
HAL Id: inria-00335065
https://inria.hal.science/inria-00335065

Submitted on 28 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Algorithm for the Unbounded Knapsack
Problem

Vincent Poirriez, Nicola Yanev, Rumen Andonov

To cite this version:
Vincent Poirriez, Nicola Yanev, Rumen Andonov. A Hybrid Algorithm for the Unbounded Knapsack
Problem. Discrete Optimization, 2009, 6, pp.110-124. �10.1016/j.disopt.2008.09.004�. �inria-00335065�

https://inria.hal.science/inria-00335065
https://hal.archives-ouvertes.fr

A Hybrid Algorithm for the Unbounded Knapsack
Problem

Vincent Poirrieza Nicola Yanevb Rumen Andonovc,∗

a LAMIH/ROI UMR CNRS 8530, University of Valenciennes, Le Mont Houy, 59313
Valenciennes Cedex 9, France

b Faculty of Mathematics and Informatics, University of Sofia, 1164 Sofia, 5 James
Bourchier Blvd., Bulgaria

cINRIA Rennes-Bretagne Atlantique and University of Rennes1, Campus de Beaulieu,
35042 Rennes Cedex, France

Abstract

This paper presents a new approach for exactly solving the Unbounded Knapsack Prob-
lem (UKP) and proposes a new bound that was proved to dominatethe previous bounds on a
special class of UKP instances. Integrating bounds within the framework of sparse dynamic
programming led to the creation of an efficient and robust hybrid algorithm, calledEDUK2.
This algorithm takes advantage of the majority of the known properties of UKP, particularly
the diverse dominance relations and the important periodicity property. Extensive compu-
tational results show that, in all but a very few cases,EDUK2 significantly outperforms
both MTU2 and EDUK, the currently available UKP solvers, as well the well-known gen-
eral purpose mathematical programming optimizer CPLEX of ILOG. These experimental
results demonstrate that the class of hard UKP instances needs to be redefined, and the
authors offer their insights into the creation of such instances.

Key words: Combinatorial Optimization, Integer Programming, Knapsack problem,
Branch and Bound, Dynamic programming, Algorithm Engineering

1 Introduction

The knapsack problem is one of the most popular combinatorial optimization prob-
lems. Its unbounded version, UKP (also called the integer knapsack), is formulated
as follows: there is a knapsack of acapacityc > 0 andn types of items. Each

∗ Corresponding author.
Email addresses:vincent.poirriez@univ-valenciennes.fr (Vincent

Poirriez),choby@math.bas.bg (Nicola Yanev),randonov@irisa.fr (Rumen
Andonov).

Preprint submitted to Discrete Optimization 9 September 2008

item of typei ∈ I = {1, 2, . . . n} has aprofit, pi > 0, and aweight, wi > 0. Set
N = {(pi, wi), i ∈ I} and letw,p denote vectors of sizen. The problem,UKP c

w,p,
is to fill the knapsack in an optimal way, which is done by solving

f(N, c) ≡ f(w,p, c) = max
{

px subject towx ≤ c,x ∈ Zn
+

}

(1)

whereZn
+ is the set of nonnegative integraln-dimensional vectors.

Many of this problem’s properties have been discovered overthe last three decades:
[1,4,6,11,10,14], but no existing solver has yet been developed that benefits from
all of them. A detailed and comprehensive state-of-the art discussion the interested
reader can find in the recent monograph [12].

In this paper we introducea new upper boundand determine a UKP family for
which this bound is the tightest one known. We also design a new algorithm that
combines dynamic programming and branch-and-bound methods to solve UKP. To
the best of our knowledge this is the first time that such an approach has been
used for UKP. Extensive computational experiments demonstrate the effectiveness
of embedding a branch-and-bound algorithm into a dynamic programming frame-
work. These results also shed light on the case of really hardUKP instances.

A hybrid algorithm, combining dynamic programming and branch-and-bound ap-
proaches has been proposed in [8] for the 0/1 knapsack problem, and in [9] for the
case of the subset-sum problem. The adjective "hybrid" was also used for knapsack
problem algorithms in [13] (0/1 knapsack problem) and [3] (0/1 multidimensional
knapsack problem), but this is another kind of hybridization.

The paper is organized as follows. Section 2 briefly summarizes the basic properties
of the problem. Section 3 presents a new upper bound and the associated class
of instances where it is stronger than the previously known bounds. Section 4 is
dedicated to the description ofEDUK2, a new algorithm that takes advantage of
all known dominance relations and successfully combines them with a variety of
bounds1 . In Section 5 this algorithm is compared with other available solvers. In
Section 6 we conclude.

2 A summary of known dominance relations and bounds

The dominance relations between items and bounds allow the size of the search
space to be significantly reduced. All the dominance relations, enumerated below,

1 EDUK2is free open-source software available at:
http://download.gna.org/pyasukp/ where it is denoted by PYAsUKP.

2

could be derived by the following inequalities:

∑

j∈J

wjxj ≤ αwi, and
∑

j∈J

pjxj ≥ αpi for somex ∈ Zn
+ (2)

whereα ∈ Z+, J ⊆ I andi 6∈ J .

(1) Dominances
(a) Collective Dominance[1,17]. Thei-th item iscollectively dominatedby

J , written asi ≪ J iff (2) hold whenα = 1. The verification of this
dominance is computationally hard, so it can be used in a dynamic pro-
gramming approach only. To the best of our knowledgeEDUK(Efficient
Dynamic programming for UKP) [1] is the only one that makes practical
use of this property.

(b) Threshold Dominance[1]. The i-th item isthreshold dominatedby J ,
written asi ≺≺ J iff (2) hold whenα ≥ 1. This is an obvious generaliza-
tion of the previous dominance by using instead of single item i a com-
pound one, sayα times itemi. The smallest suchα defines thethreshold
of the itemi, written ti, asti = (α− 1)wi.

The lightest item of those with the greatest profit/weight ratio is called
best item, written asb. One can trivially show thatti ≤ wbwi or even
sharper inequalityti ≤ lcm(wb, wi) wherelcm(wb, wi) is the least com-
mon multiple ofwi andwb.

