N
N

N

HAL

open science

A Hybrid Algorithm for the Unbounded Knapsack
Problem

Vincent Poirriez, Nicola Yanev, Rumen Andonov

» To cite this version:

Vincent Poirriez, Nicola Yanev, Rumen Andonov. A Hybrid Algorithm for the Unbounded Knapsack
Problem. Discrete Optimization, 2009, 6, pp.110-124. 10.1016/j.disopt.2008.09.004 . inria-00335065

HAL Id: inria-00335065
https://inria.hal.science/inria-00335065
Submitted on 28 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00335065
https://hal.archives-ouvertes.fr

A Hybrid Algorithm for the Unbounded Knapsack
Problem

Vincent PoirrieZ Nicola Yane\’ Rumen Andono@*

& LAMIH/ROI UMR CNRS 8530, University of Valenciennes, Le tMtouy, 59313
Valenciennes Cedex 9, France

b Faculty of Mathematics and Informatics, University of Safib64 Sofia, 5 James
Bourchier Blvd., Bulgaria

°INRIA Rennes-Bretagne Atlantique and University of Redn&€ampus de Beaulieu,
35042 Rennes Cedex, France

Abstract

This paper presents a new approach for exactly solving thmummed Knapsack Prob-
lem (UKP) and proposes a new bound that was proved to dontlmatgevious bounds on a
special class of UKP instances. Integrating bounds witherftamework of sparse dynamic
programming led to the creation of an efficient and robustikydigorithm, calledcEDUK2
This algorithm takes advantage of the majority of the knovapprties of UKP, particularly
the diverse dominance relations and the important peitgdicoperty. Extensive compu-
tational results show that, in all but a very few cageBUK?2 significantly outperforms
both MTU2 and EDUK, the currently available UKP solvers, adlthe well-known gen-
eral purpose mathematical programming optimizer CPLEX_QiG. These experimental
results demonstrate that the class of hard UKP instancegsrieebe redefined, and the
authors offer their insights into the creation of such insés.

Key words: Combinatorial Optimization, Integer Programming, Knagisgroblem,
Branch and Bound, Dynamic programming, Algorithm Engiimeger

1 Introduction

The knapsack problem is one of the most popular combinatgatanization prob-
lems. Its unbounded version, UKP (also called the integapkack), is formulated
as follows: there is a knapsack ofcapacityc > 0 andn types of items. Each

* Corresponding author.

Email addressesrincent.poirriez@univ-valenciennes.fr (Vincent
Poirriez),choby@math.bas.bg (Nicola Yanev)randonov@irisa.fr (Rumen
Andonov).

Preprint submitted to Discrete Optimization 9 Septemb@820

item of typei € I = {1,2,...n} has aprofit, p; > 0, and aweight w; > 0. Set
N = {(pi,w;),i € I} and letw, p denote vectors of size. The problemUKP {
is to fill the knapsack in an optimal way, which is done by sodyvi

f(N,¢) = f(w,p,c) = max{px subjecttowx < ¢,x € Zﬁ} Q)

whereZ" is the set of nonnegative integraidimensional vectors.

Many of this problem’s properties have been discovered thelast three decades:
[1,4,6,11,10,14], but no existing solver has yet been agea that benefits from
all of them. A detailed and comprehensive state-of-theiadugsion the interested
reader can find in the recent monograph [12].

In this paper we introduca new upper boun@nd determine a UKP family for
which this bound is the tightest one known. We also designvaaigorithm that
combines dynamic programming and branch-and-bound metioablve UKP. To
the best of our knowledge this is the first time that such arraggh has been
used for UKP. Extensive computational experiments dematesthe effectiveness
of embedding a branch-and-bound algorithm into a dynanagnamming frame-
work. These results also shed light on the case of really b&ié instances.

A hybrid algorithm, combining dynamic programming and lotasand-bound ap-
proaches has been proposed in [8] for the 0/1 knapsack pnohled in [9] for the
case of the subset-sum problem. The adjective "hybrid" \&aswsed for knapsack
problem algorithms in [13] (0/1 knapsack problem) and [3]L(Gwultidimensional
knapsack problem), but this is another kind of hybridizatio

The paper is organized as follows. Section 2 briefly sumreatize basic properties
of the problem. Section 3 presents a new upper bound and Hoeiated class
of instances where it is stronger than the previously knoaumbls. Section 4 is
dedicated to the description &DUK2 a new algorithm that takes advantage of
all known dominance relations and successfully combinemttvith a variety of
bounds . In Section 5 this algorithm is compared with other avaiasblvers. In
Section 6 we conclude.

2 A summary of known dominance relations and bounds

The dominance relations between items and bounds allowizbeo$ the search
space to be significantly reduced. All the dominance ratatienumerated below,

! EDUKZis free open-source software available at:
http://download.gna.org/pyasukp/ where it is denoted by PYASUKP.

could be derived by the following inequalities:

Z w;z; < ow;, and ija:j > ap; for somex € Z7 (2)
jet jet

wherea € 7., J C I andi & J.

(1) Dominances

(a) Collective Dominancgl,17]. Thei-th item iscollectively dominatedby
J, written asi < J iff (2) hold whena = 1. The verification of this
dominance is computationally hard, so it can be used in ardiympro-
gramming approach only. To the best of our knowle&dsJK(Efficient
Dynamic programming for UKP) [1] is the only one that makesqgpical
use of this property.

(b) Threshold Dominancfl]. Thei-th item isthreshold dominated by J,
written asi < J iff (2) hold whena > 1. This is an obvious generaliza-
tion of the previous dominance by using instead of single itea com-
pound one, say times item:. The smallest such defines thehreshold
of the itemq, writtent;, ast; = (a — 1)w;.

The lightest item of those with the greatest profit/weighibres called
best item written asb. One can trivially show that; < w,w; or even
sharper inequality; < lem(wy, w;) Wherelem/(wy, w;) is the least com-
mon multiple ofw; andwy,.

(c) Multiple Dominancg10]. Item< is multiply dominated by j, written
asi <, j, ifffor J = {j},a =1, x; = [7*] the relations (2) hold.

This dominance could be efficiently used in a preprocessatgise it
can be detected relatively easily.

(d) Modular Dominancgl7]. Item: is modularly dominated by j, written
asi <= jifffor J ={b,j},a =1, w; = w;+twy,t < 0,3, = —t,x; =
1 the inequalities (2) hold.

