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Abstract

In [3] have been constructed very high order residual distribution
schemes for scalar problems. They were using triangle unstructured meshes.
However, the construction was quite involved and was not very flexible.
Here, following [1], we develop a systematic way of constructing very high
order non oscillatory schemes for such meshes. Applications to scalar and
systems problems are given.

1 Introduction

We are interested in the approximation of the following model problem

~λ · ∇u = f x ∈ Ω
u = 0 x ∈ Γ− (1)

where Ω ⊂ R
d is a polygonal set, Γ− is the inflow boundary

Γ− = {x ∈ ∂Ω, ~λ · ~nx < 0}

and ~nx is the local normal at the point x ∈ ∂Ω.
We consider a conformal triangulation Th which elements K are triangles,

quads in 2D or tetrahedrons/hex in 3D. More general elements could, in prin-
ciple, be considered. The parameter h denotes the maximum value of all the
diameters hK of the circumscribed circle/sphere to the elements K of Th. We
also assume that the meshes are regular. The mesh Th are assumed to be
adapted to (1), i.e. Γ− is a collection of edges/faces of Th. The space V p

h is the
set of continuous functions that, on each element K, are polynomials of degree
p that vanishes on Γ−.
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The equation (1) is discretized by a variational formulation of the type : Let
us give p, q ∈ N

⋆, find uh ∈ V p
h such that for all vh ∈ V q

h ,

a(uh, vh) = ℓ(vh). (2)

The examples we are interested in are the SUPG schemes [6, 7] and the stabilized
residual distribution schemes [1] which are in general non linear schemes, even
for linear problems.

In the SUPG schemes, we take p = q ∈ N
⋆ and the relation (2) writes

∫

Ω

vh
(

~λ · ∇uh − f(x)
)

dx+ h

∫

Ω

(

λ · ∇vh
) (

~λ · ∇uh − f(x)
)

dx = 0 (3)

i.e.

a(vh, uh) =

∫

Ω

vh
(

~λ · ∇uh
)

dx+ h

∫

Ω

(

λ · ∇vh
) (

~λ · ∇uh
)

dx

ℓ(vh) =

∫

Ω

vhf(x)dx+ h

∫

Ω

(

λ · ∇vh
)

f(x)dx

(4)

In the second example, the Residual Distribution schemes (RD schemes for
short), we also take q = p ∈ N

⋆ but the formulation is completely different
in order to account, for example, of a maximum principle. These schemes are
described in section 2.

The solutions of (2) are obtained by an iterative scheme. The convergence
of the iterative procedure is important for two reasons

1. The uniqueness of the solutions of (2) is essential to have a well posed
problem, and one wishes to obtain a good approximation of the solution
of (2).

2. One can show, and we recall this later in the text, that if the the problem
(2) is not solved with enough precision, the formal accuracy of the scheme
(2) is lost.

In this respect, the SUPG scheme is dissipative, and coercive in a proper norm,
so that existence and uniqueness is guarantied. However, in the case of the
RD schemes, this may be no longer true, at least for their unstabilized version.
Indeed, a RD scheme can be constructed so that it is positivity preserving but

in general, the solution of (2) may not be unique, see [1].
Coming back to the SUPG scheme, we see that the forms a and b are the

sum of two terms, the forms

a′(uh, vh) =

∫

Ω

vh
(

~λ · ∇uh
)

dx

and

ℓ′(vh) =

∫

Ω

vhfdx

(5)

2



that define the Galerkin formulation of (1). The problem (2) with a′ and ℓ′ is
known to be very unstable. It is stabilized by adding a dissipative term q and
a linear form b to keep the consistancy of the scheme,

q(uh, vh) = h
∑

K

DK(vh, uh), DK(vh, uh) =

∫

K

(

~λ · ∇vh
)(

~λ · ∇uh
)

dx

b(vh) = h

∫

Ω

(

~λ · ∇vh
)

f(x)dx

(6)

The exact evaluation of DK may be quite costly in practice. If in the case
of p = 1, the terms

(

~λ · ∇uh
)(

~λ · ∇vh
)

can be evaluated with second order
accuracy with only one point (the centroid). For p = 2, the components of ∇vh

are of degree one, and an exact quadrature formula (for a constant velocity) ~λ is
obtained with 3 quadrature points (the mid-points of the edges of the triangle)

of a 5 point formula as indicated in Table 1. When p = 3,

(

~λ ·∇uh

) (

~λ ·∇vh

)

is of degree 4 and 7 quadrature points are needed. This can be seen from Table
1 where weights and quadrature points are displayed for triangular elements.
For Qk elements, the situation is worse.

