Residual distribution schemes on quadrilateral meshes.

Remi Abgrall 1, 2 Fabien Marpeau 1
2 SCALAPPLIX - Algorithms and high performance computing for grand challenge applications
INRIA Futurs, Université Bordeaux Segalen - Bordeaux 2, Université Sciences et Technologies - Bordeaux 1, École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), CNRS - Centre National de la Recherche Scientifique : UMR5800
Abstract : We propose an investigation of residual distribution schemes for numerical approximation of two-dimensional hyperbolic systems of conservation laws on general quadrilateral meshes. In comparison to the use of triangular cells, usual basic features are recovered, an extension of the upwinding concept is given, and a Lax-Wendroff type theorem is adapted for consistency. We show how to retrieve many variants of standard first- and second-order accurate schemes. They are proven to satisfy this theorem. An important part of this paper is devoted to the validation of these schemes by various numerical tests for scalar equations and Euler equations for compressible fluid dynamics on non-Cartesian grids. In particular, second-order accuracy is reached by an adaptation of the linearity-preserving property to quadrangle meshes. We discuss several choices as well as the convergence of iterative method to steady state. We also provide examples of schemes that are not constructed from an upwinding principle
Type de document :
Article dans une revue
Journal of Scientific Computing, Springer Verlag, 2007, 30 (1), pp.131-175
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger
Contributeur : Rémi Abgrall <>
Soumis le : vendredi 24 octobre 2008 - 14:28:55
Dernière modification le : jeudi 11 janvier 2018 - 06:21:22
Document(s) archivé(s) le : lundi 7 juin 2010 - 18:40:48


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00334011, version 1



Remi Abgrall, Fabien Marpeau. Residual distribution schemes on quadrilateral meshes.. Journal of Scientific Computing, Springer Verlag, 2007, 30 (1), pp.131-175. 〈inria-00334011〉



Consultations de la notice


Téléchargements de fichiers