(2) Bounds

U; [10] : Itis assumed that the first three items are of the larges$itfveight

ratio. Let us set

c c
c=cmodw; ¢ =cmodw,; 2/ = {—J p1+ LU—J D2;

wq 2
U'=2 + s
w3 '

o)
UIZZ,‘F\‘(C/"—’VUJQ C—‘w1>p—2—’7w2 C—‘le.
w1 wWao w1

The following bound holds

Us =max{U", U'}. 3)

U4 : Ug =c+ [1J «, where iteml is supposed to be the lightest one.
It could be easny shown that this bound is valid (but couldvbey weak)
for arbitrary UKP witha such thatp; < w; + «. It is proved in [4] that
this bound is stronger thdr; for the class of strongly correlated UKBC-
UKP) defined a®; = w; + o wherea > 0. The casex = 0 corresponds to
the so called Subset Sum Proble&S(UKP) wherep; = w;.

U, [15] %: U, = ¢ + max (p[wfjl),z € I} | | Here again itent is sup-
posed to be the lightest one. This bound is stronger thafor a special
class of UKP (namel{sAW-UKP see Definition 1 below).

3 A new general upper bound for UKP

In the following paragraphs, we introduce a new upper boonthie UKP and show
that it improved/, and is not comparable 13; in the general case. For the special
UKP family, theSAW-UKP, which includes th&C-UKP class (witha > 0), this
new bound is tighter than the previously known bounds.

Without losing generality it is assumed in this section thais the lightest item
within the set of items with(p; — w;) > 0 (i.e.Vi > 1, w; < w; or p; < wy)
andp; > wy. (If all p; — w; < 0 then assume 1 is the item with the best ratio
and by changing to ¢p, ¢y > oL we will achieve the goal. If such an equivalent
transformation is done, the bound should be dividedhyit is also assumed that
no item is multiply dominated. Let us define the followingnbes:

for k fixed, for alli # k. g = ﬁqk max {qj },

e

r = min {1, ¢}, u(r) = max{pl ”“’} B = B(rt).

icl Lwlj

Theorem 1 [U.-] forallUKP{ ., f(w,p,c) < U = 1ic+ ff Lﬂ <U,

Proof: First, for any fixedr > 0,

max{px,wx < ¢,x € Z!'} =max{Twx + (p —7w)x,wx < ¢,x € Z'}
<tc+max{(p-Tw)x,wx <c,xe 7!} (4)

i ; Pi —P1 |y,
Caser; = ¢; <7 < 1: inthis caseq; = max J <7
1#1 w; — Wy \‘_J

2 First presented in a research report [15], this bound istssd in [12].

and therefore
. w
forall i, p; — Tw; < {—J (p1 — Twn). (5)
w1y

Relation (5) means that in UKE,,_.,) all itemsi are multiply dominated by
the item 1, and also that (1) = p; — 7w;. Thus,max{(p —7w)x, wx < ¢,x €

Zy} = Bi(7) {w—lJ
The functionu; (1) = 7¢ + (p1 — Twy) Lﬂ is an increasing function, and its
minimum is reached for = 7. This proves both inequalities of the theorem as
Uy, = ui(1) andU,+ = uy (77).
Caseq; > 1 = 7/ inthis case,

n x| Wi ¥ [vn Wili «| €
Ei:l(pi - wi)xi < B1¥i, {_J r; < B F]z‘l J <f {_J
w1 w

andU,- =U, =c+ [LULIJ -1

Letus setu(r) = Te+ f(w, p — 7w, ¢) (defined forr > 0). We havef (w, p, c) =
uu(0). Furthermore, it follows from (4) that(w, p, ¢) is upper-bounded byu(r),
which is a nondecreasing piece-wise linear convex functiime known point on

its graphics is aty, = Z—: A better bound is provided by the points (u(7)),

T < 7. In the first case of the proof; < 1, such a point is given by, uu(qy;)).
Wheng; > 1 (far from the targetr = 0) we can overestimateu(r) in a point
closer to0, (sayr = 1). Such an estimate is done in the case 2 from above, but it is
quite rough (because of overestimating the 7w coefficients and in the rounding

operation|y_ %2 | instead ofy> | %2 |).

Another approach is demonstrated in the theorem below, thghmain idea to
"visualize" the graphics ofiu(7) from the left of the point’>. This is done by
changing the role of itemt with item k£, wherek is such thaty; < 7 < 2t is
solvable. In the following theorem this is the cdse: b.

Theorem 2 The bound/;’ = g;c+ (py — g;ws) [- | is stronger than the (classical)
upper bound’ = fj; and it is strictly stronger r whenis not a multiple ofw, and
Py
@ < —
wb

Proof: The idea of the proof is quite simpl¢(w,p,c¢) < 7¢ + f(w,p — TW,¢)
holds for arbitraryr > 0. Whent > ¢, similarly to the first case of Theorem 1,
we can show that the best itegnmultiply dominates all other items, thus giving the

optimalz, = [-] solution to the knapsack UKF,, TW With value(p, — Tws)xs.

itis easy to check thaf; = max {4} < Lo P B pyrthermorey (1) =

Wy W; Wy
Te+ (pp —Twp) [Isan mcreasmg function, and gives a better upper bound tha

U=uy(L) When% <7<

The second half of the theorem follows from the observati@td,(7) is strictly
increasing whei is not a multiple ofw,. &

Definition 1 All UKP;, instances in whichy; < 1 are calledSAW-UKP ?.

Remark 1 We use the nameSAW" because of the saw-like shape of the graph of
the functiom(w) = w+ (p; — wy) L%J defined ofw;, wy,,.] and forp; > w;. All
instances of &AW-UKP are given by(w;, p;) points from the hypographyp(h)
(hyp(h) = {(w,p) | p < h(w)}).

The following condition is a necessary condition for UKPto be aSAW-UKP.

Lemma 1 If UKP/ is a SAW-UKP, then the item 1 is the best one.

Proof:
pi—p1 H—;J

w;
W; —wW1i w_l

UKP,; , is aSAW-UKP means thag; < 1,i.e.foralli € I,q; = <1

Then{we can derive for alle I:
pi—p1 | —%

w1

%H <1e (p—w) < (p1—w) B—IJ which implies

'}

Wy
wi

(pi —w;) < (p1—w)gt & B < 2oy

w1 w; — w1

It can now be established thi} is tighter than'; for this family of UKP.

Theorem 3 If UKP{ | is a SAW-UKP, thenU; = U, < U, < Us

Proof: It is assumed that the first three items are of the largest, ratid also that
Z—z > 1 (as above, if it is not the case, changipgo ¢p,v > max{%, %
achieves the goal).

According to lemma 1, the item 1 is the best one. It is easy édisat in this case
Uy = U,~. Because of theorem 1 and the relation= max{U°, U'}, it is enough
then to prove that/, < U°. Since 1 is supposed to be the lightest item, we have

wy > wy and {%J = 0. Thusz = LU%J p1 andd = ¢ = c modw;.