Error O(hk) Weights Λ1 Λ2 Λ3

3 1/3 1/2 1/2 0
1/3 0 1/2 1/2
1/3 1/2 0 1/2

3 0.109951743655322 0.816847572980459 0.091576213509771 0.091576213509771
0.109951743655322 0.091576213509771 0.091576213509771 0.816847572980459
0.109951743655322 0.091576213509771 0.816847572980459 0.091576213509771
0.223381589678011 0.108103018168070 0.445948490915965 0.445948490915965
0.223381589678011 0.445948490915965 0.108103018168070 0.445948490915965
0.223381589678011 0.445948490915965 0.108103018168070 0.445948490915965

5 0.225 1/3 1/3 1/3
0.125939180544827 0.797426985353087 0.101286507323456 0.101286507323456
0.125939180544827 0.101286507323456 0.101286507323456 0.797426985353087
0.125939180544827 0.101286507323456 0.797426985353087 0.101286507323456
0.13239415278850 0.470142064105115 0.470142064105115 0.059715871789770
0.13239415278850 0.470142064105115 0.059715871789770 0.470142064105115
0.13239415278850 0.470142064105115 0.059715871789770 0.470142064105115

Table 1: Examples of quadrature points and weights for triangles.

The question we are interested in this paper is the following. Given a scheme
of the type (2),

a(uh, vh) = ℓ(vh)
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what are the requirements about the forms q and b such that the scheme

a(uh, vh) + q(uh, vh) = ℓ(vh) + b(vh) (7)

is well posed, has provable error estimates in a well behaved norm ? How can q
and b be chosen such that the evaluation of these terms is as simple as possible
with the minimal number of operations ?

The schemes we are interested in, like (3) or the RD scheme, share several
formal properties in common. Namely,

1. if u is a smooth solution of (1), then for any vh ∈ V q
h , we have

a(u, vh) = ℓ(vh) (8a)

Moreover, if uh denotes the solution of scheme, we have

a(u − uh, vh) = 0. (8b)

Note that this property, which is well known for the SUPG scheme, is also
true for the RDS scheme, even if the RDS scheme is non linear.

2. From this, if uh denotes now the interpolant of the exact solution u of (1),
then the equivalent equation of the scheme is

a(uh, vh) − ℓ(vh) = O(hp+d) (9)

from which we deduce the formal order of accuracy. Of course, in the case
of the SUPG scheme, things can be made more rigorous.

These properties must remain intact.

In the first section, we explain in detail what is a RD scheme. The SUPG
schemes are particular cases. The second section is devoted to the describe and
discuss natural necessary conditions. The third section is devoted to examples
and numerical results.

2 Examples of “unstabilised” schemes

The example of the Galerkin formulation of (1) is well known so we skip it. We
give some details on the RD schemes that are less known.

We consider a conformal mesh, the generic element is denoted by K. The
degrees of freedom are denoted by xσ . In the case of a P 1 interpolant, they are
just the vertices of the mesh. For a P 2 interpolant, we have to add the mid–
edge points, etc. Obvious generalization can be described for other continuous
elements such as the P k or Qk elements.

In order to construct a RD scheme for (1), on has first to construct “resid-
uals” ΦK

σ such that the two conditions are met :
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1. Compact stenceil condition : ΦK
σ (uh) := ΦK

σ only depends on the values
of u at the degrees of freedom in K,

2. Conservation condition : ΦK
σ are such that

∑

σ∈K

ΦK
σ =

∫

∂K

~λ · ~n uhdx−

∫

K

f(x)dx := ΦK

This is a conservation constraint.

The function uh has to be solution of

for any σ,
∑

K,σ∈K

ΦK
σ = 0. (10)

As said previously, the SUPG schemes are examples of RD schemes, since
they are exactly (10) with

ΦK
σ =

∫

K

ϕσ

(

~λ · ∇uh − f
)

dx+ h

∫

K

(

~λ · ∇ϕσ

)(

~λ · ∇uh − f
)

dx.

Of course these conditions (conservation and a compact stencil) are not
enough to provide a working scheme in term of stability and accuracy. Here
we foccus on the L∞ stability and the residual property (8a)–(8b) which ensure
formal accuracy. These two additional constraints are achieved by the following
procedures1.

