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Abstract— The paper describes a navigation algorithm for
dynamic, uncertain environment. Moving obstacles are sup-
posed to move on typical patterns which are pre-learned and
are represented by Gaussian processes. The planning algorithm
is based on an extension of the Rapidly-exploring Random
Tree algorithm, where the likelihood of the obstacles trajectory
and the probability of collision is explicitly taken into account.
The algorithm is used in a partial motion planner, and the
probability of collision is updated in real-time according to
the most recent estimation. Results show the performance of
the navigation algorithm for a car-like robot moving among
dynamic obstacles with probabilistic trajectory prediction.

I. I NTRODUCTION

Autonomous navigation in populated environments repre-
sents still an important challenge for robotics research. The
key of the problem is to guarantee safety for all the agents
(people, vehicles and the robot itself) moving in the space.
In contrast with static or controlled environments, where
path planning techniques are suitable [1] [2], high dynamic
environments present many difficult issues: the detection
and tracking of the moving obstacles, the prediction of the
future state of the world and the on-line motion planning and
navigation. The decision about motion must be related with
the on-line perception of the world and take into account all
the sources of uncertainty involved:

1) The limits of the perception system: occluded zones,
limited range, accuracy and sensibility, sensor faults;

2) The future behaviour of the moving agents: model
error, unexpected changes of motion direction and
velocity;

3) New agents entering the workspace;
4) Errors of the execution system.

Many real world applications rely on reactive strategies: the
robot decides only about its immediate action with respect
to the updated local estimation of the environment [3]–[5].
These strategies present however some major drawback: first
of all the robot can be stuck in local minima; secondly, most
of the developed approaches do not take into account the
dynamic nature of the environment and the uncertainty of
perception, so that the robot can be driven in dangerous or
blocking situations.
To face these problems, reactive techniques are combined
with global planning methods: a complete plan from present

Fulgenzi Chiara is supported by a grant from the European Community
under the Marie-Curie project VISITOR MEST-CT-2004-008270

state to goal state is computed on the basis of the a priori
information; during execution, the reactive algorithm adapts
the trajectory in order to avoid moving and unexpected ob-
stacles [6]–[8]. If the perception invalidates the plannedpath
replanning is performed. In all the cited methods however,
uncertainty is not taken into account.
From the more theoretical point of view instead, many works
handle a non-deterministic or probabilistic representation of
the information and the planning under uncertainty problem
is solved using Markov Decision Processes (MDP), Partially
Observable MDPs or game theory [9]–[11]. For an overview
see [2]. These approaches are however very expensive from
the computational point of view, and are limited to low
dimensional problems and to off-line planning. Some recent
work proposes to integrate uncertainty in randomised tech-
niques, such as Probabilistic Road Maps [12] and Rapidly-
exploring Random Trees (RRT) [13] [14]. In this paper we
address the problem of taking explicitly into account the
behaviour of the obstacles, and the uncertainty in sensing and
in prediction. We want our navigation algorithm to integrate
new information coming from the acquisition system and
to be able to react to the changes of the environment. We
propose then a novel extension of the RRT algorithm to
handle a probabilistic representation of the static environment
and of the moving obstacles prediction. The search algorithm
is then integrated in a navigation algorithm which updates the
probabilistic information and chooses the best partial path on
the searched tree. The navigation algorithm is based on the
architecture of Partial Motion Planning (PMP, [15]), where
execution and local planning work in parallel to assure safe
behaviour. In particular, we consider the case of a robot
equipped with a distance sensor which models the static
environment in an occupancy grid. The moving obstacles
follow typical patterns with some amount of uncertainty:
these patterns are a priori known and represented with
Gaussian Processes (GP). The moving obstacles are detected
and tracked on-line and the prediction of their future position
is computed on the base of the known typical paths.
The reminder of this paper is structured as follows: first
the way the trajectories are represented and predicted by
Gaussian Processes is described in Section II. Section III
recalls the RRT basic algorithm and details the new proposed
approach. Section IV recalls the PMP method and describes
the planning and navigation algorithm developed. Results are
presented in Section V: an experiment with a laser scan



dataset with moving pedestrians is presented in V-A and
results in a simulated environment are shown in V-B. Section
VI ends the paper with remarks and ideas for future work.