UO = {LJ p1 + {C,p—gJ = {LJ p1 + {(C modwl)p—3J
w1 Ws wq ws
c c c c
> {—J p1 + (e modw;) = {—J p1+c— {—J wy = {—J (p1 —w1) +c
w1 w1 w1 w1y
>U,

3 This definition was first given in [15].

3.1 Summary of upper bounds relations

We summarize here the relations between the bounds just give U,-) and the
previously known bound®&’;, Us andU,. These relations are to be taken into ac-
count in the computational section 5, where an experimgusdification of the
solverEDUK?2 is presented.

(1) SAW-UKP : U,. = U; < U,
(@) SS-UKP(a=0):U; =U, =Us = U

if min {ﬂJ = 1.U; = U,

(b) SC-UKP anda > 0 : eI/} L
if min {—ZJ > 1:U; < Uy

ier/{1y Lun

(2) Non-SAW-UKP (SC-UKP with a < 0 being in this class) U; z Us (i.e.
these bounds can by in any relation)

Example 1 (A Saw UKP whereU,« < U, < Us) n=7; c=2900;I={1;...;7};
p=[300;580;301;601;605;322;310]w=[120;245;130;260;310;194;190].

We can compute thaj=[_; -4.; 0.1; 0.05; 0.0714285; 0.297297; 0.142857] (re-
member that; is not defined). Hence; ~ 0.297 and Example 1lis therefore a
SAW-UKP. The bounds ard/,- = U} = 7205 < U, = 7220 < U; = 7246. The
optimal value is7202.

Example 2 (A non-SAW-UKP with Uy < Us) n=3;¢=2900;p=[119;297;309];
w=[119;120;131]. The second item is the best one. We obfaia 1.090909 and
Uy = 7149 < Uz = 7161. The optimal value i§140.

Example 3 (A non-SAW-UKP with Uy > Us) n=3; c=63; p=[17,30;40];
w=[15;20;25]. The third item is the best one. We obta[2; 17; ;] and therefore

29 1_57_a
¢; = 2. We compute thdt; = 99 > Us = 97. The optimal value iS0.

4 Main components of the proposed algorithm
The algorithm described below is based on a convenient guatibn of two basic

approaches used in UKP solvers, namely dynamic program(@BRyand branch
and boundB&B) methods.

Dynamic programming (DP)
One of the recursions [6] used for solving UKP is

f(N,y) =max{f(N,y —w,;) +p;} for J, C I andy € [wmn,], (6)

JET,

wherew,,;, = min{w;,i € I}.

The eligible setJ, is supposed to contain at least one itesit. z; > 0 in some
optimal solution to UKE) . The cardinality of this set is crucially important for
the efficiency of any algorlthm based on formula (6). To thetlm our knowl-
edgeEDUK]1] is the only solver that uses this recursion with obviofiEiency.

The main components of its implementation are the compurtatf (6) by slices,

a sparse representation of the iteration space, and thd tls@shold dominance.
Slices are defined as intervalsygiand the sparse representation is based on the par-
ticular form of the functioryf. It is well known thatf (N, y)) is an increasing step-
wise function ony, and can be totally recovered when all skip-poifitg f(N,vy))}

are known (in the sequel, the coupley, (N, y))} will be calledoptimal stateg

Theperiodicityproperty has been described by Gilmore and Gomory [7] asahe ¢
pacityy*, called theperiodicity leve] such that for each > y*, there is an optimal
solution withz; > 0. It is well known that, for each UK, such ay* exists, but
its value is not easily detectable. So, although the pesitydproperty can drasti-
cally reduce the search space, it can only be detected in adbiework. INEDUK
this is realized by discovering a capacity > y* such thatyt = min{y|Vy’ €

[y — wmax, y] there is an optimal solution of UKg?p with z, > 0}.

Finally, the fact thaDP algorithms compute optimal solutions for all valuesyof
below the capacity allows the recursion to be stopped when the capacity
min{max{$§, Wmax},y" } is reached.

Thanks to all above mentioned properties, in practd@JKbehaves significantly
better than the worst case complexitync) of recurrence (6).

Branch-and-bound (B&B)

Unlike DP,B&B algorithms compute an optimal solutionly for a given capac-
ity, and are dependent on the quality of the computed uppends TheMTU2
algorithm proposed by Martello and Toth [10] uses the upmemb U3 and the
now well knownvariable reduction schemdéet = be the objective function value
of a known feasible solution, and l&t be an upper bound of(N, ¢ — w;) + p;;

if U < z, then either is optimal orz; can be set to zero. We say in this case that
item j is “fathomed by bounds”.

Hybridization of DP and B&B
There are several complementary ways to integrate a bounudg&dge into a DP.

(1) The first approach is to use the variable reduction schema@re-processing
stage to reduce the sat

(2) The second approach consists in computing, for eatimal statgy, f (N, v)),
an upper bound/(c — y) for a knapsack witle — y capacity. If

U(C_y)+f(Nay)§Za (7)

wherez is the incumbent objective value, then the state can berdisdaWe
say in this case that the state is “fathomed by bounds B&B context”.
This states reduction schen(ealled heredDP with states fathomed by bounds
significantly reduces the number of states during a spapsesentation of the
iteration space.

(3) The third approach consists in solving an UKPusing aB&B algorithm in
which thecoreset is a subset of the items with the best ratiog(tore, ¢) =
U(c) then the problem is solved. Otherwigécore, c) is used as a value of a
known feasible solution during tHeP with states fathomed by boundtage.

4.1 TheEDUK2 algorithm outline

The algorithmEDUKZ2, given below, is an hybridization @DUKwith B&B com-
ponents, according the above given integrations. The Bésps ofEDUK2are:

step 1 Detect inO(n) time the best item, and find an initial feasible solution with
valuez. Discard from/V all items multiply dominated by. This is also done in
linear time.

step 2 For the reduced set of item$, compute an upper bounid by the tech-
niques described in section 3. Apply the variable reducticmeme inO(|NV|)
time. Then, select a subset containing thétems with the best ratios (core of
size().

step 3 To improve the lower bound, runB&B algorithm on the core, limiting it
to explore no more tha® nodes.

step 4 RunDP with states fathomed by boun@&e section 4.1.1).

Remark 2 In the current implementation &DUK2, we use a B&B similar to the
one in MTU1 (Martello and Toth [10]), but it is further enried with the ability
to choose the computed upper bound (currebily U, or Us). The parameters,
B andC, were experimentally tuned and fixed(o= min{n, max{100,7/100}}
and B = 10000.

4.1.1 DP with states fathomed by bounds

An enhanced version &DUKoperates in step 4. Its pseudo code is given in listing
1. The functiondp-solve(states,items,ya,yb) is a dynamic program-
ming based on recurrence (6). It traverses the search spaslecds of sizeh .

4 we useh = wpjn but this is a parameter of the algorithm.