One starts from a monotone scheme, say the Lax–Friedrichs one,

ΦK,LxF
σ =

1

NK

(

ΦK + αK

∑

σ′∈K

(uσ − uσ′)

)

which is only first order, NK represents the number of degree of freedom in K.
Then we define

xσ :=
ΦK

σ

ΦK
,

they sum up to unity thanks to the conservation relation and

βK
σ :=

x+
σ

∑

σ′∈K

x+
σ′

. (11)

There is no problem in the definition of βK
σ since

∑

σ′∈K

x+
σ′ ≥

∑

σ′∈K

xσ′ = 1.

1Note that other RD scheme exist, they do not satisfy a L
∞ stability property. An example

is the SUPG scheme, another one is the LDA scheme, see [5, 11].
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The RD scheme is then defined by (10) with

ΦK
σ = βK

σ ΦK . (12)

The solution of (18)–(12) is sought for by an iterative method. The simplest
one is

un+1
σ = un

σ − ωσ

∑

K,σ∈K

ΦK
σ , for all σ (13)

with u0
σ = 0 for example, and one hopes that uσ = lim

n→+∞
un

σ. Thanks to the

definition of βK
σ , one can see that the sequence {un

σ}n,σ satisfy a maximum
principle provided a CFL–like condition

0 ≤ ωσ max
K,σ∈K

(

|K| max
σ′∈K

max
x∈K

||∇ϕσ′(x)||

)

≤ 1.

Note that sharper estimates can be given, but this is not the point here.
The variational formulation of (10)–(12) is easily obtained. If one multiply

(10) by v(xσ) and sum over all the degrees of freedom, one obtains

0 =
∑

K

ΨK

with

ΨK =
∑

σ∈K

vσβ
T
σ

∫

K

(

~λ · ∇uh − f
)

dx

=

∫

K

vh
(

~λ · ∇uh − f
)

dx+
∑

σ∈K

vσ

∫

K

(

βK
σ − ϕσ

)(

~λ · ∇uh − f
)

dx

Since by definition
∑

σ∈T

βT
σ = 1 =

∑

σ∈T

ϕσ,

we have

∑

σ∈K

vσ

∫

K

(

βK
σ − ϕσ

)(

~λ · ∇uh − f
)

dx =
1

(

NK − 1)!

∑

σ,σ′

(vσ − vσ′)

∫

K

(

γσ,σ′ − ψσ,σ′

)

(

~λ · ∇uh − f
)

dx

=
h

(

NK − 1
)

!

∑

σ,σ′

θσσ′

vσ − vσ′

|| ~xσxσ′ ||

∫

K

(

γσ,σ′ − ψσ,σ′

)

(

~λ · ∇uh − f
)

dx

with θσσ′ = || ~xσxσ′ ||/h which is bounded since the mesh is regular, γσ,σ′ =
βT

σ − βT
σ′ and ψσ,σ′ = ϕσ − ϕσ′ .

The form a is

a(uh, vh) =

∫

K

vh
(

~λ · ∇uh
)

dx

+
h

(

NK − 1
)

!

∑

σ,σ′

θσσ′

vσ − vσ′

|| ~xσxσ′ ||

∫

K

(

γσ,σ′ − ψσ,σ′

)

(

~λ · ∇uh
)

dx
(14)
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and ℓ is

ℓ(, vh) =

∫

K

vhfdx

+
h

(

NK − 1
)

!

∑

σ,σ′

θσσ′

vσ − vσ′

|| ~xσxσ′ ||

∫

K

(

γσ,σ′ − ψσ,σ′

)

fdx
(15)

which have the same structure as (4).
The problem of this scheme is that even though the iteration (13) is L∞

stable, it does not converge in general. The same conclusion holds for more
involved iterative scheme and the reason is that (10)–(12) is not well posed
except for very special situations.

