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Probabilistic navigation in dynamic environment using
Rapidly-exploring Random Trees and Gaussian Processes

Chiara Fulgenzi, Christopher Tay, Anne Spalanzani, and @mit.augier
INRIA Rhone-Alpes, LIG, France
Email: firstname.lastname@inrialpes.fr

Abstract—The paper describes a navigation algorithm for ~ state to goal state is computed on the basis of the a priori
dynamic, uncertain environment. Moving obstacles are sup- information; during execution, the reactive algorithm ptsa
posed to move on typical patterns which are pre-learned and 4 trajectory in order to avoid moving and unexpected ob-

are represented by Gaussian processes. The planning algorithm o .
is based on an extension of the Rapidly-exploring Random stacles [6]-{8]. If the perception invalidates the planpath

Tree algorithm, where the likelihood of the obstacles trajectory ~ replanning is performed. In all the cited methods however,
and the probability of collision is explicitly taken into account.  uncertainty is not taken into account.

The algorithm is used in a partial motion planner, and the  From the more theoretical point of view instead, many works
probability of collision is updated in real-time according to handle a non-deterministic or probabilistic represeatatf

the most recent estimation. Results show the performance of the inf fi d the ol . d taint bl
the navigation algorithm for a car-like robot moving among € Information and the planning under uncertainty problem

dynamic obstacles with probabilistic trajectory prediction. is solved using Markov Decision Processes (MDP), Partially
Observable MDPs or game theory [9]-[11]. For an overview
I. INTRODUCTION see [2]. These approaches are however very expensive from

Autonomous navigation in populated environments repréhe computational point of view, and are limited to low
sents still an important challenge for robotics researdte T dimensional problems and to off-line planning. Some recent
key of the problem is to guarantee safety for all the agen®ork proposes to integrate uncertainty in randomised tech-
(people, vehicles and the robot itself) moving in the spacéiques, such as Probabilistic Road Maps [12] and Rapidly-
In contrast with static or controlled environments, wher@xploring Random Trees (RRT) [13] [14]. In this paper we
path planning techniques are suitable [1] [2], high dynami@ddress the problem of taking explicitly into account the
environments present many difficult issues: the detectiddehaviour of the obstacles, and the uncertainty in sensidg a
and tracking of the moving obstacles, the prediction of th# prediction. We want our navigation algorithm to integrat
future state of the world and the on-line motion planning anfew information coming from the acquisition system and
navigation. The decision about motion must be related witlp be able to react to the changes of the environment. We
the on-line perception of the world and take into account aPropose then a novel extension of the RRT algorithm to
the sources of uncertainty involved: handle a probabilistic representation of the static emvirent

1) The limits of the perception system: occluded zone?nd of the moving obstacles prediction. The search algarith

limited range, accuracy and sensibility, sensor faults;ié then integrated in a navigation algorithm which updates t

2) The future behaviour of the moving agents: mode|probabilistic information and. chgoses the_ best_ partiah joat
error, unexpected changes of motion direction anH1e gearched tree. The nay|gat|on a]gonthm is based on the
velocity: archltepture of Partial Moyon PIanmng (PMP, [15]), where

3) New agents entering the workspace: execupon and Ioca_ll planning Work_ln parallel to assure safe

4) Errors of the execution system. beh_awour. I_n partlt_:ular, we c0n5|der_the case of a robqt

S . . equipped with a distance sensor which models the static
Many real world applications rely on reactive strategibg: t environment in an occupancy grid. The moving obstacles

robot decides only about its immediate action with respegt) ow typical patterns with some amount of uncertainty:
to the updated local estimation of the environment [3]—[5]

Th tratedi th or drawback: f_these patterns are a priori known and represented with
ese slralegies present however Ssome major drawback: 'é%ussian Processes (GP). The moving obstacles are detected

0; ?rl: thg rot|>ot an be stucE n Igcal ”:'?'Ta; _S(tacondly, mto:: nd tracked on-line and the prediction of their future posit
ot the developed approaches do not take info accoun computed on the base of the known typical paths.