(c) Multiple Dominance[10]. Item i is multiply dominated by j, written
asi≪m j, iff for J = {j}, α = 1, xj = ⌊wi

wj
⌋ the relations (2) hold.

This dominance could be efficiently used in a preprocessing because it
can be detected relatively easily.

(d) Modular Dominance[17]. Item i is modularly dominated by j, written
asi≪≡ j iff for J = {b, j}, α = 1, wj = wi + twb, t ≤ 0, xb = −t, xj =
1 the inequalities (2) hold.

(2) Bounds
U3 [10] : It is assumed that the first three items are of the largest profit/weight

ratio. Let us set

c̄= c modw1; c
′ = c̄ modw2; z

′ =
⌊

c

w1

⌋

p1 +
⌊

c̄

w2

⌋

p2;

U0 = z′ +

⌊

c′p3

w3

⌋

;

Ū1 = z′ +

⌊(

c′ +

⌈

w2 − c′

w1

⌉

w1

)

p2

w2
−

⌈

w2 − c′

w1

⌉

p1

⌋

.

The following bound holds

U3 =max{U0, Ū1}. (3)

3

Us [4] : Us = c +
⌊

c
w1

⌋

α, where item1 is supposed to be the lightest one.
It could be easily shown that this bound is valid (but could bevery weak)
for arbitrary UKP withα such thatpi ≤ wi + α. It is proved in [4] that
this bound is stronger thanU3 for the class of strongly correlated UKP (SC-
UKP) defined aspi = wi + α whereα > 0. The caseα = 0 corresponds to
the so called Subset Sum Problem (SS-UKP) wherepi = wi.

Uv [15] 2 : Uv = c + max
{

(pi−wi)

⌊
wi
w1

⌋
, i ∈ I

}

⌊

c
w1

⌋

. Here again item1 is sup-

posed to be the lightest one. This bound is stronger thanU3 for a special
class of UKP (namelySAW-UKP see Definition 1 below).

3 A new general upper bound for UKP

In the following paragraphs, we introduce a new upper bound for the UKP and show
that it improvesUv and is not comparable toU3 in the general case. For the special
UKP family, theSAW-UKP, which includes theSC-UKP class (withα ≥ 0), this
new bound is tighter than the previously known bounds.

Without losing generality it is assumed in this section that: 1 is the lightest item
within the set of items with(pi − wi) > 0 (i.e. ∀i > 1, w1 ≤ wi or pi ≤ wi)
andp1 > w1. (If all pi − wi ≤ 0 then assume 1 is the item with the best ratio
and by changingp to ψp, ψ > w1

p1
, we will achieve the goal. If such an equivalent

transformation is done, the bound should be divided byψ). It is also assumed that
no item is multiply dominated. Let us define the following terms:

for k fixed, for all i 6= k, qi
k =

pi−pk

⌊

wi
wk

⌋

wi−wk

⌊

wi
wk

⌋ , q∗k = max
i6=k

{

qi
k

}

,

τ ∗1 = min {1, q∗1}, β1(τ) = max
i∈I

{

pi − τwi

⌊wi

w1
⌋

}

, β∗
1 = β(τ ∗1).

Theorem 1 [Uτ∗] for all UKP c
w,p, f(w,p, c) ≤ Uτ∗ = τ ∗1 c+ β∗

1

⌊

c
w1

⌋

≤ Uv

Proof: First, for any fixedτ ≥ 0,

max{px,wx ≤ c,x ∈ Zn
+}= max{τwx + (p − τw)x,wx ≤ c,x ∈ Zn

+}

≤ τc + max{(p− τw)x,wx ≤ c,x ∈ Zn
+} (4)

Caseτ ∗1 = q∗1 ≤ τ ≤ 1: in this case,q∗1 = max
i6=1







pi − p1

⌊

wi

w1

⌋

wi − w1

⌊

wi

w1

⌋







≤ τ

2 First presented in a research report [15], this bound is alsoused in [12].

4

and therefore

for all i, pi − τwi ≤
⌊

wi

w1

⌋

(p1 − τw1). (5)

Relation (5) means that in UKPcw,(p−τw) all itemsi are multiply dominated by
the item 1, and also thatβ1(τ) = p1−τw1. Thus,max{(p−τw)x,wx ≤ c,x ∈

Zn
+} = β1(τ)

⌊

c
w1

⌋

.

The functionu1(τ) = τc + (p1 − τw1)
⌊

c
w1

⌋

is an increasing function, and its
minimum is reached forτ = τ ∗1 . This proves both inequalities of the theorem as
Uv = u1(1) andUτ∗ = u1(τ

∗
1).

Caseq∗1 > 1 = τ ∗1 : in this case,

Σn
i=1(pi − wi)xi ≤ β∗

1Σ
n
i=1

⌊

wi

w1

⌋

xi ≤ β∗
1

⌊

Σn
i=1

wixi

w1

⌋

≤ β∗
1

⌊

c

w1

⌋

andUτ∗ = Uv = c + β∗
1

⌊

c
w1

⌋

.

Let us setuu(τ) = τc+f(w,p− τw, c) (defined forτ ≥ 0). We havef(w,p, c) =
uu(0). Furthermore, it follows from (4) thatf(w,p, c) is upper-bounded byuu(τ),
which is a nondecreasing piece-wise linear convex function. One known point on
its graphics is atτb = pb

wb
. A better bound is provided by the points (τ, uu(τ)),

τ < τb. In the first case of the proof,q∗1 ≤ 1, such a point is given by (q∗1 , uu(q
∗
1)).

Whenq∗1 > 1 (far from the targetτ = 0) we can overestimateuu(τ) in a point
closer to0, (sayτ = 1). Such an estimate is done in the case 2 from above, but it is
quite rough (because of overestimating thep− τw coefficients and in the rounding
operation⌊

∑ wixi

w1
⌋ instead of

∑

⌊wixi

w1
⌋).