An example is given for a second order (hence P 1 interpolation) using the
local Lax Friedrichs scheme (12) on

−y
∂u

∂x
+ x

∂u

∂y
= 0 (x, y) ∈ [0, 1]2

u(x, 0) =







− sin

(

π
x− 0.7

0.6

)

if x ∈ [0.1, 0.7]

0 else

(16)

The convence history and a solution is given on Figure 1 The solution of Figure 1

0 1000 2000 3000
Iteration

0.01

0.1

1

10

L
og

10
 L

2 
re

si
du

al

Solution Convergence history

Figure 1: Solution of (1) with the scheme (12) with β defined by (11).

is obviously not a second order accurate approximation of (16). The next section
is devoted to describe a simple modification of the scheme. This problem has
already been solved in [1] for second order schemes, we show how to extend the
method in a simple and efficient way.
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3 Construction and discussion

Let us consider the problem

a(uh, vh) = ℓ(vh) (17a)

with a and ℓ given by

a(uh, vh) =
∑

K∈Th

aK(uh, vh)

aK(uh, vh) =

∫

K

vh

(

~λ · ∇uh
)

dx+ hbK(uh, vh)

ℓ(vh) =
∑

K∈Th

ℓK(vh)

ℓK(vh) =

∫

K

vhfdx+ hlK(vh)

(17b)

We assume that a, ℓ, aK and ℓK satisfy the following assumptions :

Assumption 3.1. 1. aK and lK are linear in vh.

2. if u is the solution of (1),

a(u, vh) = ℓ(vh)

for any vh ∈ Vh and

a(u− uh, vh) = 0

for any vh ∈ Vh. More precisely, because of the structure of the forms a
and b, we assume that for any K, and any vh ∈ V p

h ,

aK(u, vh) = lK(vh)

and

h aK(u− uh, vh) = O(hp+d).

These assumtions are true for the SUPG and RD schemes. Moreover, for
these two schemes, we have the conservation constraint

aK(uh, 1) = lK(1) = 0

for any K.

Remark 3.1 (About the linearity assumption). The problem (1) is linear.

All what is said here can be extended to the non linear case, and the linearity

assumption still holds.

The scheme writes in the RD form (14). To see this, we consider the list
of degrees of freedom {xσ}. For piecewise linear interpolant and triangular
elements or Q1 interpolant, they are just the vertices of the mesh. For quadratic
interpolant and triangular meshes, they are the vertices of the mesh and the
mid–edges points, etc. The Lagrange interpolant of degree p associated to a
given degree of freedom xσ is denoted as ϕp

σ. We have
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1. ϕp
σ(xσ′ ) = δσ′

σ ,

2. ϕp
σ is continuous,

3. for any element T , the restriction of ϕσ to T is a polynomial of degree d.

By definition, any uh ∈ V p
h can be written as

uh =
∑

σ

uh(xσ)ϕp
σ,

and vh ∈ V q
h can be written as

vh =
∑

σ

vh(xσ)ϕq
σ ,

so that the scheme can be reformulated as finding uh ∈ V p
h such that for any σ,

we have

∑

T∈Th

{

∫

K

ϕp
σ

(

~λ · ∇uh
)

dx + hKaK(ϕσ , u
h)

+
∑

T⊂Th

∫

T

f(x)ϕq
σ(x)dx + hK lK(ϕq)

}

= 0

(18)

Such a scheme is rewritten as a RD scheme with the residual

ΦT
σ =

∫

K

ϕp
σ

(

~λ · ∇uh − f
)

dx+ hK

(

aK(ϕσ, u
h) − hKlK(ϕσ)

)

(19)

the conservation constraint is automatically satisfied because
∑

σ∈T ϕ
p
σ = 1 and

using the linearity with respect to vh,

∑

σ∈K

ΦK
σ =

∫

K

(

~λ · ∇uh − f
)

dx+ hK

(

aK

(

uh,
∑

σ∈K

ϕσ

)

− lK
(

∑

σ∈K

ϕσ

)

)

=

∫

K

(

~λ · ∇uh − f
)

dx

= ΦK

Formally, the scheme is accurate because if that if wh ∈ V p
h is the interpolant

of the exact solution of (1) assumed to be smooth, then ΦT
σ (wh) = O(hp+d). In

fact, for RD scheme, this property is true because ΦT (wh) = O(hp+d) since

ΦT (wh) =

∫

∂T

~λ · ~nwhdx −

∫

K

fdx

=

∫

∂T

~λ · ~n
(

wh(x) − u(x)
)

dx

= O(hd−1) ×O(hp+1) = O(hp+d).
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Using this remark, the relation (9) follows for regular meshes.

A first scheme of the type (7) can be obtained by perturbing the residual
(19) as

(

ΦT
σ

)⋆
= ΦT

σ + ψT
σ (20)

with the constraint
∑

σ∈T

ψT
σ = 0 to ensure conservation. The formal accuracy

property is also conserved if

ψT
σ (wh) − f = O(hp+d) (21)

whenever ~λ · ∇wh = O(hp).