Starting from some initial lists of statetates , and itemdtems , dp-solve
uses threshold dominance to buildminances freésts (states’,item’) of
items and states with weights in the capacity intefyal.yb|. This part of the pro-
gram corresponds to the origiraDUK

Furthermore, and according to the second integration agprgiven above, the
functionfathoming applies the variables/states reduction schemes to elienina
all fathomed states and items, returning as result the (ks&des”,item”)

These computations may improve the incumbent objectiveazalTo take this into
account, the functiofathoming proceeds in the following manner: for any un-
fathomed stat¢y, f (N, y)), a greedy solution of the knapsack UKE... is found,
and completed with the solution 6§, f (N, y)). The value of this new feasible so-
lution replaces the old one, if its value, sdyis better tharx. This functionality of
the DP phase is new and specific BDUK2 only.

Note that computing all optimal statég, f(V,y)) with y < £ is enough, since
any knapsack with capacity €], c] can be solved by completing the solution of

UKPY_</? with the one of UKR/.

5 Performance evaluation experiments

Computational experiments were run in order to: (i) testtifieiency of theB&B/DP
pairing and the state discriminating capacity of the newnoisW;; (ii) exhibit
some actual hard instances. Unfortunately, very few iéalihstances olUKP
have been reported in the literature. For this reason weetrtrated our efforts
on a set of benchmark tests using: (a) random profit and/agiwegeneration with
some correlation formulae; (b) hard data sets that weraapedesigned for the
B&B approach [5].

The main rules for generating interesting (fair) instararesriefly sketched below:

(1) Instances without simple dominanees(). These are instances with mutually
non equal weights and ib; < w; thenp; < p; for all couples(i, j). Thus for
instances with integer daia< w,,,., — Wmin + 1. This could cause problems
with generating large size instances, due to arithmeticflove and needs
special purpose compilers (as the one used for EDUK?2).

(2) Instances without collective dominancgcl). One can easily prove that a
sufficient condition for an instance to be of typed is the same as above
but with p; andp, changed t@;/w; andp,/w;, respectively (increasing prof-
it/weight ratios on increasing items’ weights). A speciabslass is the pre-
viously mentioned SC-UKP withk < 0 (see paragraph 5.1.1.2 and formula

5 this test was not implemented EDUK

10

Listing 1. Pseudo code of the dynamic programming with beusttp 4

(*I nput:
itens: the remaining set of itens;
states: the list of optimal states with wei ghts <y;
y: the already reached capacity;
c: the target capacity;
z: the incunbent objective val ue;
u: the upper bound.

*)
(*»Qut put :
an optimal solution z’
*)
(» Initialization =)
ya =y,
yb =y + h;
while (Jitems’] > 1) and (ya<c/2) and (z < u) do
(states’,items’) := dp-solve(states,items,ya,yb);
(states”,items”,z’) := fathoming(states’,items’,z);
ya:=yb;
yb:=yb+h;
States:=states”;
items:=items”;
if (z<z’) then z:=z;
done;
if (litems’| = 1) then

stop, return the optimal solution build
by aggregating the single item with the
appropriate element from states'.

else if (ya >= c/2) then
stop, return an optimal solution obtained by the
aggregation of the optimal state of weight yb and
the one of weight (c-yb).

else if (z = u) then
stop, return z.

(8)), the SC-UKP subclass, called hard Chung examples ésg2iand 3) and
Table 1, part 3, and also formula (9).

In all runs, the instances solved arengd type and those reported in figures 2 and
3, and in Table 1 part 3 are of typecd.

Remark 3 All problems reported below are with integer data althougk tisers
of EDUK2 are not restricted to this class only.

11

The solver EDUK2 is based on a combination of DP approach &l &proach
to UKP. The main goal of the computational experiments isheck (experimen-
tally) if such hybridization helps. The contestants chaaerEDUK- pure DP based
solver which we believe is worthwhile to compete with, and W2ZFB&B based
solver with an almost classical good reputation. Compuetivith CPLEX is added
for completeness.

As for the bound$/; andU;;, we did not notice statistically meaningful inclination
in favor of one or the other on a large set of randomly gendraistances except
for the SAW-UKP class. That is why their influence is reported for this clagy,o
while for non-SAW-UKP instances we present only the results obtained by using
U;.

Very few UKP solvers are available for comparison wEBDUK2 For example,
Babaye\et al. have proposed an integer equivalent aggregation and temsysap-
proach (CA) that appears to be an improvement over MTUZ2 [@}véler, this code
is not available to us. Caccetta & Kulanoot [4] have recedtgcribed two spe-
cialized algorithms for solving two particular classes d€RI CKU1for Strongly
Correlated UKP $C-UKP) and CKUZ2for Subset Sum Problei86-UKP). How-
ever, these algorithms are not applicable to the general. OK&s, we chose to
compareEDUK2 with the only two publicly available solver&DUK][1], which
is considered to be the most efficient DP algorithm [12], BHidJ2 a well-known
B&B solver [10].

We start by a comparison of the behaviorawfU2 EDUKand EDUK?2 on clas-
sic data sets, then we focus on compariiguUKwith EDUK2 on new hard in-
stances not solvable BMTUZ2 In the case of SAW UKP, we study the impact on
the resolution time when using the new bound instead of/;. We also compare
EDUK2 with the general purpose solver CPLEX.

EDUK2 and EDUKwere written in objective CAML 3.08. The respective codes
were all run on a Pentium 4, 3.4GHZ with 4GB of RAM, and the timet for each
run was set to 300 sec. MTU2 was executed on the same machdneoerpiled
with g77-3.2 . The impact of the bounds was tested by simply substitutieg t
boundU; in EDUK2 with U3 in a version calleédu .

5.1 Classic data sets

A complete study of the classic UKP benchmarks, where thawhets of EDUK
andMTUZ2have been compared, can be found in [1]. Most of these UKPaagpe
be easy solvable byDUKZ and for this reason we report only the most interesting
subset of the data from our computational results.

12

5.1.1 Known “hard” instances

First, we focus on the data sets found to be difficultvtrU2or EDUK[1].

5.1.1.1 (SS-UKP) The SS-UKP instancesu(= p) are known to be difficult
for EDUK We built such instances by generating 10 instances for pashible
combination ofw,,;, € {100,500, 1000, 5000, 10000}, wpyay € {0.5x10°;10°} and
n € {1000; 2000; 5000; 10000} with ¢ randomly generated withid x 10°, 10°]. We
obtain in this manner 400 distinct instances. The averad# tioke for the different
algorithms was:

EDUK2 0.045s; EDUKO0.474s; MTUZ20.136s.

According to these result§DUK2 is 10 (resp. 3) times faster th&DUK (resp.
MrU2). The impact ofU; with respect to that of/; is negligible.

