca, A soft type assignment system for ?calculus . CSL, pp.253-267, 2007.

J. Girard, Light Linear Logic, Information and Computation, vol.143, issue.2, pp.175-204, 1998.
DOI : 10.1006/inco.1998.2700

URL : http://doi.org/10.1006/inco.1998.2700

J. Y. Girard, A. Scedrov, and P. Scott, Bounded linear logic: a modular approach to polynomial-time computability, Theoretical Computer Science, vol.97, issue.1, pp.1-66, 1992.
DOI : 10.1016/0304-3975(92)90386-T

M. Hofmann, Programming languages capturing complexity classes, SIGACT News Logic Column 9, 2000.
DOI : 10.1145/346048.346051

G. Huet, Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems: Abstract Properties and Applications to Term Rewriting Systems, Journal of the ACM, vol.27, issue.4, pp.797-821, 1980.
DOI : 10.1145/322217.322230

L. Kristiansen and N. D. Jones, The Flow of Data and the Complexity of Algorithms, New Computational Paradigms, number 3526 in LNCS, pp.263-274, 2005.
DOI : 10.1007/11494645_33

Y. Lafont, Soft linear logic and polynomial time, Theoretical Computer Science, vol.318, issue.1-2, pp.163-180, 2004.
DOI : 10.1016/j.tcs.2003.10.018

D. Leivant, Predicative recurrence and computational complexity I: Word recurrence and poly-time, Feasible Mathematics II, pp.320-343, 1994.
DOI : 10.1007/978-1-4612-2566-9_11

D. Leivant, A characterization of NC by tree recurrence, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280), pp.716-724, 1998.
DOI : 10.1109/SFCS.1998.743522

D. Leivant and J. Marion, A characterization of alternating log time by ramified recurrence, Theoretical Computer Science, vol.236, issue.1-2, pp.192-208, 2000.
DOI : 10.1016/S0304-3975(99)00209-1

URL : https://hal.archives-ouvertes.fr/inria-00099078

J. Marion and J. Moyen, Efficient first order functional program interpreter with time bound certifications, LPAR, pp.25-42, 1955.
URL : https://hal.archives-ouvertes.fr/inria-00099178

J. Marion and R. Péchoux, Resource Analysis by Sup-interpretation, FLOPS 2006, pp.163-176, 2006.
DOI : 10.1007/11737414_12

URL : https://hal.archives-ouvertes.fr/inria-00000661

K. Niggl and H. Wunderlich, Certifying Polynomial Time and Linear/Polynomial Space for Imperative Programs, SIAM Journal on Computing, vol.35, issue.5
DOI : 10.1137/S0097539704445597

W. Ruzzo, On uniform circuit complexity, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), pp.365-383, 1981.
DOI : 10.1109/SFCS.1979.31