A first example is obviously given by

ψT
σ = θh

∫

K

(

~λ · ∇ϕq
σ

)(

~λ · ∇uh − f
)

dx (22)

where θ is chosen such that
∫

Ω

(

~ξ · ∇u

) (

~λ · ∇u

)

dx + θ

∫

Ω

(

~λ · ∇u

)2

dx ≥ 0. (23)

Under this condition, the iterative scheme (13) is convergent when n→ +∞.
In (22), ψT

σ is evaluated by a quadrature formula of exact order,
∫

K

(

~λ·∇ϕq
σ

)(

~λ·∇uh

)

dx =
∑

xquad

ωquad

(

~λ·∇ϕq
σ(xquad)

)(

~λ·∇uh(xquad)−f(xquad))
)

(24)
The question is now : given a formula of the type

ψT
σ = θT hK |T |

(

∑

xquad

ωquad

(

~λ·∇ϕq
σ(xquad)

)(

~λ·∇uh(xquad−f(xquad))
)

)

, (25)

what are the requirements on the points xquad and the weights ωquad, so that
we still have the inequality (23) and the accuracy condition (21) ?

Accuracy constraint. Assuming that the solution of (1) is smooth enough,
we have on T

wh − u = O(hp+1) and ∇
(

wh − u
)

= O(hp),

and for a regular mesh
∇ϕσ = O(h−1)

so that for any xquad,
(

~λ · ∇ϕq
σ(xquad)

)(

~λ · ∇wh(xquad − f(xquad)) = O(hp−1)

so that
ψT

σ = h×O(hd) ×O(hp−1) = O(hp+d).

The formal accuracy is automatically guarantied.
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Constraints on the weights and the points xquad. In order to have the
inequality (23), a necessary condition is that the quadratic form

qK(vh) :=
∑

xquad

ωquad

(

~λ · ∇vh(xquad)
)2

must be positive definite whenever the polynomial ~λ · ∇vh 6= 0.
A sufficient condition is

for all xquad, ωquad > 0

~λ · ∇vh(xquad) = 0 for each xquad, then ~λ · ∇vh = 0.

(26)

Under these conditions, there exist constants C1,q and C2,q such that

C1,qqK(vh) ≤ hK

∫

K

(

~λ · ∇vh

)2
dx ≤ C2,qqK(vh) (27)

because P q is a finite dimensional space, hence

Q(vh) =
∑

K

qK(vh)

defines a norm on Vh which is equivalent to the norm vh 7→

∫

K

(

~λ · ∇vh

)2
dx.

We have shown the following result

Proposition 3.2. If a and ℓ are defined by (17b), under the assumptions 3.1

and provided that the conditions (26) hold, for each element K, there exists

θK,0 > 0 such that the scheme (17a) for θK > θK,0. is well posed and .

Proof. The scheme writes in variational formulation : find uh ∈ Vh such that
for all vh ∈ Vh,

a′(uh, vh) = ℓ(vh)

with
a′ = a+ b, ℓ′ = ℓ

where
b(uh, vh) =

∑

K∈Th

∑

σ∈K

vσψ
K
σ

with ψK
σ defined by (25) and Using the scalar product

〈uh, vh〉 =
∑

K∈Th

|K|

(

∑

σ∈K

uσvσ

)

,

The iterative scheme (13) writes,

un+1 = un − ω
(

Aun − F )

11



with
〈Auh, vh〉 := a(uh, vh), 〈F, vh〉 = ℓ(vh).

The scheme is convergent if

||Id− ωA|| < 1.

A necessary condition is that for any vh,

−2〈Avh, vh〉 + ω||Avh|| ≤ 0

for some ω > 0. This condition needs

a(vh, vh) = 〈Avh, vh〉 > 0 (28)

for any vh. Coming back to the problem,

a(vh, vh) =

∫

∂Ω+

~λ · ~nv2
hdl +

∑

K

hK

(

aK(vh, vh) + θHqK(vh)

)

,

hence a necessary condition for haveing (28) is that on any K we have

aK(vh, vh) + θHqK(vh) > 0

From assumption 3.1, we see that

Ker qK = {vh ∈ PK , qK(vh) = 0} ⊂ Ker aK = {vh ∈ PK , aK(vh) = 0},

so that which means that, since qK is positive definite, the scheme is contractant
provided that

θH > θK,0 = min

(

0,−

sup
vh∈P q

a(vh, vh)

inf
vh∈P q,vh 6∈KerqK

qK(vh)

)

∈ R

for each K.