We also tested the sensitivity of the algorithms with respea,,;,, and the results
showed thaEDUK?2 is much less sensitive to,,,;, thanEDUK On an average the
time for EDUKincreased about 80 times whean,;, passed fromi00 to 10000,
while for EDUK2 the average increase is 40

EDUK2 EDUK MTUZ
Wmin = 100 0.005s. 0.025s. 0.042s.
Wmin = 10000 | 0.2s. 1.82s. 0.25s.

5.1.1.2 (SC-UKP) A set of instances of 8pecial SC-UKRvas built according
to the formula

W; = Wmin +7— 1 andp; = w; + « with w,,;, anda given. (8)

Chunget al.[5] have shown that solving this problem is difficult fB&B . We set
Wimin = 1 +n(n+ 1) andn € {50; 100; 200; 300; 500}, and used both a negative
and a positive value fat. For each set, we generated 30 instances with a capacity
taken randomly from the interv@0°, 107].

a > 0 (SAW-UKP) The average time needed to solve the 150 instances was:
EDUK2 3.32s, eduy,: 3.37s; EDUK 4.29s.

MTU2was able to solve only 9 of the 60 instances witk {50; 100} and none
for n > 100 .
a < 0 (Non-SAW-UKP) The average time for solving the 150 instances was:

EDUK2 6.01s; edu,:5.93s; EDUK8.65s.

6 Even more stable behavior is observedNtFU2 but its running time fokw,,;,, = 100 is
10 times bigger than the one BDUK2.

13

MTU2was able to solve only 10 of the 60 instances with {50; 100} and none
for n > 100.

From these results, it appears tBBIUK?2 is 1.3 (resp. 1.45) times faster th&DUK
whena > 0 (resp. <0). We observe that the impact of the new upper bagnd
with respect to that ol/; is negligible. As expected, these instances were hard for
MTU2.

Remark 4 Here we left the/; versusU; comparison just as an illustration for
their statistical closeness in the case of non-SAW UKP int&s.

5.1.2 Sensitivity to variations in the capacity: a compansvith EDUK

The B&B algorithms are known to be very sensitive to variations & ¢hpacity.
DP algorithms, on the other hand, are known to be robust hairt tomputational
time increasing linearly with the capacity value. Our cotapional experiments
show thatEDUK?2 inherits the good properties of boB&B and DP. Data pre-
sented inFig. 1 were generated by formula (8) assaecial SC-UKPWe observe
that EDUK2Zs overall computational time is upper-bounded by the mummbe-
tween the time taken by the pseudo-polynomial DP approaghietime forB&B.
EDUK2 has Iost the regular behavior typicalBDUK but this is in its favor, since
the time rat'OEUUKQ_ > 1is valid for any instance, and reaches a value of 2.5

for more than 12% of the values. The local minima iEDUK2s computational
time are around points where the capacity is a multiple ofotb&t item’s weight.

The efficiency of theB&B increases near around such capacities (instances) due
to the small deviation frond of the duality gap (continuous solution is feasible),
whose value is known to have a direct impact on the solutime tMTU?2always
requires more than 1200 sec., except 5& of the points where it requires less
than 12 seconds. These are the points wikED&/K?2 finds the solution with the
B&B (the above mentioned local minima).

5.1.3 GeneraBAW-UKP instances

This class containSAW-UKP instances generated by the procedure described in
Listing 2. Since the generated coefficieptsatisfyp; < m; + pia;, ¢; = 22

and we guarantee that < 1. Moreoverp; > p;;;, SO there is no simple domi-
nance. 880 instances have been generated in this way usingathmeters: =

2= 3w, Wi € {100; 200; 500; 1000}, winax € {10000; 100000; 1000000} and

n € {1000;2000; 5000; 10000}. For each of thel4 possible parameter combina-
tions” , we randomly generated 20 instances, for which we obtaimedoilowing

average times:

" The combinatiom = wyayx = 10000 is not possible due to simple dominance.

14

8r 7r
EDUK ——
7 L EDUK2 e |
w"“ °
61 s 5t
2 5T i
8 47
o 47
£ 3
s 3l
2} 2y
1t 1r
i) =asREERRER i 0 : 3 4 N i)
100x1073 200x1073 300x1073 400x10"3 500x10"3 450x10"3 500x10"3
capacity capacity

Formula (8) where: = 100, wy,, = n(n+1)+1, a« = —3 andc is randomly
and uniformly generated betwe& 000, 560 000]. The whole figure is dg
picted on the left. On the right, a zoom on the sub-intejz() 000, 500 000]
is shown. On an averagePUK2 is more thar25% faster tharEDUK

Fig. 1. Capacity sensitivity dEDUK2 andEDUK

Listing 2. Procedure for generatirf@AW-UKP instances

w; . randomly generated in strictly increasing order
with the property: w; modw; > 0,Vi > 1
a : a random integer in [1..5]

p1: pr=w o
for i in]1..n]
m,; = w; modw; ;

ai = 3]

l; =14+ max(p;_1,p1 X a;) ;

p; - randomly choosen in [Li..(mi+p xa)] ;
done;
then pairwise shuffle p and w;

EDUK2 0.129s, edu,: 0.252s; EDUK0.610s.

We therefore observe that for this famBpUK2 is about 5 times faster thaeDUK,
and using/,- = U} instead ofU; accelerateEDUK?2by a factor of 2.

Due to arithmetic overflomMTU2was run with only 200 instances with,,., =
1000. For 95 of these instances, it reached the time limit of 3@0sds.

15

5.1.4 EDUK?2 versus CPLEX versus EDUK

In this section we compafeDUK2 and EDUK with one of the most popular gen-
eral purpose mathematical programming optimizers CPLEX.®G ® . For this
purpose we focus on three types of problems, each defined by & p) and

a wide set of capacities. Each instance has been solvéDiyK2, EDUK and
CPLEX, and the respective required times are reporteigm2-Fig.7. The first
two problems were generated by formula (8) with parametergiaen above the
graphics. As discussed in section 5.1.1, they are known thffieult for B&B.