II. GAUSSIAN PROCESSES FOR PATTERN MODELLING

We consider an environment in which moving objects do
not move around randomly, but follow typical patterns. This
is a well suited hypothesis in many typical scenarios, as cars
in a traffic cross junction or people in a transit area.

Most existing models for modelling motion patterns re-
quire the discretization of the state space [16]–[18]. These
approaches mostly model motion trajectories as transitions
between discretized states. The main disadvantage of dis-
cretization is the need to determine the discretization of
the state spaces and the association of observations to these
discretized state spaces.

In this paper, a path modelling approach based on Gaus-
sian processes [19] is used. Gaussian processes make it
possible to represent paths as continuous functions in a
probabilistic manner. The problem of discretization is con-
veniently side stepped. Prediction on the future path can be
performed in a theoretically proper probabilistic framework.

The advantage of using a Gaussian process to model a
paths is its ability to give a Gaussian probability distribution
over paths. Figure 1(a) shows an example of a hypothetical
path exemplar. We call a path exemplar a certain motion path
pattern in workspace. The lines represent sample paths from
the Gaussian process distribution. A Gaussian process for an
exemplar path incorporates the representation of variations
around its mean path. We suppose that path exemplars can
be represented as a Gaussian.

(a) (b)

Fig. 1. (a) Variance and mean of a typical path exemplar. Lines are sample
paths from the Gaussian process. (b) Prediction on future paths with its
mean and variances given a partial path. Dotted lines represents samples
from distribution.

With a Gaussian distribution over a path exemplar, it is
possible to obtain a mean and variance for possible future
path motions. Figure 1(b) illustrates an example of a partially
observed path and the prediction on future path with its
variance indicated by the shaded area. Dotted lines in the
figure are sample paths from this distribution.

A. Pattern Learning and Prediction

We consider the problem of learning a set of typical paths
in a certain scene. In our approach, a training data set consists
of motions executed by moving objects in the scene. An
unsupervised learning approach is then applied to discover

automatically the number of typical exemplar paths, along
with a probabilistic description of the variations within each
exemplar path.

As mentioned previously, an exemplar path can be rep-
resented using a Gaussian process and variations of paths
belonging to the sample exemplar are Gaussian distributed.
However, in realistic environments, there are often several
exemplar paths. We model environments with several ex-
emplars using a mixture of Gaussian processes. The training
data can be viewed as realizations of the mixture of Gaussian
process generative model and the aim of learning will be to
recover the parameters of the mixture model.

Section II-B will give a short introduction to Gaussian
processes, followed by a description of the probabilistic
model for representing a single exemplar path (sect. II-C)
and for situations involving several exemplar paths (sect.II-
D). More information can be found in [20].

B. Gaussian Process

A gaussian process is a generalization of the
gaussian probability distribution in function space.
Given the set of gaussian distributed random variables
{f(x1), f(x2), ..., f(xN )}, it can be represented
mathematically using the mean function and covariance
function [19]:

f(x) ∼ G(m(x), k(x, x′)) (1)

m(x) = E[f(x)] (2)

k(x, x′) = E[(f(x) − m(x))(f(x′) − m(x′))] (3)

WhereG(µ,Σ) represents a Gaussian distribution with mean
µ and covarianceΣ. k(x, x′) is the covariance function with
domains from the input space. A pertinent property of the
covariance function is that it has to be positive semidefinite.
In this paper, the squared exponential covariance functionis
adopted:

k(x, x′) = θ2

0
exp−

(x − x′)2

θ2

1

+ θ2

2
δ(x − x′) (4)