4 Examples and numerical illustrations

4.1 Accuracy study

We apply the method on a simple linear problem, namely

∂u

∂y
= 0 (x, y) ∈ [0, 1]2

u(x, y) = sin(πx)2 x = 0
(29)

for which the solution is simply u(x, y) = sin(π
√

x2 + y2)2.
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We have run the formaly second order scheme, third order and fourth order
schemes with respectively 1, 3, 6 “quadrature points” in (25).

For the third order scheme, the “quadrature” points are simply the vertices
of the triangle. For the third order case, we have chosen the vertices and the mid
point edges. The weights are 1, 1/3 and 1/6 respectively. The results, in term
of accuracy, are independant of choices of the “quadrature” points, provided
that (24) defines a positive definite quadrature form. The constant θ in (25)
is set to unity. The results are displayed in table 2. We see that the expected

h = 1/N L2 rate L∞ rate

25 0.50493 10−2 − 0.30340 10−1 −
50 0.14684 10−2 1.78 0.12726 10−1 1.25
75 0.74684 10−3 1.66 0.82311 10−2 1.07
100 0.41019 10−3 2.08 0.52882 10−2 1.54

Second order accurate results
25 0.32612 10−4 − 0.15748 10−3 −
50 0.48741 10−5 2.742 0.31276 10−4 2.33
75 0.13334 10−5 3.19 0.11363 10−4 2.49
100 0.66019 10−6 2.44 0.46897 10−5 3.07

Third order accurate results
25 0.20860 10−5 − 0.12811 10−4 −
50 0.17001 10−6 3.61 0.17880 10−5 2.84
75 0.27027 10−7 4.53 0.26772 10−6 4.68
100 0.91462 10−8 3.76 0.95526 10−7 3.58

Fourth order accurate results

Table 2: Accurary results for (29). The third order accurate scheme uses the
vertices in (25). The fourth order scheme uses the vertices and the mid–points
(25). In each case, θ = 1.

order of accuracy is met in each case. If now we repeat the same experiment
with a smaller number of “quadrature” points, the accuracy is degraded and the

h = 1/N L2 rate L∞ rate

25 0.25122 10−1 − 0.42887 −
50 0.12935 10−1 0.9577 0.39237 0.1283
100 0.83978 10−2 0.6232 0.43656 −0.1540

Table 3: Accurary results for (29). The “third” order accurate scheme uses the
gravity center in (25). In each case, θ = 1.

results are only first order accurate or the scheme is only consistant, see tables
3 and 4. This can also be seen visually on Figure 2.
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h = 1/N L2 rate L∞ rate

25 2.17274 10−2 − 0.10644 −
50 1.13486 10−2 0.8989 7.94628 10−2 0.9370
100 5.83347 10−3 0.9595 4.16117 10−2 0.9601

Table 4: Accurary results for (29). The “fourth” order accurate scheme uses
the vertices in (25). In each case, θ = 1.

3 points 1 point

Figure 2: Isolines of the solution of (29) when 1 point or 3 points are used in
(25). The baseline scheme is formaly third order. All the degrees of freedom
are represented.

4.2 The non linear case

The second example is the solution of the problem

1
2

∂u2

∂x
+
∂u

∂y
= 0 if x ∈ [0, 1]2

u(x, y) = 1.5x− 0.5 when y = 0 or x ∈ {0, 1}
(30)

The solution consists in a compression merging into a shock which foot is located
at (0.5, 0.75). Several schemes are tested. We only represent the solutions
obtained by the formaly third order scheme since the behavior for the fourth
order one is the same. The “quadrature” points are again the vertices of the
elements with and without the centroid depending on if we take 3 or 4 points.