A Hard-Chung (Non-Saw UKP)
w_i=w_min+i; p_i = w_i-10; w_min=11000;
n = 10000; weight of the best item =21000

EDUK
- =—EDUK2

7E+4
9E +4

4E+4
SE+4 4
GE +4
10E+4

Capacity

Fig. 2. EDUK2 versus EDUK on a set of 540 hard non-SAW UKP instances

For the first problem,Kig.2-Fig.3), 540 instances were created by uniformly ran-
domly choosing the capacity values in the intervad [04,10°]. Fig. 2compares the
behavior ofEDUK2 with the one of EDUK. As irFig. 1, EDUK behaves regularly,
while the shape oEDUKZ2s curve permits to distinguish three different cases that
alternate periodically: i) a high plateau where both aliyonis need the same time
since the solution was found by dynamic programming; iiyvapdateau where the
solution was found by the bound provided in the B&B phd&sBUK2 computes
the results instantaneously being 50 times faster than EDl)Kntermediate stage
where the solution was found due to B&B/DP hybridizationeT¥eight of the best
item (here 21000) is a period of any of these three stageg ibghavior oEDUK2

Next experiment was dedicated EDUK2 versus CPLEX comparison. Running
time for CPLEX was bounded by 600 secorfég. 3illustrates that for this lapse of
time and on the same data set CPLEX succeeds to solve abouwtfiBédnstances.
The solved instances have their capacity in a narrow neidiooal of a multiple of
the best item weight. This is clearly seenfig. 3. These instances correspond in
fact to the low plateau ii) above described. In the dominaste¢ 88%EDUK?2 is

8 \We used version 10.0.1 of CPLEX

16

A Hard-Chung (Non-Saw UKP)
w_i=w_min+i; p_i =w_i-10; w_min=11000;
n = 10000; weight of the best item =21000

EDUK2
= = CPLEX

T
s + -+ T + -+
100 3 + + + + +
w w w w w w
-+ i %] r~ o =
-

Capacity

Fig. 3.EDUK2 versus CPLEX on a set of 540 hard non-saw UKP instances
more than 100 times faster than CPLEX.

A Hard-Chung(Saw UKP)
w_i=w_min+i; p_I = w_I+5;w_min=11000;
n = 10000; welght of the best item =11000

60

e A
| b
) .

i
40
L L1 — e
§0M 0

10 H

4E 44
5E 44
BE+4
TE+4
BE+4
10E +4
12E+4
13E+4
14E +4
15E +4
16E +4
17E+4
1BE +4
19E +4

Fig. 4. EDUK2 versus EDUK on a set of 1350 hard saw UKP instaince

Figures 4 and 5 illustrate the same comparison in case of SAW lhstances
generated by procedure 2. Here the capacity value is unijarendomly chosen
from the interval § x 104, 2 x 10°] and 1350 instances were generated in this way.
As theoretically expected, due to the new bouBdJUK2 instantaneously finds the
solution (except for few values just below a multiple of theight of the best item).
We observe similar phenomena as before: agdJK2 is about 50 times faster
than EDUK (with very few exceptions). CPLEX succeeds to sabout22% of
the instances for the given lapse of time. These instanaesspmnd to a multiple
of the best item weight. Outside these rare cd&deb/K2 is more than 100 times
faster than CPLEX.

Next experiment focusses on randomly generated instarieg bon-SAW UKP.

17

A Hard-Chung(Saw UKP)
w_i=w_min+i; p_i = w_i+5;w_min=11000;
n = 10000; weight of the best item =11000

.E 400

= =—CPLEX

| |

i 1' I EDUKZ
!
1
1

4E+4
SE44
BE 44
TE+4
BE+4

Fig. 5. EDUK2 versus CPLEX on a set of 1350 hard saw UKP ingsinc

We generated 2700 such instances with parameters as aekarifigures 7 and

6 and a capacity uniformly randomly chosen from the intefial x 10%,43 x
10%]. Fig. 6 comparesEDUK2 versus EDUK on this data set. The behavior of
both algorithms is very similar to the one observedrogn 2: the running time of
EDUK2 has a typical saw like shape with minima around the multipfabe best
item and upper-bounded by the time of EDUKg. 7 illustratesEDUK2 versus
CPLEX behavior. CPLEX succeeds to solve all instances waapacity less than
21 x 10* and those with a capacity close to a multiple of the best iteum fails
for all other instances with a capacity larger thizanx 10*. For all these instances
EDUK2is as at least 100 times faster than CPLEX.

Without simple dominance; Non-Saw UKP
w_max=110000; w_min=5000;
p_min= n=10000; weight of the best item = 105071

EDUK
= = - EDUK2

Seconds

TA T T TT T LS TT T LTS T AT T T L LA T TS
+ 4+ F £ F o+ + o+ EF E o+ + ok F o+ F o
L8] WSl DRJ QR N0 U] US) ED QB LMD AND AS] @S] M) WD 8 MRS A6) E) WD m) QM ART S BE) @il nRd Ge)
= MM g O @O NP S W &S D Mg W e oD N M s
Ca e B B o B IR o I o B o R o O O o A O o B R T T e T L R e T o B R o i - o

Fig. 6. EDUK2 versus EDUK on a set of 2700 randomly generatié ihstances

18

Without simple dominance; Non-Saw UKP
wW_max=110000; w_min=5000;
p_min = n = 10000; weight of the best item = 105071

700

e00

500

400

EDUKZ

300 - - - CPLEX

Seconds

200

100 v

11E+4
12E+4
13E+4
14E+4
16E+4
17E+4
1BE+4 J&
19E+4 Fo
20E+4
23E+4
23E+4
24E+4

ST T T T T T T T T T T T T T T T
+ + + + + + + + + + + + + + + +
(TSN T o T I° [I° o I 1 - 1 0 1 T oy T oy Ty gy 1 }
Wk @ O/ s inw @ O Mg
o I T o I o o T o Tt N oo T o T O o T T - - .
Capacity

Fig. 7. EDUK2 versus CPLEX on a set of 2700 randomly genergi€g instances

5.2 Do hard UKP instances really exist?

Based on these results, one is inclined to conclude —wrerpigt UKP are easy

to solve. It is important to remind that, in the above expents, the considered
instances are of moderate size only. A real-life problemhef $ame size would
indeed be easy to solve. However, real problems may have ¢axfficients, which

makes necessary testing the solvers’ behavior on such elata s

5.2.1 New hard UKP instances

In order to construct difficult instances, we consideredhdats with large coef-
ficients and/or large number of items. Becad$EU2cannot be used for such in-
stances because of arithmetic overflow, we restricted ompesisons tcEDUK
eduy, and EDUK2 For such data selSDUK2 andedu, benefit of thenum
ocaml library, which provides exact unlimited integer lamietic to compute the
bounds. All the runs were done on a Pentium IV Xeon , 2.8GHHA &&B of RAM.
CPU time was limited to one hour per instance. If this timeativwas reached, we
reported 3600 sec. in order to compute the avetayie use the notationm to

denoter x 10“*! + n, where0 < |] < 10 (e.9.n = 213,47m = 4213).

9 The notationt(k) means that the average timetisec., withk instances reaching the
time limit.

19

5.2.2 Instances known to be difficult for B&B

We generated large data sets using the formula (8). It is teasge that for such
a data set, no more tham,;, items are not collectively dominated. For a given
the formula determines n paifs;, p;), and we generatetl different values for,
wherec takes random values frof20m; 1007] (first part in Table 1).

The meaning of the notations used in this table is given ira§s®ociated caption.
The reported value in themd, ncd, cpu columns is the average for the number
of instances; the value in thvedp columns refers to the total number of instances;
the value in therrs 1, rp andrst columns, reports the average for the number of
instances for which the algorithm enters the DP phase.