Whereδ() is the Dirac delta function. The chosen covariance
function is stationary since it is a function of the difference,
x − x′. Thus, covariance of paths are assumed to be the
same throughout the input space.Θ = {θ0, θ1, θ2} are
parameters for the covariance function, also known as the
hyperparameters for the Gaussian process. The hyperparam-
eters influence the form of the Gaussian process. Intuitively,
the hyperparameters set a characteristic length scale for the
Gaussian process covariance function and this length scale
can be viewed as how much the differencex − x′ in input
space has to be before there is a “significant” change in
f(x) − f(x′). A short characteristic length scale gives a
highly fluctuating Gaussian process whereas a longer length
scale gives lower fluctuations.

C. Representing a typical path using Gaussian Process

We assume that the observation of paths belonging to an
exemplar path are generated by a Gaussian process. Each
path corresponds to a typical path that an object takes in



a given environment and is represented with 2 Gaussian
processes, one each to represent the path inx and y axes
as we assume the movements in thex and y axes to be
independent. The mean of these Gaussian processes is the
mean function (in thex and y axes each) representing the
path.
A single observation of a path is represented as two vec-
tors of dimensionD, where Dis the number of positions
observed along the path. One vector represents the sequence
of positions along the cartesianx axis and the other for the
corresponding sequence in they axis. The likelihood based
on theN training data where each data is a sequence(xn, yn)
is then:

Lx =

N
∏

n=1

G(xn|µx,Σx) (5)

Ly =
N
∏

n=1

G(yn|µy,Σy) (6)

Wherexn and yn are vectors ofx and y positions for the
nth observation.µx, µy, Σx and Σy are the mean vectors
and covariances of thex andy positions for the typical path.
In almost all cases, the sequence of observations of positions
are of different length for different path observations. Inthis
case, a fixed dimensionD can be chosen and theD positions
can be obtained by choosingD points uniformly distributed
along the interpolated path.

D. Multiple Typical Trajectories using Gaussian Mixture
Model

Since each observed path corresponds to twoD dimen-
sional vectors and that a typical motion path is Gaussian
distributed, the observed paths are Gaussian distributed from
the generative point of view. A single typical motion path is
a D dimensional Gaussian distribution and this can be easily
extended to the case of representing several typical motion
paths using a mixture model. ConsideringK components,
the likelihood based on theN training data is then:

P (x|z, µx, θ) =

N
∏

n=1

K
∏

k=1

G(xn|µx,k, C(θk))Znk (7)

P (y|z, µx, θ) =

N
∏

n=1

K
∏

k=1

G(xn|µy,k, C(θk))Znk (8)

Wherez is the vector of component weights,θ the Gaussian
process hyperparameters,µ the mean function of the Gaus-
sian process, andC(θk) the covariance matrix of the Gaus-
sian process parameterized byθ. The complete model used
is a hierarchical probabilistic model where random variables
include cluster component weights and cluster means unlike
the standard Gaussian mixture model. As the hierarchical
model is intractable, approximate learning methods are used.
For practical purposes, it is desirable to have point estimates
for the cluster component weights and the hyperparameters
of the Gaussian processes. This leads to a learning approach
closely related to Expectation-Maximization (EM) where in
the E-step, variational mean field type learning is used. And

in the M-step, maximization of the log likelihood over the
space of parameters is performed. To determine the number
of cluster components, training is performed by assuming a
large number of cluster components. The training result gives
small weights for certain clusters, and the clusters with small
weights are be removed. For details refer to [20].