Another approach is demonstrated in the theorem below, withthe main idea to
"visualize" the graphics ofuu(τ) from the left of the pointpb

wb
. This is done by

changing the role of item1 with item k, wherek is such thatq∗k ≤ τ ≤ pk

wk
is

solvable. In the following theorem this is the casek = b.

Theorem 2 The boundU∗
b = q∗b c+(pb−q

∗
bwb)⌊

c
wb
⌋ is stronger than the (classical)

upper boundU = pbc
wb

, and it is strictly stronger whenc is not a multiple ofwb and

q∗b <
pb

wb
.

Proof: The idea of the proof is quite simple:f(w,p, c) ≤ τc + f(w,p− τw, c)
holds for arbitraryτ ≥ 0. Whenτ ≥ q∗b , similarly to the first case of Theorem 1,
we can show that the best itembmultiply dominates all other items, thus giving the
optimalxb = ⌊ c

wb
⌋ solution to the knapsack UKPcw,(p−τw) with value(pb − τwb)xb.

It is easy to check thatq∗b = max
i6=b

{

qi
b

}

≤
pb

wb
⇔

pi

wi
≤

pb

wb
. Furthermore,ub(τ) =

τc+ (pb − τwb)⌊
c

wb
⌋ is an increasing function, and gives a better upper bound than

U = ub(
pb

wb
) whenq∗b ≤ τ ≤ pb

wb
.

5

The second half of the theorem follows from the observation thatub(τ) is strictly
increasing whenc is not a multiple ofwb.

Definition 1 All UKP c
w,p instances in whichq∗1 ≤ 1 are calledSAW-UKP 3 .

Remark 1 We use the name "SAW" because of the saw-like shape of the graph of
the functionh(w) = w+(p1−w1)

⌊

w
w1

⌋

defined on[w1, wmax] and forp1 > w1. All
instances of aSAW-UKP are given by(wi, pi) points from the hypographhyp(h)
(hyp(h) = {(w, p) | p ≤ h(w)}).

The following condition is a necessary condition for UKPc
w,p to be aSAW-UKP.

Lemma 1 If UKP c
w,p is a SAW-UKP, then the item 1 is the best one.

Proof:

UKP c
w,p is aSAW-UKP means thatq∗1 ≤ 1, i.e. for all i ∈ I, qi

1 =
pi−p1

⌊

wi
w1

⌋

wi−w1

⌊

wi
w1

⌋ ≤ 1.

Then we can derive for alli ∈ I:
pi−p1

⌊

wi
w1

⌋

wi−w1

⌊

wi
w1

⌋ ≤ 1 ⇔ (pi − wi) ≤ (p1 − w1)
⌊

wi

w1

⌋

which implies

(pi − wi) ≤ (p1 − w1)
wi

w1
⇔ pi

wi
≤ p1

w1
.

It can now be established thatU∗
b is tighter thanU3 for this family of UKP.

Theorem 3 If UKP c
w,p is a SAW-UKP, thenU∗

b = Uτ∗ ≤ Uv ≤ U3

Proof: It is assumed that the first three items are of the largest ratio, and also that
p3

w3
≥ 1 (as above, if it is not the case, changingp to ψp, ψ > max{w1

p1
, w3

p3
}

achieves the goal).

According to lemma 1, the item 1 is the best one. It is easy to see that in this case
U∗

b = Uτ∗. Because of theorem 1 and the relationU3 = max{U0, Ū1}, it is enough
then to prove thatUv ≤ U0. Since 1 is supposed to be the lightest item, we have
w2 ≥ w1 and

⌊

c modw1

w2

⌋

= 0. Thusz′ =
⌊

c
w1

⌋

p1 andc′ = c̄ = c modw1.

U0 =
⌊

c

w1

⌋

p1 +
⌊

c′
p3

w3

⌋

=
⌊

c

w1

⌋

p1 +
⌊

(c modw1)
p3

w3

⌋

≥
⌊

c

w1

⌋

p1 + (c modw1) =
⌊

c

w1

⌋

p1 + c−
⌊

c

w1

⌋

w1 =
⌊

c

w1

⌋

(p1 − w1) + c

≥Uv

3 This definition was first given in [15].

6

3.1 Summary of upper bounds relations

We summarize here the relations between the bounds just given (U∗
b , Uτ∗) and the

previously known boundsUs, U3 andUv. These relations are to be taken into ac-
count in the computational section 5, where an experimentaljustification of the
solverEDUK2 is presented.

(1) SAW-UKP : Uτ∗ = U∗
b ≤ Uv

(a) SS-UKP(α = 0) : U∗
b = Us = U3 = U

(b) SC-UKP andα > 0 :















if min
i∈I/{1}

⌊

wi

w1

⌋

= 1:U∗
b = Us

if min
i∈I/{1}

⌊

wi

w1

⌋

> 1:U∗
b < Us

(2) Non-SAW-UKP (SC-UKP with α < 0 being in this class) :U∗
b

>
< U3 (i.e.

these bounds can by in any relation)

Example 1 (A Saw UKP whereUτ∗ < Uv < U3) n=7; c=2900;I={1;. . . ;7};
p=[300;580;301;601;605;322;310];w=[120;245;130;260;310;194;190].

We can compute thatq= [_; -4.; 0.1; 0.05; 0.0714285; 0.297297; 0.142857] (re-
member thatq1

1 is not defined). Henceq∗1 ≈ 0.297 andExample 1is therefore a
SAW-UKP. The bounds are:Uτ∗ = U∗

b = 7205 < Uv = 7220 < U3 = 7246. The
optimal value is7202.

Example 2 (A non-SAW-UKP with U∗

b
< U3) n=3; c=2900;p=[119;297;309];

w=[119;120;131]. The second item is the best one. We obtainq∗b = 1.090909 and
U∗

b = 7149 < U3 = 7161. The optimal value is7140.

Example 3 (A non-SAW-UKP with U∗

b
> U3) n=3; c=63; p=[17;30;40];

w=[15;20;25]. The third item is the best one. We obtainq= [3
2
; 17

15
; _;] and therefore

q∗b = 3
2
. We compute thatU∗

b = 99 > U3 = 97. The optimal value is90.