dynamic nature of the environment and the uncertainty he reminder of this paper is structured as follows: first

perception, so that the robot can be driven in dangerous fife way the trajectories are represented and predicted by

_?_Ioikmg t?:tuatlonsbl tive techni bi Ge(iussian Processes is described in Section Il. Section Il
(')tha(ieb Iesle pro emfr,] rga.c ve ecl rtllqules ?re combINEalls the RRT basic algorithm and details the new proposed
with global planning methods: a complete pian from prese'?atpproach. Section 1V recalls the PMP method and describes

Fulgenzi Chiara is supported by a grant from the European Canitynu the pIannlng and ngwgatlon algonthm develqped. Resudts a
under the Marie-Curie project VISITOR MEST-CT-2004-00827 presented in Section V: an experiment with a laser scan



dataset with moving pedestrians is presented in V-A anautomatically the number of typical exemplar paths, along
results in a simulated environment are shown in V-B. Sectiowith a probabilistic description of the variations withiadh
VI ends the paper with remarks and ideas for future work.exemplar path.
As mentioned previously, an exemplar path can be rep-
resented using a Gaussian process and variations of paths
We consider an environment in which moving objects d@elonging to the sample exemplar are Gaussian distributed.
not move around randomly, but follow typical patterns. ThisHowever, in realistic environments, there are often sévera
is a well suited hypothesis in many typical scenarios, as cagxemplar paths. We model environments with several ex-
in a traffic cross junction or people in a transit area. emplars using a mixture of Gaussian processes. The training
Most existing models for modelling motion patterns redata can be viewed as realizations of the mixture of Gaussian
quire the discretization of the state space [16]-[18]. €hesrocess generative model and the aim of learning will be to
approaches mostly model motion trajectories as transitiomecover the parameters of the mixture model.
between discretized states. The main disadvantage of dis-Section II-B will give a short introduction to Gaussian
cretization is the need to determine the discretization gfrocesses, followed by a description of the probabilistic
the state spaces and the association of observations ® thafodel for representing a single exemplar path (sect. [I-C)
discretized state spaces. and for situations involving several exemplar paths (sct.
In this paper, a path modelling approach based on Gaus)j. More information can be found in [20].
sian processes [19] is used. Gaussian processes make i
possible to represent paths as continuous functions inB
probabilistic manner. The problem of discretization iscon A gaussian process is a generalization of the
veniently side stepped. Prediction on the future path can ig&ussian probability distribution in function space.
performed in a theoretically proper probabilistic frameiwo Given the set of gaussian distributed random variables
The advantage of using a Gaussian process to model A(z1), f(z2),..., f(znx)}, it can be represented
paths is its ability to give a Gaussian probability disttibn ~ mathematically using the mean function and covariance
over paths. Figure 1(a) shows an example of a hypothetickinction [19]:

II. GAUSSIAN PROCESSES FOR PATTERN MODELLING

t .
Gaussian Process

path exemplar. We call a path exemplar a certain motion path N k / 1
pattern in workspace. The lines represent sample paths from 1) Gm(x), k(z, ")) @)
the Gaussian process distribution. A Gaussian processfor a m(z) = E[f(x)] @
exemplar path incorporates the representation of vantio k(z,2") = E[(f(z) —m(z))(f(z") —m(z"))] (3)

around its mean path. We suppose that path exemplars Wherec

be represented as a Gaussian (1, ) represents a Gaussian distribution with mean

w and covarianc&. k(z, z') is the covariance function with
domains from the input space. A pertinent property of the
. covariance function is that it has to be positive semidefinit
In this paper, the squared exponential covariance funésion
adopted:

2
k(z,2") = Ggexpf% + 626(x — 2) (4)
1

—— T Whered() is the Dirac delta function. The chosen covariance
(a) (b) function is stationary since it is a function of the diffecen
Fig. 1. (a) Variance and mean of a typical path exemplar. Linesample @ — &' Thus, Covarlan,(:e of paths are assumed to be the
paths from the Gaussian process. (b) Prediction on fututespaith its Same throughout the input spac®. = {6,,6:,6>} are
mean and variances given a partial path. Dotted lines repesamples  parameters for the covariance function, also known as the
from distribution. hyperparameters for the Gaussian process. The hyperparam-
eters influence the form of the Gaussian process. Intujtivel
With a Gaussian distribution over a path exemplar, it ishe hyperparameters set a characteristic length scalédor t
possible to obtain a mean and variance for possible futu®aussian process covariance function and this length scale
path motions. Figure 1(b) illustrates an example of a pirtia can be viewed as how much the difference- ’ in input
observed path and the prediction on future path with itspace has to be before there is a “significant” change in
variance indicated by the shaded area. Dotted lines in th&z) — f(z2/). A short characteristic length scale gives a
figure are sample paths from this distribution. highly fluctuating Gaussian process whereas a longer length

A. Pattern Learning and Prediction scale gives lower fluctuations.

We consider the problem of learning a set of typical path§- Representing a typical path using Gaussian Process
in a certain scene. In our approach, a training data setstsnsi We assume that the observation of paths belonging to an
of motions executed by moving objects in the scene. Aexemplar path are generated by a Gaussian process. Each
unsupervised learning approach is then applied to discoveath corresponds to a typical path that an object takes in



a given environment and is represented with 2 Gaussiam the M-step, maximization of the log likelihood over the
processes, one each to represent the path amdy axes space of parameters is performed. To determine the number
as we assume the movements in theand y axes to be of cluster components, training is performed by assuming a
independent. The mean of these Gaussian processes is lirge humber of cluster components. The training resuégiv
mean function (in ther and y axes each) representing thesmall weights for certain clusters, and the clusters withlsm
path. weights are be removed. For details refer to [20].

A single observation of a path is represented as two vec- -

tors of dimensionD, where Dis the number of positions E. Prediction

observed along the path. One vector represents the sequencé/hen performing path prediction, the input is a partially
of positions along the cartesianaxis and the other for the observed path of dimensioh/ < D. For the case of &
corresponding sequence in theaxis. The likelihood based dimensional Gaussian with; of dimensionM and z, of

on theN training data where each data is a sequéngey,,) dimensionD — M:

is then: YN
it The probability of a partial path observation of dimension
N M belonging to a Gaussian of dimensidn is evaluated
L, = H G (Ynlptys Xy) (6) by integrating over theD — M dimensions of the Gaussian
' i S distribution to yield the marginal Gaussian distribution:
Wherez,, andy, are vectors ofr andy positions for the P'(z1) ~ G(p1,211) (10)

nt" observation ., ly, X5 and X, are the mean vectors o _ _
and covariances of the andy positions for the typical path. The prediction of a pathr, given observationz; can be
In almost all cases, the sequence of observations of positicobtained by the Gaussian conditional distribution for each
are of different length for different path observationsthis ~ clusterk:
case, a fixed dimensioR can be chosen and tte positions / 1T
’ : ) . ) o P, ~G Yo — 1), 890 — U1 XS
can be obtained by choosing points uniformly distributed k(@2]z1) (2 + X X1 (21 = pua), Bz = X 11(1?11))

along the interpolated path. In order to choose the suitable clusters that corresponds to
D. Multiple Typical Trajectories using Gaussian Mixturethe observations made so far, the Mahalanobis distance can
Model be calculated and then gated based on the appropriate chi-

Since each observed path corresponds to fivdimen- Square values. Figure 2 shows an example of the prediction
sional vectors and that a typical motion path is Gaussian
distributed, the observed paths are Gaussian distribubeal f
the generative point of view. A single typical motion path is
a D dimensional Gaussian distribution and this can be easily
extended to the case of representing several typical motion
paths using a mixture model. Consideri®y components,
the likelihood based on th& training data is then:

11111

N K
P(z|z, po, 0) = I G@nlpar, COR)* (7)
n=1 k=1 Y65 0 700 100 50 300 To00
N K
P(y|z, L 9) — H H G(on%k7 C(gk))an (8) Fig. 2. Prediction paths and path variance to 2 standarchtiens
n=1k=1

Wherez is the vector of component weightsthe Gaussian where the predicted path mean and variance are represented
process hyperparameteysthe mean function of the Gaus- by the *bars’. Clusters for prediction were selected acooyd
sian process, and'(f,) the covariance matrix of the Gaus-to the chi-square statistic corresponding to the 95% confi-
sian process parameterized byThe complete model used dence interval. For each cluster, the Gaussian distributfo

is a hierarchical probabilistic model where random vagabl the predicted path can be obtained using eq. 11.

include cluster component weights and cluster means unlike

the standard Gaussian mixture model. As the hierarchical Ill. PROBABILISTIC RRTS

model is intractable, approximate learning methods ard.use Consider a car-like robot moving in an unknown envi-
For practical purposes, it is desirable to have point eséimma ronment among static and moving obstacles. The task of
for the cluster component weights and the hyperparametdirse robot is to reach a given goal state avoiding collisions.
of the Gaussian processes. This leads to a learning approddie robot perceives its surroundings with a distance sensor
closely related to Expectation-Maximization (EM) where in(laser range finder) and is able to detect and track the
the E-step, variational mean field type learning is used. Anghoving obstacles in its view range. At each instant the robot



knowledge about the world is incomplete and uncertain:] °
incomplete in space because of the sensor range and th

hidden areas and in time because of the limited validity ef th

motion models of dynamic obstacles and the unpredictgbilit
of new obstacles entering the scene. The uncertainty thstea
comes from the sensor error and accuracy and from the errg
of the motion models, the detection and tracking algorithms
Spatial uncertainty and incompleteness are represented by
probabilistic occupancy grid. In [13] the RRT algorithm is

integrated in aworst caseapproach: obstacles are tracked
in a dynamic environment and their kinematic model is

used to bound the prediction of their future position. Alsofig- 3. Probabilistic RRT in static environment. Figures\sithe search
P P tree and the likelihood of the nodes (lighter colour is fovéw likelihood).

partlal Planmng IS perforr_ned takmg. II’!tO account rgalalm Observations are taken with a distance sensors, and treeoeeuded zones.
constraints and the reliability of prediction. In [14] aficle  (a) A point holonome robot in a simulated environment; (b) Aldeg-robot

filter is combined with an RRT method to perform path an occupancy grid.

planning in environment with uncertain slipping: an a grior

model of uncertainty is defined and planning is performed

in a static environment. . _ B. The RRTs

In our paper we propose an algorithm to take into account @

probabilistic representation of sensing and predictiocenn The Rapid-exploring Random Tree (RRT) [21] is a ran-
tainty which can be updated by new incoming informationgomized algorithm to explore large state space in a relgtive

Spatial uncertainty and incompleteness are represent@d byport time. The algorithm chooses a paiiitn the configura-
probabilistic occupancy grid. Temporal uncertainty isrep jon space and tries to extend the current search tree toward

sented using Gaussian mixture predictions. that point. P is chosen randomly, but generally in single-
- o query planning, some bias toward the goal is applied in order
A. Probability of Collision to speed up the exploration. The nearest node neighbalr of
At a given instant, the robot knowledge about the state ¥ithin the nodes of the search trégis chosen for extension.
the environment is represented by: A new node is obtained applying an admissible control from

1) a list of pre-learned GPs which represent the t -Cépe chosep node toward P. If the node is _coIIision free the
) patlterns gf the moving obsvtvacIIeS' P yp! new node is added to the tree. The algorithm can be stopped

nce the goal is found, or it can keep on running to find a

2) an occupancy grid, which represents the structure g .
the static environment around the robot, according t e':t'ter path. Once the gpal S“'?‘te Is reached, the path from the
Initial state to the goal is retrieved.