EDUKhad some trouble in solving these sets and was unable to tha26 prob-
lems withae = —5,n = 10*, andw,;, = 11 x 10* in less than one hour. In
one special case, whete= 5 andn = w,,;, = 10000, the solution was always
found immediately in the initial variable reduction stegjng the bound’,. Ex-
cluding these two special seESDUK2is on an average from 1.7 to 3.7 times faster
than EDUK Note that for all these instances, the optimal solution feasnd by
EDUK2 andeduy, either in the variable reduction step, either in the DP phase
but never in thaB&B step. Note thaEDUK2 was 1.01 to 1.7 times faster than
edu,whena > 0 (these instances belong to t8BAW-UKP family). However, in
the case ofv < 0, EDUK2 andedu, behave very similarly. For this reason the
results ofedu,, are not presented here.

5.2.3 Data sets with a postponed periodicity level

For the data in the second part in Tableu},were randomly generated between
[Wmin; Wimax], @Ndp; values were generated usinge [wi; wy +500], p; € [pi-1)+

1; pi—1) + 125]. ¢ was randomly generated betwen,,..; 2 x 10°]. Clearly, for
these instances, the number of non-collectively domindteds determines the
efficiency of the algorithms. We observed that with this kofddata generation,
wherec < 2 X wy,, @ndn is large enough, the periodicity property does not help
(rp =~ 1). EDUK2outperforms significantlfEDUKand behaves similarly ®du , .
The results oEDUK2 andEDUKare only given in Table 1.

5.2.4 Data set without collective dominance

In order to prevent a DP based solver to benefit from the vigrigdgluction due
to the collective dominance, in this section we generate dditere the ratid’ is
an increasing function of the weights. We proceeded asvisllaw values were

10 The notationz(y) in this column means that farinstances the optimal value was found
in this step and: is the average of the number of reduced variables imtherinstances.

20

instance description

‘ EDUK2

eduU3

| EDUK

20 instances per line

‘ Hard data sets created using formula (8)c randomly from [2072; 1007].

)

«a N Wmyin | hmd ncd cpu vriswdp rst rp cpu vriswdp rst rp cpu p
5 5 10 n n 21.77 0(13) 13 0.29 0.047 37.81 642(3) 3 0.380.069 80.06 0.108
15 n n| 46.57 0(8) 8 0.340.099 52.29 83(7) 7 0.560.141 111.28 0.18§
50 n n| 154.19 0(2) 2 0.550.47/0156.63 0(2) 2 0.680.555 261.29 0.661
5 10 10 n n 0.03 0(20) 20 - 1135.22 2420(3) 3 0.540.007 336.70 0.004
50 n n| 344.12 0(6) 6 0.26 0.037367.94 0(6) 6 0.410.052 915.11 0.079

110 n n| 77153 0(2) 2 0.20 0.112816.90 0(2) 2 0.26 0.139 2808.50 0.30
-5 5 10 n n 64.82 44(6) 6 0.78 0.091 113.67 0.109
15 n n| 104.89 11(2) 2 0.61 0.091 183.31 0.18§
50 n n| 232.26 0(8) 8 0.86 0.650 447.40 0.66(
-5 10 10 n n| 167.26 1317(4) 4 0.67 0.009 317.01 0.009
50 n n| 508.37 0(6) 6 0.450.058 1539.74 0.07¢

110 n n|1401.(3) 0(4) 4 - 0.124 (20) -

200 instances per line Data sets with a postponed periodicity levelc randomly from [wmax; 2 X 108]

N Wiin Wmax | hmd ncd cpu vriswdp rst rp cpu vriswdp st rp cpu p
20 20 10m|19985 16851 118.65 11121 2 0.250.949 34481 0.994
50 20 10m|50000 49999 1026.(1) 28881 0 0.22 1.0 2959.(8) 1.0
20 50 10m|19999 19924 126.(2) 9955 0 0.23 1. 504. 1
50 50 10m |50000 49999 1553.(1) 22827 0 0.32 1.00 3289.(51) 1.04

500 instances per line Data set without collective dominance (formula (9))c randomly from [wmax..10007]

N Wiin nmd ncd cpu vriswdp rst rp cpu vriswdp rst rp cpu p

5 n n n 7.93 3101 23 0.40 0.827 29.05 0.816
10 n n n 36.84 5660(1) 13 0.43 0.745 147.76 0.759
20 n n n| 18455 12010 3 0.380.791 735.24 0.783
50 n n n| 808.26 25499 2 0.46 il 2764.59 1

SAW data sets.c randomly from [wmax; 107]

N Wpin Nnbi| nmd ncd cpu vriswdp rst rp cpu vriswdp st rp cpu p
10 10 200 9975 1965 8.03 8015 14 0.40 0.597 11.12 5323 2 0.470.630 29.06 0.636
50 5 500049925 5564 70.78 41289(1) 17 0.05 0.5108.97 25287(1) 11 0.53 0.51294.30(1) 0.521
50 10 20049955 8983 71.02 39779(3) 6 0.40 0.4922.66 26510(3) 3 0.49 0.492 416.88 0.496

100 10 20099809 6597 264.12 90436 1 0.32 0.51(87.03 65289 1 0.450.519 1268.45 0.523
Table 1

Data fromn and w,;, columns should be multiplied by0? to get the real value. We
use the following metrics: nmd: number of non-multiply dominated items (step 1 of
EDUKZ; ncd: number of non-collectively dominated items (as compute&EBUK; cpu:
running CPU time in secondsrp: denotes the ratiéci wherey™ is the capacity level
where the algorithm detects that the periodicity leyels reached;vrs: number of items
eliminated in the variable reduction stewdp: number of instances for which the optimal
solution was found without using DP (steps 1 to B3t: ratio of the number of states in the
DP phase (step 4 @&DUK32 with respect to the number of states EDUK

uniformly and randomly generated within the interfeal,;,..wmax] (Without dupli-
cates) and were sorted in an increasing order. Thems generated using

21

D1 = Pmin T kl and

pi = Lw; x (0.01 + 275y | 4 &, with &; randomly generated< 10 9)
1—1

We setwin = Pumin = N, Wmax = 107, andc was randomly generated within
[wmax--10007]. We did not observe any significant difference betwEB&WUK2 and
eduy,, though both were about 4 times faster tlEDUK(see the associated (third)
part in Table 1).

5.2.5 SAW data sets

SAW-UKP instances were generated following procedure 2 with thamaters:
Winax = 17, Pmax = 27 @Ndc € [wpmay; 107]. For each paifn, wy,), we generated
nbi distinct instance¢see the associated (last) part in Table 1).