4 Main components of the proposed algorithm

The algorithm described below is based on a convenient combination of two basic
approaches used in UKP solvers, namely dynamic programming(DP) and branch
and bound(B&B) methods.

Dynamic programming (DP)

One of the recursions [6] used for solving UKP is

f(N, y) = max
j∈Jy

{f(N, y − wj) + pj} for Jy ⊆ I andy ∈ [wmin, c], (6)

7

wherewmin = min{wi, i ∈ I}.

The eligible setJy is supposed to contain at least one itemi s.t.xi > 0 in some
optimal solution to UKPy

w,p. The cardinality of this set is crucially important for
the efficiency of any algorithm based on formula (6). To the best of our knowl-
edgeEDUK[1] is the only solver that uses this recursion with obvious efficiency.
The main components of its implementation are the computation of (6) by slices,
a sparse representation of the iteration space, and the use of threshold dominance.
Slices are defined as intervals ofy, and the sparse representation is based on the par-
ticular form of the functionf . It is well known thatf(N, y)) is an increasing step-
wise function ony, and can be totally recovered when all skip-points{(y, f(N, y))}
are known (in the sequel, the couples{(y, f(N, y))} will be calledoptimal states.)

Theperiodicityproperty has been described by Gilmore and Gomory [7] as the ca-
pacityy∗, called theperiodicity level, such that for eachy > y∗, there is an optimal
solution withxb > 0. It is well known that, for each UKP∞w,p such ay∗ exists, but
its value is not easily detectable. So, although the periodicity property can drasti-
cally reduce the search space, it can only be detected in a DP framework. InEDUK
this is realized by discovering a capacityy+ > y∗ such thaty+ = min{y|∀y′ ∈
[y − wmax, y] there is an optimal solution of UKPy

′

w,p with xb > 0}.

Finally, the fact thatDP algorithms compute optimal solutions for all values ofy
below the capacityc allows the recursion to be stopped when the capacity
min{max{ c

2
, wmax}, y

+} is reached.

Thanks to all above mentioned properties, in practice,EDUKbehaves significantly
better than the worst case complexityO(nc) of recurrence (6).

Branch-and-bound (B&B)
Unlike DP,B&B algorithms compute an optimal solutiononly for a given capac-
ity, and are dependent on the quality of the computed upper bounds. TheMTU2
algorithm proposed by Martello and Toth [10] uses the upper boundU3 and the
now well knownvariable reduction scheme: let z be the objective function value
of a known feasible solution, and letU be an upper bound off(N, c − wj) + pj;
if U ≤ z, then eitherz is optimal orxj can be set to zero. We say in this case that
item j is “fathomed by bounds”.

Hybridization of DP and B&B
There are several complementary ways to integrate a bounds knowledge into a DP.

(1) The first approach is to use the variable reduction schemein a pre-processing
stage to reduce the setN .

8

(2) The second approach consists in computing, for eachoptimal state(y, f(N, y)),
an upper boundU(c− y) for a knapsack withc− y capacity. If

U(c− y) + f(N, y) ≤ z, (7)

wherez is the incumbent objective value, then the state can be discarded. We
say in this case that the state is “fathomed by bounds in aB&B context”.
Thisstates reduction scheme(called hereDP with states fathomed by bounds)
significantly reduces the number of states during a sparse representation of the
iteration space.

(3) The third approach consists in solving an UKPc
core using aB&B algorithm in

which thecoreset is a subset of the items with the best ratios. Iff(core, c) =
U(c) then the problem is solved. Otherwise,f(core, c) is used as a value of a
known feasible solution during theDP with states fathomed by boundsstage.

4.1 TheEDUK2 algorithm outline

The algorithmEDUK2, given below, is an hybridization ofEDUKwith B&B com-
ponents, according the above given integrations. The basicsteps ofEDUK2are:

step 1 Detect inO(n) time the best itemb, and find an initial feasible solution with
valuez. Discard fromN all items multiply dominated byb. This is also done in
linear time.

step 2 For the reduced set of itemsN , compute an upper boundU by the tech-
niques described in section 3. Apply the variable reductionscheme inO(|N |)
time. Then, select a subset containing theC items with the best ratios (core of
sizeC).

step 3 To improve the lower bound, run aB&B algorithm on the core, limiting it
to explore no more thanB nodes.

step 4 RunDP with states fathomed by bounds(see section 4.1.1).

Remark 2 In the current implementation ofEDUK2, we use a B&B similar to the
one in MTU1 (Martello and Toth [10]), but it is further enriched with the ability
to choose the computed upper bound (currentlyUv, Uτ∗ or U3). The parameters,
B andC, were experimentally tuned and fixed toC = min{n,max{100, n/100}}
andB = 10000.

4.1.1 DP with states fathomed by bounds

An enhanced version ofEDUKoperates in step 4. Its pseudo code is given in listing
1. The functiondp-solve(states,items,ya,yb) is a dynamic program-
ming based on recurrence (6). It traverses the search space by slices of sizeh 4 .

4 we useh = wmin but this is a parameter of the algorithm.

9

Starting from some initial lists of statesstates , and itemsitems , dp-solve
uses threshold dominance to builddominances freelists (states’,item’) of
items and states with weights in the capacity interval]ya..yb]. This part of the pro-
gram corresponds to the originalEDUK.

Furthermore, and according to the second integration approach given above, the
function fathoming applies the variables/states reduction schemes to eliminate
all fathomed states and items, returning as result the lists(states”,item”) .
These computations may improve the incumbent objective valuez. To take this into
account, the functionfathoming proceeds in the following manner: for any un-
fathomed state(y, f(N, y)), a greedy solution of the knapsack UKPc−y

states′′ is found,
and completed with the solution of(y, f(N, y)). The value of this new feasible so-
lution replaces the old one, if its value, sayz′, is better thanz. This functionality of
the DP phase is new and specific forEDUK2 only.

Note that computing all optimal states(y, f(N, y)) with y ≤ c
2

is enough5 , since
any knapsack with capacityy ∈] c

2
, c] can be solved by completing the solution of

UKP y−c/2
w,p with the one of UKPc/2

w,p.