the previous observations;

3) a list of moving objects, their estimated position,
velocity and previous observations;

4) an estimation of the state of the robot itself;

5) agoal state. The algorithm described above lies on a deterministic
The configuration of the robat = (z,y,0,v,w,t) at a time representation of the environment, i.e. the algorithm lsaw
instant¢ is given by the positionz,y) and orientationd  priori if a node is collision free or not. If the environmest i
of the robot in the plane, the linear velocity the angular not completely known, or if there are moving obstacles with
velocityw. For each configuratiog, a probability of collision unknown trajectories, we would need to make recursion to a
P.(¢q) can be computed considering the static and movingyorst caseapproach. This could limit the search and prevent
obstacles and the perception limits. the algorithm from finding any solution or probable solution
The probability of collision with the static environmeft, in most cases. In this paper, we propose an extension of
is computed considering the maximum probability of occuthe basic RRT algorithm to take into account the probability
pation among the cells of the occupancy grid touched by ttef collision both during the exploration of the space and
robot in that configuration. Let’s considéf moving objects at the choice of the path, so that the probability of non-
and K the number of GPs associated to the typical patterreollision of a path becomes a measure of its feasibility. All
learned. For an obstacle,,,, the predicted position at time the explored configurations are maintained in the tree and
t is estimated by a gaussian mixture & components. their probability of collision is updated by more recently
Considering each componett separately, the associatedacquired information.
probability of collision P.4(k,m) is calculated considering Given an initial configuratiorsy, and a search tre#, the
the overlapping of the robot and the predicted Gaussian. probability of collision of a pathr(sy) = {so...sn} is given
practice, the probability of collision is computed in a sét oby the probability to cross the tree from the ragtto the
points in the area occupied by the robot and the maximueonsidered nodey. This is computed as the probability of
is considered. not having collision in each of the traversed nodes. For a

C. Probabilistic Extension



single obstaclen and a Gaussian process. IV. ON-LINE NAVIGATION

N A. The Partial Motion Planning
Pr(sy.m k) =1—[] (1= Pea(sn.m, k) (12) o o
o In a dynamic environment the robot has a limited time
The probability falls exponentially with the length of theto i)r(]arformdp:annmgd Wh'gh deﬁ)ﬁnds on the bt.|mf-vql|d|ttﬁ/
path. This is a sign that longer paths are more dangerod)sr € models used and on the moving ObJects In he

as the uncertainty accumulates over subsequent steps. co vironment. The conditions used for planning could be

sidering first all the GPs for one moving object and theﬁnvélidated at execution time: for example an obstaclecdoul

. . : have changed its behaviour or some new obstacle could have
integrating on all the objects we have: ) . . .
9 9 ) entered the scene. The idea of Partial Motion Planning [15]

K is to take explicitly into account the real-time constraint
Pr(sy,m) = Zl’“vm'P”(SN’m’ k) (13)  and to limit the time available for planning to a fixed
’“;1 interval. After each planning cycle, the planned trajector
is generally just a partial trajectory. The exploring tree i
Lo(sy) = (= Prlsn,m)) (14) [ generaly Just & p Jecory poring

updated with the new model of the world and the final
sé(ate of the previous trajectory becomes the root of the new
ploring tree. The planning algorithm works in parallel
with execution. Each node of the tree is guaranteed to be
not an Inevitable Collision State (ICS, [22]) by checking if
o . , . it exists a collision free braking trajectory from the node.
Once a poini® is chosen in the configuration space, we haV"?rhis is a conservative approximation that doesn’t allow the

to decide which node to grow next. For each neda weight bot to pass an intersection before an approaching moving

) 2 0
wg is computed considering the expected length of the pa | h le ti hori
dist(so, s, P) and the probability of success. More preciselyﬂbStac e. Our approach presents an adaptable time horizon

. . " for planning. The time for the planning iterations depends
L (s) is normalized by the length of the path and multlpllec{m the length of the previous computed trajectory and on the

by the inverse of the .d.istance. This normalization is takep, o cbservations. Safety of a path is guaranteed sigdyi
out so that the probability of success does not depend on t Faking trajectories only for the last state of the path.