E. Prediction

When performing path prediction, the input is a partially
observed path of dimensionM < D. For the case of aD
dimensional Gaussian withx1 of dimensionM and x2 of
dimensionD − M :

P ′(x1, x2) ∼ G

([

µ1

µ2

]

,

[

Σ11 Σ12

Σ21 Σ22

])

(9)

The probability of a partial path observation of dimension
M belonging to a Gaussian of dimensionD is evaluated
by integrating over theD − M dimensions of the Gaussian
distribution to yield the marginal Gaussian distribution:

P ′(x1) ∼ G(µ1,Σ11) (10)

The prediction of a pathx2 given observationx1 can be
obtained by the Gaussian conditional distribution for each
clusterk:

P ′

k(x2|x1) ∼ G
(

µ2 + Σ21Σ11(x1 − µ1),Σ22 − Σ21Σ
−1

11
ΣT

21

)

(11)
In order to choose the suitable clusters that corresponds to

the observations made so far, the Mahalanobis distance can
be calculated and then gated based on the appropriate chi-
square values. Figure 2 shows an example of the prediction

Fig. 2. Prediction paths and path variance to 2 standard deviations

where the predicted path mean and variance are represented
by the ’bars’. Clusters for prediction were selected according
to the chi-square statistic corresponding to the 95% confi-
dence interval. For each cluster, the Gaussian distribution of
the predicted path can be obtained using eq. 11.

III. PROBABILISTIC RRTS

Consider a car-like robot moving in an unknown envi-
ronment among static and moving obstacles. The task of
the robot is to reach a given goal state avoiding collisions.
The robot perceives its surroundings with a distance sensor
(laser range finder) and is able to detect and track the
moving obstacles in its view range. At each instant the robot



knowledge about the world is incomplete and uncertain:
incomplete in space because of the sensor range and the
hidden areas and in time because of the limited validity of the
motion models of dynamic obstacles and the unpredictability
of new obstacles entering the scene. The uncertainty instead
comes from the sensor error and accuracy and from the error
of the motion models, the detection and tracking algorithms.
Spatial uncertainty and incompleteness are represented bya
probabilistic occupancy grid. In [13] the RRT algorithm is
integrated in aworst caseapproach: obstacles are tracked
in a dynamic environment and their kinematic model is
used to bound the prediction of their future position. Also,
partial planning is performed taking into account real-time
constraints and the reliability of prediction. In [14] a particle
filter is combined with an RRT method to perform path
planning in environment with uncertain slipping: an a priori
model of uncertainty is defined and planning is performed
in a static environment.
In our paper we propose an algorithm to take into account a
probabilistic representation of sensing and prediction uncer-
tainty which can be updated by new incoming information.
Spatial uncertainty and incompleteness are represented bya
probabilistic occupancy grid. Temporal uncertainty is repre-
sented using Gaussian mixture predictions.

A. Probability of Collision

At a given instant, the robot knowledge about the state of
the environment is represented by:

1) a list of pre-learned GPs which represent the typical
patterns of the moving obstacles;

2) an occupancy grid, which represents the structure of
the static environment around the robot, according to
the previous observations;

3) a list of moving objects, their estimated position,
velocity and previous observations;

4) an estimation of the state of the robot itself;
5) a goal state.

The configuration of the robotq = (x, y, θ, v, ω, t) at a time
instant t is given by the position(x, y) and orientationθ
of the robot in the plane, the linear velocityv, the angular
velocityω. For each configurationq, a probability of collision
Pc(q) can be computed considering the static and moving
obstacles and the perception limits.
The probability of collision with the static environmentPcs

is computed considering the maximum probability of occu-
pation among the cells of the occupancy grid touched by the
robot in that configuration. Let’s considerM moving objects
andK the number of GPs associated to the typical patterns
learned. For an obstacleOm, the predicted position at time
t is estimated by a gaussian mixture ofK components.
Considering each componentk separately, the associated
probability of collisionPcd(k,m) is calculated considering
the overlapping of the robot and the predicted Gaussian. In
practice, the probability of collision is computed in a set of
points in the area occupied by the robot and the maximum
is considered.