5 Performance evaluation experiments

Computational experiments were run in order to: (i) test theefficiency of theB&B/DP
pairing and the state discriminating capacity of the new boundsU∗

b ; (ii) exhibit
some actual hard instances. Unfortunately, very few real-life instances ofUKP
have been reported in the literature. For this reason we concentrated our efforts
on a set of benchmark tests using: (a) random profit and/or weight generation with
some correlation formulae; (b) hard data sets that were specially designed for the
B&B approach [5].

The main rules for generating interesting (fair) instancesare briefly sketched below:

(1) Instances without simple dominance (wsd). These are instances with mutually
non equal weights and ifwi < wj thenpi < pj for all couples(i, j). Thus for
instances with integer datan ≤ wmax −wmin + 1. This could cause problems
with generating large size instances, due to arithmetic overflow and needs
special purpose compilers (as the one used for EDUK2).

(2) Instances without collective dominance (wcd). One can easily prove that a
sufficient condition for an instance to be of typewcd is the same as above
but withpi andpj changed topi/wi andpj/wj, respectively (increasing prof-
it/weight ratios on increasing items’ weights). A special subclass is the pre-
viously mentioned SC-UKP withα < 0 (see paragraph 5.1.1.2 and formula

5 this test was not implemented inEDUK

10

Listing 1. Pseudo code of the dynamic programming with bounds (step 4)
(*Input:

items: the remaining set of items;
states: the list of optimal states with weights ≤y;
y: the already reached capacity;
c: the target capacity;
z: the incumbent objective value;
u: the upper bound.

*)
(*Output:

an optimal solution z’

*)
(* Initialization *)

ya := y;
yb := y + h;

whi le (|items’| > 1) and (ya<c/2) and (z < u) do
(states’,items’) := dp-solve(states,items,ya,yb);
(states’’,items’’,z’) := fathoming(states’,items’,z);
ya:=yb;
yb:=yb+h;
states:=states’’;
items:=items’’;
i f (z<z’) then z:=z’;

done;
i f (|items’| = 1) then

stop, return the optimal solution build
by aggregating the single item with the
appropriate element from states’.

e l s e i f (ya >= c/2) then
stop, return an optimal solution obtained by the
aggregation of the optimal state of weight yb and
the one of weight (c-yb).

e l s e i f (z = u) then
stop, return z.

(8)), the SC-UKP subclass, called hard Chung examples (figures 2 and 3) and
Table 1, part 3, and also formula (9).

In all runs, the instances solved are ofwsd type and those reported in figures 2 and
3, and in Table 1 part 3 are of typewcd.

Remark 3 All problems reported below are with integer data although the users
of EDUK2 are not restricted to this class only.

11

The solver EDUK2 is based on a combination of DP approach and B&B approach
to UKP. The main goal of the computational experiments is to check (experimen-
tally) if such hybridization helps. The contestants chosenare EDUK- pure DP based
solver which we believe is worthwhile to compete with, and MTU2-B&B based
solver with an almost classical good reputation. Competition with CPLEX is added
for completeness.

As for the boundsU3 andU∗
b , we did not notice statistically meaningful inclination

in favor of one or the other on a large set of randomly generated instances except
for theSAW-UKP class. That is why their influence is reported for this class only,
while for non-SAW-UKP instances we present only the results obtained by using
U∗

b .

Very few UKP solvers are available for comparison withEDUK2. For example,
Babayevet al.have proposed an integer equivalent aggregation and consistency ap-
proach (CA) that appears to be an improvement over MTU2 [2]. However, this code
is not available to us. Caccetta & Kulanoot [4] have recentlydescribed two spe-
cialized algorithms for solving two particular classes of UKP: CKU1for Strongly
Correlated UKP (SC-UKP) andCKU2for Subset Sum Problem(SS-UKP). How-
ever, these algorithms are not applicable to the general UKP. Thus, we chose to
compareEDUK2 with the only two publicly available solvers:EDUK[1], which
is considered to be the most efficient DP algorithm [12], andMTU2, a well-known
B&B solver [10].

We start by a comparison of the behaviors ofMTU2, EDUKandEDUK2 on clas-
sic data sets, then we focus on comparingEDUKwith EDUK2 on new hard in-
stances not solvable byMTU2. In the case of SAW UKP, we study the impact on
the resolution time when using the new boundUτ∗ instead ofU3. We also compare
EDUK2 with the general purpose solver CPLEX.

EDUK2 andEDUKwere written in objective CAML 3.08. The respective codes
were all run on a Pentium 4, 3.4GHZ with 4GB of RAM, and the timelimit for each
run was set to 300 sec. MTU2 was executed on the same machine and compiled
with g77-3.2 . The impact of the bounds was tested by simply substituting the
boundU∗

b in EDUK2 with U3 in a version callededuU3
.

5.1 Classic data sets

A complete study of the classic UKP benchmarks, where the behaviors ofEDUK
andMTU2have been compared, can be found in [1]. Most of these UKP appear to
be easy solvable byEDUK2, and for this reason we report only the most interesting
subset of the data from our computational results.

12

5.1.1 Known “hard” instances

First, we focus on the data sets found to be difficult forMTU2or EDUK[1].
5.1.1.1 (SS-UKP) The SS-UKP instances (w = p) are known to be difficult
for EDUK. We built such instances by generating 10 instances for eachpossible
combination ofwmin ∈ {100, 500, 1000, 5000, 10000},wmax ∈ {0.5×105; 105} and
n ∈ {1000; 2000; 5000; 10000}with c randomly generated within[5×105, 106]. We
obtain in this manner 400 distinct instances. The average CPU time for the different
algorithms was:

EDUK2: 0.045s; EDUK: 0.474s; MTU2: 0.136s.

According to these results,EDUK2 is 10 (resp. 3) times faster thanEDUK (resp.
MTU2). The impact ofU∗

b with respect to that ofU3 is negligible.