length of the path, that is taken into account by the distance

m=1
where we considered independent collision events for ea
obstacle. L., is the probability that the robot traverses
the path without entering in collision and we call it the
probability of success or likelihood of the path.

term: B. The developed solution
Ws m Y Lx(sn) (15) At the beginning of navigation, we suppose that the robot
_ has some time to observe the environment and to plan before
wy = wi (16) moving. From the initial state,, the tree is grown. At the
22 Ws end of the available time, the tree have reached déept

The functiondist(so, sy, P) is a sum of the length of the each of the explored partial paths a weight is associated usi
path from the root, to sy and of the shortest path froeyy  equations 15 and 16. The best path (with the higher weight)
to P, which is a lower limit for the length of the eventualis picked out. To guarantee that the robot does not choose a
path toP. The weights are normalized over the set of nodedangerous path, we can specify the maximum allowed risk
in the tree (16). The node to grow next is then chosensing a safety threshold. Also, from the last state of the
taking the maximum over the weights or drawing a randomath, a safe braking trajectory is searched. If it exists, th
node proportionally to the weight. In our implementatiorpath is considered safe and passed for execution, otherwise
we choose the second approach which appeared to be mirés discarded and another one is chosen from the tree.
robust to local minima. Even if a path to the goal is foundThe chosen path is a sequence/déf configurations to be

the algorithm continues to search for a better/safer patih unattended, wher® < N, < N. While the robot executes
the available time is out. All nodes are added to the tre¢he path, the tree is updated and grown. At each timestep,
or eventually a threshold®,, ;. can be chosen to avoid the the nodes of the tree that are not reachable (in the past) are
exploration to move toward too unlikely zones. pruned out and the probability of success of each path is
Figure 3(a) shows of the described algorithm for ampdated with the new estimation of the likelihood of each
holonome robot within a static simulated environment. Th&P, given by observation following equation 13 and 14.
initial position of the robot is in the bottom left corner, In the remaining available time, the tree is grown. At the
while the goal is in the upper right corner. Black rectanglesame time, the robot acquires new observations and compares
are obstacles. The robot perceives the environment withe planned path with the new estimation: if the path is
a distance sensor, so that areas behind the obstacles stitk safe, the robot continues to follow it; if an unexpette
unknown (P. ~ 0.5). The colour of the edges of the treeevent is detected, a new safe path is retrieved from the
depends on the probability of success of the associated pasearch tree. If no safe path is found within the available
the lighter the colour the lower the probability. In red, thetime, the robot proceeds to a braking manoeuvre. In a very
path chosen. Figure 3(b) shows the described algorithm fanpredictable environment, the time horizon will be shedtn

a car-like robot within an observed occupancy grid. by the unexpected events and the algorithm will act like a



purely reactive algorithm. On the opposite, in the case dfig. 4(c-e). Fig.4(a) shows the observed occupancy grégt fr
static known environment, the algorithm will allow longerspace is grey, occupied space white, non-explored space is
and longer time to grow the tree, and it the result would bblack. The robot is the green rectangle and the circle is the
nearer to the solutions of a global planner. tracked pedestrian with his trajectory. Fig.4(b) showsttbe
of states explored in the available time: lighter blue is for

V. EXPERIMENTAL RESULTS higher probability of collision. The red line is the chosen
A. Laser Data Set path. Fig.4(c-f) shows subsequent positions of the virtual
robot; on the background the occupancy grid predicted for
planning; red circles represent instead the position of the
moving obstacles as estimated in real-time by the tracking
algorithm. Results prove that the algorithm is able to cormapu
safe trajectories in real time taking into account the siatid
moving obstacles perceived and the uncertainty in prexficti
of a real data set.