(a) (b)

Fig. 3. Probabilistic RRT in static environment. Figures show the search
tree and the likelihood of the nodes (lighter colour is for lower likelihood).
Observations are taken with a distance sensors, and there are occluded zones.
(a) A point holonome robot in a simulated environment; (b) A car-like robot
in an occupancy grid.

B. The RRTs

The Rapid-exploring Random Tree (RRT) [21] is a ran-
domized algorithm to explore large state space in a relatively
short time. The algorithm chooses a pointP in the configura-
tion space and tries to extend the current search tree toward
that point.P is chosen randomly, but generally in single-
query planning, some bias toward the goal is applied in order
to speed up the exploration. The nearest node neighbour ofP

within the nodes of the search treeT , is chosen for extension.
A new node is obtained applying an admissible control from
the chosen nodes towardP . If the node is collision free the
new node is added to the tree. The algorithm can be stopped
once the goal is found, or it can keep on running to find a
better path. Once the goal state is reached, the path from the
initial state to the goal is retrieved.

C. Probabilistic Extension

The algorithm described above lies on a deterministic
representation of the environment, i.e. the algorithm knows a
priori if a node is collision free or not. If the environment is
not completely known, or if there are moving obstacles with
unknown trajectories, we would need to make recursion to a
worst caseapproach. This could limit the search and prevent
the algorithm from finding any solution or probable solution
in most cases. In this paper, we propose an extension of
the basic RRT algorithm to take into account the probability
of collision both during the exploration of the space and
at the choice of the path, so that the probability of non-
collision of a path becomes a measure of its feasibility. All
the explored configurations are maintained in the tree and
their probability of collision is updated by more recently
acquired information.
Given an initial configurations0, and a search treeT , the
probability of collision of a pathπ(sN ) = {s0...sN} is given
by the probability to cross the tree from the roots0 to the
considered nodesN . This is computed as the probability of
not having collision in each of the traversed nodes. For a



single obstaclem and a Gaussian processk :

Pπ(sN ,m, k) = 1 −
N
∏

n=0

(1 − Pcd(sn,m, k)) (12)

The probability falls exponentially with the length of the
path. This is a sign that longer paths are more dangerous,
as the uncertainty accumulates over subsequent steps. Con-
sidering first all the GPs for one moving object and then
integrating on all the objects we have:

Pπ(sN ,m) =

K
∑

k=1

lk,m · Pπ(sN ,m, k) (13)

Lπ(sN ) =

M
∏

m=1

(1 − Pπ(sN ,m)) (14)

where we considered independent collision events for each
obstacle.LπN

is the probability that the robot traverses
the path without entering in collision and we call it the
probability of success or likelihood of the path.
Once a pointP is chosen in the configuration space, we have
to decide which node to grow next. For each nodes, a weight
wS is computed considering the expected length of the path
dist(s0, s, P ) and the probability of success. More precisely,
Lπ(s) is normalized by the length of the path and multiplied
by the inverse of the distance. This normalization is taken
out so that the probability of success does not depend on the
length of the path, that is taken into account by the distance
term:

w̃sN
=

1

dist(s0, sN , P )
N

√

Lπ(sN ) (15)

ws =
w̃s

∑

s w̃s

(16)

The functiondist(s0, sN , P ) is a sum of the length of the
path from the roots0 to sN and of the shortest path fromsN

to P , which is a lower limit for the length of the eventual
path toP . The weights are normalized over the set of nodes
in the tree (16). The node to grow next is then chosen
taking the maximum over the weights or drawing a random
node proportionally to the weight. In our implementation
we choose the second approach which appeared to be more
robust to local minima. Even if a path to the goal is found,
the algorithm continues to search for a better/safer path until
the available time is out. All nodes are added to the tree,
or eventually a thresholdPsafe can be chosen to avoid the
exploration to move toward too unlikely zones.
Figure 3(a) shows of the described algorithm for an
holonome robot within a static simulated environment. The
initial position of the robot is in the bottom left corner,
while the goal is in the upper right corner. Black rectangles
are obstacles. The robot perceives the environment with
a distance sensor, so that areas behind the obstacles are
unknown (Pc ≃ 0.5). The colour of the edges of the tree
depends on the probability of success of the associated path:
the lighter the colour the lower the probability. In red, the
path chosen. Figure 3(b) shows the described algorithm for
a car-like robot within an observed occupancy grid.