We also tested the sensitivity of the algorithms with respect towmin, and the results
showed thatEDUK2 is much less sensitive towmin thanEDUK. On an average the
time for EDUKincreased about 80 times whenwmin passed from100 to 10000,
while for EDUK2 the average increase is 406 .

EDUK2 EDUK MTU2

wmin = 100 0.005s. 0.025s. 0.042s.

wmin = 10000 0.2s. 1.82s. 0.25s.

5.1.1.2 (SC-UKP) A set of instances of aSpecial SC-UKPwas built according
to the formula

wi = wmin + i− 1 and pi = wi + α with wmin andα given. (8)

Chunget al. [5] have shown that solving this problem is difficult forB&B . We set
wmin = 1 + n(n + 1) andn ∈ {50; 100; 200; 300; 500}, and used both a negative
and a positive value forα. For each set, we generated 30 instances with a capacity
taken randomly from the interval[106, 107].

α > 0 (SAW-UKP) The average time needed to solve the 150 instances was:

EDUK2: 3.32s, eduU3
: 3.37s; EDUK: 4.29s.

MTU2was able to solve only 9 of the 60 instances withn ∈ {50; 100} and none
for n > 100 .

α < 0 (Non-SAW-UKP) The average time for solving the 150 instances was:

EDUK2: 6.01s; edu U3
:5.93s; EDUK:8.65s.

6 Even more stable behavior is observed forMTU2, but its running time forwmin = 100 is
10 times bigger than the one ofEDUK2.

13

MTU2was able to solve only 10 of the 60 instances withn ∈ {50; 100} and none
for n > 100.

From these results, it appears thatEDUK2 is 1.3 (resp. 1.45) times faster thanEDUK
whenα > 0 (resp. <0). We observe that the impact of the new upper boundU∗

b

with respect to that ofU3 is negligible. As expected, these instances were hard for
MTU2.

Remark 4 Here we left theU3 versusU∗
b comparison just as an illustration for

their statistical closeness in the case of non-SAW UKP instances.

5.1.2 Sensitivity to variations in the capacity: a comparison withEDUK

The B&B algorithms are known to be very sensitive to variations in the capacity.
DP algorithms, on the other hand, are known to be robust, but their computational
time increasing linearly with the capacity value. Our computational experiments
show thatEDUK2 inherits the good properties of bothB&B and DP. Data pre-
sented inFig. 1 were generated by formula (8) as aSpecial SC-UKP. We observe
that EDUK2’s overall computational time is upper-bounded by the minimum be-
tween the time taken by the pseudo-polynomial DP approach and the time forB&B.
EDUK2 has lost the regular behavior typical ofEDUK, but this is in its favor, since
the time ratio EDUK(i)

EDUK2(i)
≥ 1 is valid for any instancei, and reaches a value of 2.5

for more than 12% of thec values. The local minima inEDUK2’s computational
time are around points where the capacity is a multiple of thebest item’s weight.
The efficiency of theB&B increases near around such capacities (instances) due
to the small deviation from0 of the duality gap (continuous solution is feasible),
whose value is known to have a direct impact on the solution time.MTU2always
requires more than 1200 sec., except for5% of the points where it requires less
than 12 seconds. These are the points whereEDUK2 finds the solution with the
B&B (the above mentioned local minima).

5.1.3 GeneralSAW-UKP instances

This class containsSAW-UKP instances generated by the procedure described in
Listing 2. Since the generated coefficientspi satisfypi ≤ mi + p1ai, qi

1 = pi−p1ai

mi

and we guarantee thatq∗1 ≤ 1. Moreoverpi > pi+1, so there is no simple domi-
nance. 880 instances have been generated in this way using the parameters:c =
1
10

∑

w, wmin ∈ {100; 200; 500; 1000},wmax ∈ {10000; 100000; 1000000} and
n ∈ {1000; 2000; 5000; 10000}. For each of the44 possible parameter combina-
tions7 , we randomly generated 20 instances, for which we obtained the following
average times:

7 The combinationn = wmax = 10000 is not possible due to simple dominance.

14

 0

 1

 2

 3

 4

 5

 6

 7

 8

100x10^3 200x10^3 300x10^3 400x10^3 500x10^3

tim
e

(s
ec

)

capacity

EDUK
EDUK2

 0

 1

 2

 3

 4

 5

 6

 7

450x10^3 500x10^3

capacity

EDUK
EDUK2

Formula (8) wheren = 100,wmin = n(n+1)+1, α = −3 andc is randomly
and uniformly generated between[90 000, 560 000]. The whole figure is de-
picted on the left. On the right, a zoom on the sub-interval[450 000, 500 000]
is shown. On an average,EDUK2 is more than25% faster thanEDUK.

Fig. 1. Capacity sensitivity ofEDUK2 andEDUK

Listing 2. Procedure for generatingSAW-UKP instances
wi : randomly generated i n strictly increasing order

with the property: wi modw1 > 0, ∀i > 1
α : a random integer i n [1..5]
p1 : p1 = w1 + α

f o r i i n]1..n]
mi := wi modw1 ;
ai = ⌊wi

w1
⌋ ;

li = 1 + max(pi−1, p1 × ai) ;
pi : randomly choosen i n [li..(mi + p1 × ai)] ;

done;
then pairwise shuffle p and w;

EDUK2: 0.129s, edu U3
: 0.252s; EDUK: 0.610s.

We therefore observe that for this familyEDUK2 is about 5 times faster thanEDUK,
and usingUτ∗ = U∗

b instead ofU3 acceleratesEDUK2by a factor of 2.

Due to arithmetic overflowMTU2was run with only 200 instances withwmax =
1000. For 95 of these instances, it reached the time limit of 300 seconds.

15

5.1.4 EDUK2 versus CPLEX versus EDUK

In this section we compareEDUK2 and EDUK with one of the most popular gen-
eral purpose mathematical programming optimizers CPLEX ofILOG 8 . For this
purpose we focus on three types of problems, each defined by a pair (w,p) and
a wide set of capacities. Each instance has been solved byEDUK2, EDUK and
CPLEX, and the respective required times are reported inFig.2-Fig.7. The first
two problems were generated by formula (8) with parameters as given above the
graphics. As discussed in section 5.1.1, they are known to bedifficult for B&B.