B. Simulation Results

|1 5
S
T

Tests have also been conducted in a simulated environ-
(b) ment. A set of 3000 trajectories has been simulated in a
rectangular environment. A subset of 1000 trajectorieehav
been used as training data set and, as a result, 26 Gaussian
processes have been learned.

To test the probabilistic planning, we simulate the robot
navigating among circular obstacles with trajectoriest tha
are chosen randomly from the simulated set. The static
environment is supposed to be free and the perception of the
robot is simulated. The timestep chosen i9dfs. Planning

(d) and execution run in parallel. Figure 5 shows some snapshot
from the obtained results. The robot is the red rectangle and
perceives the circular obstacle (red full point). The gddhe

robot is at the bottom of the image (black circle). Green gath
represent the mean of the Gaussian Processes: the liketllihoo
of each GP is estimated at each time step on the basis of the
previous observations; lighter colour is for lower likeldd.

The tree explored by the robot is given by the blue lines.

;/
Q
i
Again, lighter blue means lower likelihood. Circles renes
the prediction for the obstacle for each associated Gaussia

(e) ® process and at subsequent timesteps. Fig. 5(a) shows the
Fig. 4. Results with a laser dataset. (a) The static environisemapped Planning at the first timesteps; in figure 5(b) the robot moves
and the moving obstacles are tracked. (b) The algorithm eaplthe toward the goal, while the obstacle moves toward the upper
zfégr\fgt?gssa;‘czlj':gfes a path. (c-e) the path is comparedhiteal g corner and the prediction gets better. around one G onl
In figure 5(c) the moving obstacle has disappeared behind
the robot, while another one appears near the goal. Fig,. 5(c)
The algorithm has been tested with real data acquired @hows how the search tree is grown and the path is adapted
a car-like vehicle equipped with a laser range finder (Cycato the new situation.
[23]). During the experiment, the robot is manually driven
in an outdoor environment and perceives static obstaclés an
moving pedestrians. Using the algorithm developed in [24], The paper presents a navigation algorithm which integrates
[25] the robot localizes itself, builds an occupancy gridpmaperception uncertainty and incompleteness in the planning
of the static environment and tracks the moving obstaclestrategy using a probabilistic framework. The use of pre-
The probabilistic predictions of the future state of thetabs learned typical patterns allows to have a medium-term pre-
cles are computed using a constant velocity motion modeiction that is more reliable than what can be expected
and the position and velocity estimated, with their asgedia from a simple target tracking algorithm and that can easily
covariance. To test the planning algorithm we define a godlndle non-linear motion. The integration of the likelidoo
20 meters ahead the robot at each observation cycle and détobstacle paths and of the probability of collision makes
the algorithm run in parallel with the on-line mapping andt possible to update previously explored states with the on
tracking at 2Hz (fig. 4(b)). Each sequence is then tested witime estimation; this gives in result less dangerous andemor
the real data, letting a virtual robot move through the mamtelligent paths for the robot. The use of an adaptable time
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VI. CONCLUSIONS AND FUTURE WORK



(4]

(5]

(6]

(7]

(8]

[

[20]

[11]

[12]

[13]
Fig. 5. The robot moves in a simulated environment with a moving
obstacle. The prediction of the obstacle is given by a Gauossiixture
based on the pre learned Gaussian processes (green). Tloeirexpree
maintains an estimation of the likelihood of the path that tsldap the
incoming observation.

[14]

[15]
[16]

horizon for planning makes the algorithm both reactive to
unexpected changes of the environment fordiard looking
when previously planned trajectories are not invalidatet”!
by observation. Immediate work will deal with testing the
navigation algorithm to have a measure of its performance [&8]
more complex and realistic scenarios. Also we will focus our
study to reduce the complexity of the algorithm discardingLoj
unlikely Gaussian processes and obstacles that cannot inte
fere with the trajectory of the robot. Ideas for future work a 201
directed to integrate in one framework the prediction cgmin
from target tracking, which is more accurate in short terni?ll
and the prediction coming from the pre-learned Gaussiq@z]

processes, which is more reliable at medium term.
[23]
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