IV. ON-LINE NAVIGATION

A. The Partial Motion Planning

In a dynamic environment the robot has a limited time
to perform planning which depends on the time-validity
of the models used and on the moving objects in the
environment. The conditions used for planning could be
invalidated at execution time: for example an obstacle could
have changed its behaviour or some new obstacle could have
entered the scene. The idea of Partial Motion Planning [15]
is to take explicitly into account the real-time constraint
and to limit the time available for planning to a fixed
interval. After each planning cycle, the planned trajectory
is generally just a partial trajectory. The exploring tree is
updated with the new model of the world and the final
state of the previous trajectory becomes the root of the new
exploring tree. The planning algorithm works in parallel
with execution. Each node of the tree is guaranteed to be
not an Inevitable Collision State (ICS, [22]) by checking if
it exists a collision free braking trajectory from the node.
This is a conservative approximation that doesn’t allow the
robot to pass an intersection before an approaching moving
obstacle. Our approach presents an adaptable time horizon
for planning. The time for the planning iterations depends
on the length of the previous computed trajectory and on the
on-line observations. Safety of a path is guaranteed studying
braking trajectories only for the last state of the path.

B. The developed solution

At the beginning of navigation, we suppose that the robot
has some time to observe the environment and to plan before
moving. From the initial states0, the tree is grown. At the
end of the available time, the tree have reached deepN . At
each of the explored partial paths a weight is associated using
equations 15 and 16. The best path (with the higher weight)
is picked out. To guarantee that the robot does not choose a
dangerous path, we can specify the maximum allowed risk
using a safety threshold. Also, from the last state of the
path, a safe braking trajectory is searched. If it exists, the
path is considered safe and passed for execution, otherwise
it is discarded and another one is chosen from the tree.
The chosen path is a sequence ofN2 configurations to be
attended, where0 ≤ N2 ≤ N . While the robot executes
the path, the tree is updated and grown. At each timestep,
the nodes of the tree that are not reachable (in the past) are
pruned out and the probability of success of each path is
updated with the new estimation of the likelihood of each
GP, given by observation following equation 13 and 14.
In the remaining available time, the tree is grown. At the
same time, the robot acquires new observations and compares
the planned path with the new estimation: if the path is
still safe, the robot continues to follow it; if an unexpected
event is detected, a new safe path is retrieved from the
search tree. If no safe path is found within the available
time, the robot proceeds to a braking manoeuvre. In a very
unpredictable environment, the time horizon will be shortned
by the unexpected events and the algorithm will act like a



purely reactive algorithm. On the opposite, in the case of
static known environment, the algorithm will allow longer
and longer time to grow the tree, and it the result would be
nearer to the solutions of a global planner.

V. EXPERIMENTAL RESULTS

A. Laser Data Set

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Results with a laser dataset. (a) The static environment is mapped
and the moving obstacles are tracked. (b) The algorithm explores the
state space and chooses a path. (c-e) the path is compared withthe real
observations acquired.