Fig. 2.EDUK2 versus EDUK on a set of 540 hard non-SAW UKP instances

For the first problem, (Fig.2-Fig.3), 540 instances were created by uniformly ran-
domly choosing the capacity values in the interval [4×104,105]. Fig. 2compares the
behavior ofEDUK2with the one of EDUK. As inFig. 1, EDUK behaves regularly,
while the shape ofEDUK2’s curve permits to distinguish three different cases that
alternate periodically: i) a high plateau where both algorithms need the same time
since the solution was found by dynamic programming; ii) a low plateau where the
solution was found by the bound provided in the B&B phase.EDUK2 computes
the results instantaneously being 50 times faster than EDUK. iii) intermediate stage
where the solution was found due to B&B/DP hybridization. The weight of the best
item (here 21000) is a period of any of these three stages in the behavior ofEDUK2.

Next experiment was dedicated toEDUK2 versus CPLEX comparison. Running
time for CPLEX was bounded by 600 seconds.Fig. 3 illustrates that for this lapse of
time and on the same data set CPLEX succeeds to solve about 12%of the instances.
The solved instances have their capacity in a narrow neighborhood of a multiple of
the best item weight. This is clearly seen onFig. 3. These instances correspond in
fact to the low plateau ii) above described. In the dominant case, 88%,EDUK2 is

8 We used version 10.0.1 of CPLEX

16

Fig. 3.EDUK2 versus CPLEX on a set of 540 hard non-saw UKP instances

more than 100 times faster than CPLEX.

Fig. 4. EDUK2 versus EDUK on a set of 1350 hard saw UKP instances

Figures 4 and 5 illustrate the same comparison in case of SAW UKP instances
generated by procedure 2. Here the capacity value is uniformly randomly chosen
from the interval [4× 104, 2× 105] and1350 instances were generated in this way.
As theoretically expected, due to the new bound,EDUK2 instantaneously finds the
solution (except for few values just below a multiple of the weight of the best item).
We observe similar phenomena as before: againEDUK2 is about 50 times faster
than EDUK (with very few exceptions). CPLEX succeeds to solve about22% of
the instances for the given lapse of time. These instances correspond to a multiple
of the best item weight. Outside these rare casesEDUK2 is more than 100 times
faster than CPLEX.

Next experiment focusses on randomly generated instances being non-SAW UKP.

17

Fig. 5. EDUK2 versus CPLEX on a set of 1350 hard saw UKP instances

We generated 2700 such instances with parameters as described in figures 7 and
6 and a capacity uniformly randomly chosen from the interval[11 × 104, 43 ×
104]. Fig. 6 comparesEDUK2 versus EDUK on this data set. The behavior of
both algorithms is very similar to the one observed onFig. 2: the running time of
EDUK2 has a typical saw like shape with minima around the multiplesof the best
item and upper-bounded by the time of EDUK.Fig. 7 illustratesEDUK2 versus
CPLEX behavior. CPLEX succeeds to solve all instances with acapacity less than
21 × 104 and those with a capacity close to a multiple of the best item,but fails
for all other instances with a capacity larger than21 × 104. For all these instances
EDUK2 is as at least 100 times faster than CPLEX.

Fig. 6. EDUK2 versus EDUK on a set of 2700 randomly generated UKP instances

18

Fig. 7. EDUK2 versus CPLEX on a set of 2700 randomly generatedUKP instances

5.2 Do hard UKP instances really exist?

Based on these results, one is inclined to conclude –wrongly– thatUKP are easy
to solve. It is important to remind that, in the above experiments, the considered
instances are of moderate size only. A real-life problem of the same size would
indeed be easy to solve. However, real problems may have large coefficients, which
makes necessary testing the solvers’ behavior on such data sets.

5.2.1 New hard UKP instances

In order to construct difficult instances, we considered data sets with large coef-
ficients and/or large number of items. BecauseMTU2cannot be used for such in-
stances because of arithmetic overflow, we restricted our comparisons toEDUK,
eduU3

andEDUK2. For such data setsEDUK2 andeduU3
benefit of thenum

ocaml library, which provides exact unlimited integer arithmetic to compute the
bounds. All the runs were done on a Pentium IV Xeon , 2.8GHZ with 3GB of RAM.
CPU time was limited to one hour per instance. If this time limit was reached, we
reported 3600 sec. in order to compute the average9 . We use the notationxn to
denotex× 10u+1 + n, where0 < ⌊ n

10u ⌋ < 10 (e.g.n = 213, 4n = 4213).

9 The notationt(k) means that the average time ist sec., withk instances reaching the
time limit.

19

5.2.2 Instances known to be difficult for B&B

We generated large data sets using the formula (8). It is easyto see that for such
a data set, no more thanwmin items are not collectively dominated. For a givenn,
the formula determines n pairs(wi, pi), and we generated20 different values forc,
wherec takes random values from[20n; 100n] (first part in Table 1).

The meaning of the notations used in this table is given in theassociated caption.
The reported value in thenmd, ncd, cpu columns is the average for the number
of instances; the value in thewdp columns refers to the total number of instances;
the value in thevrs 10 , rp andrst columns, reports the average for the number of
instances for which the algorithm enters the DP phase.

EDUKhad some trouble in solving these sets and was unable to solvethe20 prob-
lems withα = −5, n = 104, andwmin = 11 × 104 in less than one hour. In
one special case, whereα = 5 andn = wmin = 10000, the solution was always
found immediately in the initial variable reduction step, using the boundUv. Ex-
cluding these two special sets,EDUK2 is on an average from 1.7 to 3.7 times faster
thanEDUK. Note that for all these instances, the optimal solution wasfound by
EDUK2 andedu U3

either in the variable reduction step, either in the DP phase
but never in theB&B step. Note thatEDUK2 was 1.01 to 1.7 times faster than
eduU3

whenα > 0 (these instances belong to theSAW-UKP family). However, in
the case ofα < 0, EDUK2 andedu U3

behave very similarly. For this reason the
results ofeduU3

are not presented here.