On Figure 3, we represent the isolines of the scheme when θ is set to 0, 1 or

θ =
|T |
∑

vertices

|ki|
min

(

1,

√

|T |

(

∑

vertices

|ki|

)

∣

∣

∣

∣

∫

∂T

(

nx

u2

2
+ nyu

)

dl

∣

∣

∣

∣

+ ǫ

)

. (31)
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In (31), if ni
x and ni

y are the components of the inward normal opposite the

vertex i in the triangle, ki = ni
x

u2

2 + ni
yu and ǫ = 10−10. Once again, the same

conclusions hold : 3 points are necessary to get accurate results. We compare
the solutions depending on which option is chose (3/4 quad points, the choice of
θ). To do this, we make cross–section at y = 0.25, i.e. in the fan, and y = 0.75,
i.e. in the discontinuity.

u,  min = -0.5,  max = 1.5 u,  min = -0.5538,  max = 1.549

θ = 0 θ = 1, 4 quadrature points

u,  min = -0.5255,  max = 1.526

θ defined by (31), 4 quad points θ defined by (31), 3 quad points

Figure 3: Results obtained for problem (30) with various choices of θ and
quadrature points. In the case of 4 quadrature points we have chosen
the centroid (weight −27/48), and the points of coordinates (0.6, 0.2, 0.2),
(0.2,0.6,0.2), (0.2, 0.2, 0.6) with weights 25/48. In the case of 3 quadrature
points, they are simply the vertices of the triangle with the weights 1/3.

The results of Figure 4 show that if θ = 0, the oscillations visible in Figure 3
are not a manifestation of an instability, the scheme is overcompressive. When
θ = 1 or is chosen as (31), there is no difference in the solution, whatever the
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number of quadrature points. In Figure 4, we plot the result at y = 0.75. If we

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5
Theta=0
Theta=1,3 quad points
Theta(Res),3 quad points

0.6 0.8 1
-0.5

0

0.5

1

1.5

2

Theta(Residual)
Theta=0
Theta=1

cut at y = 0.25 cut at y = 0.75

Figure 4: Cross–section of the solution at y = 0.25 and y = 0.75. For y =
0.25, the solution corresponding to 3 and 4 quadrature points and θ 6= 0 are
undistinguishable. The curve labelled θ(Residu) corresponds to the choice (31).
Some difference appears for the cross section at y = 0.75. The choice (31)
appears to be a good compromise.

add the addition of the term (25), the scheme is no longer formaly monotonicity
preserving, but the Figure 4 indicate that no undershoot nor overshoot are cre-
ated. The same figure also indicate that the choice (31) is the best compromise
between accuracy and stability. The effect of this term is that when the solution
is smooth, θ ≃ 1 while θ ≃ 0 in the discontinuity.

4.3 Euler equations

The last examples that we show are for the Euler equations. Details about
the scheme can be found in [2] in particular about the way equation (12) is
implemented. The method has been implemented only for P2 element so far
again with 3 “quadrature” points. The first example is a supersonic jet with
M = 2.4 on the bottom and M = 4.4 on the top. The solution, see Figure
5, is made of a shock wave followed by a contact and a fan. On Figure 6,
we show the effect of adding and removing the term (25). We can also see
the increase of accuracy. On Figure (7), we have run the first order, second
order and third order RD schemes with the same number of degrees of freedom,
namely the vertices and the mid–points of the mesh. A last example is a 4
state shock tube problem (configuration 12 of [8]). This case is time dependant,
but we can compute the solution at time t since the solution is self–similar,
U(x, y, t) = V (x

t
, y

t
). The function V (ξ, ν) satisfies

−ξVξ − νVν + div(ξ,ν)F (V ) = 0.

The case has been chosen that the boundary condition can easily be computed
analyticaly. The scheme is the same as before, but we modify the definition of
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ρ u

v p

Figure 5: Supersonic ject, third order solution

the total residual by

ΦT :=

∫

T

(

− ξVξ − νVν + div(ξ,ν)F (V )

)

dξdν.

This integral is evaluated by

ΦT =

∫

∂T

(

F (V ) · ~n− (ξ, ν) · ~n

)

dl +

∫

T

V (ξ, ν)dξdν.

Again we see the improvement obtained by adding the term (25). The scheme
is very robust and non oscillatory, despites the interaction between many waves.
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Figure 6: With and without dissipation, density isolines.

5 Conclusion

In this paper, we have discussed a simple way to construct simple and accu-
rate very high order residual distribution schemes. A theoretical discussion is
provided which is confirmed by numerical experiments on scalar problems and
the Euler equations. We have foccused on schemes like Residual Distribution
schemes, bu we believe however that the method we present in this paper can
be adapted to other type of schemes. Note also that it shares common features
with the work of Corre and Lerat, see [9, 10, 4] for example.
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Figure 9: Convergence study 101 × 101 and 201 × 201, density isolines.
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