The tight and computationally cheap upper bound for thetegiees a clear ad-
vantage t&EDUK2 compared t&EDUKandedu ,. The quality of this bound has a
noticeable impact on the number of instances solved in thablas reduction step
or by the initialB&B (columnwdp), the number of reduced variables (column
vrs), and the number of states (columst) .

5.2.6 Summary

EDUK?2 consistently and significantly outperformed EDUK on alladséts. Once
more this is illustrated oifrig. 8 where the number of points plotted on the left
and the right graphics are 2500 each. Any point is an UKP m&s of 20000
(left) and of 50000 (right) variables. The average statsstor the running times of
EDUK2 and EDUK are: foISAW-UKP, generated according listing EDUK2 is

10 times faster than EDUK, while fanon-SAW-UKP - 3 times. For many in-
stancesEDUK?2 yielded the solution immediately while EDUK required saler
minutes (sometimes more than 1 hour). The efficienciEDUK2 is obtained by
the cumulative effect of the different ways tHa&B and DP are integrated. Taking
into account all the new hard instances (except those gewdlnath formula (8)),
the reduction variables step reduces the number of iteme twohsidered on an
average varying from5% to 95%. Integrating bounds during the DP phase further
reduces the number of states fras?s to 95%. The impact of the new bound;

is important for allSAW-UKP instances and it affects all steps of the algorithm.
For thenon-SAW-UKP instances no significant difference was observed between
usingU; andUs.

The superiority oEDUK2 to the general solver CPLEX is (as expected) apparent.
In the dominant case, in all tests presented in section =DYWK2 was more
than 100 times faster than CPLEX Additionally to these tests we found useful

I CPLEX execution time was upper bounded by 600 sec.

22

T i, S n W By ar s 11
“T .

150+ L ad as ad L Ada & &
1204
EDUK 30+
60+

30

0 T T T T
0 30 60 20 120 150 180 0 20 40 60 80 100 120 140

EDUKZ EDUK2

Running times in seconds &EDUK2 (on the horizontal axis) and of EDUK (on the
vertical axis). Each point corresponds to one instance.lifileels the equal-time
line. Left: data set without collective dominance genetaig formula (9) with
n = 2 x 10%. Right: SAW-UKP data set withh = 5 x 10%.

Fig. 8. Plots of two large sets of instances

to check the performance &DUK2 in some recent UKP applications. One such
application is described in [16] where CPLEX has been usétkdssolver, instead

of a special purpose algorithm. We generated the same setahices as in [16] for

n = 105. EDUK2 computed 5 such instances on an average time of 0.15 seconds,
while the respective running time in [16] is announced totoeiad 30 hours!

There are still hard instances with large valuesif@nduw,,;,, notably those gener-
ated with formula (8), where < 0, w,;, = 110000, = 10000. They were solved
by EDUK?2 on an average df5 to 30 minutes. For all these difficult instances, the
number of items that are not collectively dominated is vargé. Thus, it appears
that for such cases, DP algorithm needs to explore a hugaidgerspace when
B&B fails to discover the solution.

6 Conclusion

We have shown that a hybrid approach combining several krteamiques for
solving UKP performs significantly better than any one ofsthéechniques used
separately. The effectiveness of the approach is demoedtom a rich set of in-
stances with very large inputs. The combined algorithm rithé¢he best timing
characteristics of the parents (DP with bounds B&dB). We also proposed a new
upper bound for the UKP and demonstrated that this boundeidigintest one
known for a specific family of UKP. OUEDUK?2 algorithm takes advantages of
most of the known UKP properties and is able to solve all beivééry special hard
problems in a very short time. It appears that instancesjqusly known to be
difficult, are now solvable in less than a few minutes.

Acknowledgements Supported by Hubert Curien French-Bulgarian partnership
RILA 2006 N’ 15071XF. All computations were done on the Ouest-genogpoia-b
formatics platform (http://genouest.org). Thanks to N.IddiaDognin for his help

in running CPLEX. The authors would like to thank the two ayraous referees for
their insightful comments, corrections and suggestioasgtynificantly improved
the paper.

23

References

[1] R.Andonov, V. Poirriez, and S. Rajopadhye. Unboundeapisack problem : dynamic
programming revisitedEuropean Journal of Operational Researct23(2):168-181,
2000.

[2] D. Babayev, F. Glover, and J. Ryan. A new knapsack salutigproach by
integer equivalent aggregation and consistency detetimmaNFORMS Journal on
Computing 9(1):43-50, 1997.

[3] V.Boyer, M. Elkihel, and D. El Baz. Efficient heuristicerfthe 0/1 multidimensional
knapsack. IrROADEF, pages 95-106. Presses Universitaires de Valencienngs, 20

[4] L. Caccetta and A. Kulanoot. Computational Aspects ofdHidnapsack Problems.
Nonlinear Analysis47:5547-5558, 2001.

[5] C-S.Chung, M. S. Hung, and W. O. Rom. A Hard Knapsack RnombNaval Research
Logistics 35:85-98, 1988.

[6] R. Garfinkel and G. Nemhausédnteger ProgrammingJohn Wiley and Sons, 1972.

[7] P. C. Gilmore and R. E. Gomory. The Theory and ComputattbrkKnapsack
Functions.Operations Resear¢gii4:1045-1074, 1966.

[8] S. Martello, D. Pisinger, and P. Toth. Dynamic programgand strong bounds for
the 0-1 knapsack problenManag. Sci.45:414-424, 1999.

[9] S. Martello and P. Toth. A mixture of dynamic programmiagd branch-and-bound
for the subset-sum problenManag. Sci.30(6):765-771, 1984.

[10] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
ImplementationsJohn Wiley and Sons, 1990.

[11] G. L. Nemhauser and L.A. Wolseynteger and Combinatorial OptimizationJohn
Willey & Sons, 1988.

[12] U. Pferschy, H. Kellerer, and D. Pisingé¢napsack ProblemsSpringer, 2004.

[13] G. Plateau and M. Elkihel. A hybrid algorithm for the klapsack problemMiethods
of Oper. Res.49:277-293, 1985.

[14] V. Poirriez and R. Andonov. Unbounded Knapsack Probléew Results. In
Workshop Algorithms and Experiments (ALEX98), pages 1035 February 1998.

[15] V. Poirriez, N. Yanev, and R. Andonov. Towards reductad the class of intractable
unbounded knapsack problem. Research report, LAMIH/ROIRUONRS-UVHC
8530, 2004.

[16] C. Srisuwannapa and P. Charnsethikul. An exact algorifor the unbounded
knapsack problem with minimizing maximum processing tideurnal of Computer
Science 3(3):138-143, 2007.

[17] Nan Zhu and Kevin Broughan. On dominated terms in theeg@drknapsack problem.
Operations Research Lettei®1:31-37, 1997.

24