The algorithm has been tested with real data acquired on
a car-like vehicle equipped with a laser range finder (Cycab
[23]). During the experiment, the robot is manually driven
in an outdoor environment and perceives static obstacles and
moving pedestrians. Using the algorithm developed in [24],
[25] the robot localizes itself, builds an occupancy grid map
of the static environment and tracks the moving obstacles.
The probabilistic predictions of the future state of the obsta-
cles are computed using a constant velocity motion model
and the position and velocity estimated, with their associated
covariance. To test the planning algorithm we define a goal
20 meters ahead the robot at each observation cycle and let
the algorithm run in parallel with the on-line mapping and
tracking at 2Hz (fig. 4(b)). Each sequence is then tested with
the real data, letting a virtual robot move through the map

(fig. 4(c-e). Fig.4(a) shows the observed occupancy grid: free
space is grey, occupied space white, non-explored space is
black. The robot is the green rectangle and the circle is the
tracked pedestrian with his trajectory. Fig.4(b) shows thetree
of states explored in the available time: lighter blue is for
higher probability of collision. The red line is the chosen
path. Fig.4(c-f) shows subsequent positions of the virtual
robot; on the background the occupancy grid predicted for
planning; red circles represent instead the position of the
moving obstacles as estimated in real-time by the tracking
algorithm. Results prove that the algorithm is able to compute
safe trajectories in real time taking into account the static and
moving obstacles perceived and the uncertainty in prediction
of a real data set.

B. Simulation Results

Tests have also been conducted in a simulated environ-
ment. A set of 3000 trajectories has been simulated in a
rectangular environment. A subset of 1000 trajectories have
been used as training data set and, as a result, 26 Gaussian
processes have been learned.
To test the probabilistic planning, we simulate the robot
navigating among circular obstacles with trajectories that
are chosen randomly from the simulated set. The static
environment is supposed to be free and the perception of the
robot is simulated. The timestep chosen is of0.5s. Planning
and execution run in parallel. Figure 5 shows some snapshot
from the obtained results. The robot is the red rectangle and
perceives the circular obstacle (red full point). The goal of the
robot is at the bottom of the image (black circle). Green paths
represent the mean of the Gaussian Processes: the likelihood
of each GP is estimated at each time step on the basis of the
previous observations; lighter colour is for lower likelihood.
The tree explored by the robot is given by the blue lines.
Again, lighter blue means lower likelihood. Circles represent
the prediction for the obstacle for each associated Gaussian
process and at subsequent timesteps. Fig. 5(a) shows the
planning at the first timesteps; in figure 5(b) the robot moves
toward the goal, while the obstacle moves toward the upper
left corner and the prediction gets better. around one GP only.
In figure 5(c) the moving obstacle has disappeared behind
the robot, while another one appears near the goal. Fig. 5(c),
shows how the search tree is grown and the path is adapted
to the new situation.

VI. CONCLUSIONS AND FUTURE WORK

The paper presents a navigation algorithm which integrates
perception uncertainty and incompleteness in the planning
strategy using a probabilistic framework. The use of pre-
learned typical patterns allows to have a medium-term pre-
diction that is more reliable than what can be expected
from a simple target tracking algorithm and that can easily
handle non-linear motion. The integration of the likelihood
of obstacle paths and of the probability of collision makes
it possible to update previously explored states with the on-
line estimation; this gives in result less dangerous and more
intelligent paths for the robot. The use of an adaptable time



(a) (b)

(c) (d)

Fig. 5. The robot moves in a simulated environment with a moving
obstacle. The prediction of the obstacle is given by a Gaussian mixture
based on the pre learned Gaussian processes (green). The exploring tree
maintains an estimation of the likelihood of the path that adapts to the
incoming observation.

horizon for planning makes the algorithm both reactive to
unexpected changes of the environment andforward looking
when previously planned trajectories are not invalidated
by observation. Immediate work will deal with testing the
navigation algorithm to have a measure of its performance in
more complex and realistic scenarios. Also we will focus our
study to reduce the complexity of the algorithm discarding
unlikely Gaussian processes and obstacles that cannot inter-
fere with the trajectory of the robot. Ideas for future work are
directed to integrate in one framework the prediction coming
from target tracking, which is more accurate in short term
and the prediction coming from the pre-learned Gaussian
processes, which is more reliable at medium term.
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