5.2.3 Data sets with a postponed periodicity level

For the data in the second part in Table 1,wi were randomly generated between
[wmin;wmax], andpi values were generated usingp1 ∈ [w1;w1+500], pi ∈ [p(i−1) +
1; p(i−1) + 125]. c was randomly generated between[wmax; 2 × 106]. Clearly, for
these instances, the number of non-collectively dominateditems determines the
efficiency of the algorithms. We observed that with this kindof data generation,
wherec < 2 × wmax andn is large enough, the periodicity property does not help
(rp ≈ 1). EDUK2outperforms significantlyEDUKand behaves similarly toedu U3

.
The results ofEDUK2 andEDUKare only given in Table 1.

5.2.4 Data set without collective dominance

In order to prevent a DP based solver to benefit from the variable reduction due
to the collective dominance, in this section we generate data where the ratiop

w
is

an increasing function of the weights. We proceeded as follows. w values were

10 The notationx(y) in this column means that fory instances the optimal value was found
in this step andx is the average of the number of reduced variables in theother instances.

20

instance description EDUK2 eduU3
EDUK

20 instances per line Hard data sets created using formula (8).c randomly from [20n; 100n].

α n wmin nmd ncd cpu vrs wdp rst rp cpu vrs wdp rst rp cpu rp

5 5 10 n n 21.77 0(13) 13 0.29 0.047 37.81 642(3) 3 0.38 0.069 80.06 0.108

15 n n 46.57 0(8) 8 0.34 0.099 52.29 83(7) 7 0.56 0.141 111.28 0.188

50 n n 154.19 0(2) 2 0.55 0.470156.63 0(2) 2 0.68 0.555 261.29 0.661

5 10 10 n n 0.03 0(20) 20 - - 135.22 2420(3) 3 0.54 0.007 336.70 0.008

50 n n 344.12 0(6) 6 0.26 0.037367.94 0(6) 6 0.41 0.052 915.11 0.079

110 n n 771.53 0(2) 2 0.20 0.112816.90 0(2) 2 0.26 0.139 2808.50 0.300

-5 5 10 n n 64.82 44(6) 6 0.78 0.091 113.67 0.108

15 n n 104.89 11(2) 2 0.61 0.091 183.31 0.188

50 n n 232.26 0(8) 8 0.86 0.650 447.40 0.660

-5 10 10 n n 167.26 1317(4) 4 0.67 0.009 317.01 0.009

50 n n 508.37 0(6) 6 0.45 0.058 1539.74 0.079

110 n n 1401.(3) 0(4) 4 - 0.124 (20) -

200 instances per line Data sets with a postponed periodicity level.c randomly from [wmax; 2 × 106]

n wmin wmax nmd ncd cpu vrs wdp rst rp cpu vrs wdp rst rp cpu rp

20 20 10n 19985 16851 118.65 11121 2 0.25 0.989 344.81 0.994

50 20 10n 50000 49999 1026.(1) 28881 0 0.22 1.00 2959.(8) 1.00

20 50 10n 19999 19924 126.(2) 9955 0 0.23 1. 504. 1

50 50 10n 50000 49999 1553.(1) 22827 0 0.32 1.00 3289.(51) 1.00

500 instances per line Data set without collective dominance (formula (9)).c randomly from [wmax..1000n]

n wmin nmd ncd cpu vrs wdp rst rp cpu vrs wdp rst rp cpu rp

5 n n n 7.93 3101 23 0.40 0.827 29.05 0.816

10 n n n 36.84 5660(1) 13 0.43 0.745 147.76 0.759

20 n n n 184.55 12010 3 0.38 0.791 735.24 0.783

50 n n n 808.26 25499 2 0.46 1 2764.59 1

SAW data sets.c randomly from [wmax; 10n]

n wmin nbi nmd ncd cpu vrs wdp rst rp cpu vrs wdp rst rp cpu rp

10 10 200 9975 1965 8.03 8015 14 0.40 0.597 11.12 5323 2 0.47 0.630 29.06 0.636

50 5 500 49925 5568 70.78 41289(1) 17 0.05 0.51108.97 25287(1) 11 0.53 0.517294.30(1) 0.521

50 10 200 49955 8983 71.02 39779(3) 6 0.40 0.49122.66 26510(3) 3 0.49 0.492 416.88 0.496

100 10 200 99809 6592 264.12 90436 1 0.32 0.510387.03 65289 1 0.45 0.519 1268.45 0.523

Table 1
Data fromn and wmin columns should be multiplied by103 to get the real value. We
use the following metrics: nmd: number of non-multiply dominated items (step 1 of
EDUK2); ncd: number of non-collectively dominated items (as computed by EDUK); cpu:
running CPU time in seconds;rp : denotes the ratioy

+

c wherey+ is the capacity level
where the algorithm detects that the periodicity levely∗ is reached;vrs: number of items
eliminated in the variable reduction step;wdp: number of instances for which the optimal
solution was found without using DP (steps 1 to 3);rst: ratio of the number of states in the
DP phase (step 4 ofEDUK2) with respect to the number of states forEDUK.

uniformly and randomly generated within the interval[wmin..wmax] (without dupli-
cates) and were sorted in an increasing order. Thenp was generated using

21

p1 = pmin + k1 and

pi = ⌊wi × (0.01 +
pi−1

wi−1
)⌋+ ki with ki randomly generated≤ 10 (9)

We setwmin = pmin = n, wmax = 10n, andc was randomly generated within
[wmax..1000n]. We did not observe any significant difference betweenEDUK2 and
eduU3

, though both were about 4 times faster thanEDUK(see the associated (third)
part in Table 1).

5.2.5 SAW data sets

SAW-UKP instances were generated following procedure 2 with the parameters:
wmax = 1n, pmax = 2n andc ∈ [wmax; 10n]. For each pair(n, wmin), we generated
nbi distinct instances(see the associated (last) part in Table 1).

The tight and computationally cheap upper bound for these sets gives a clear ad-
vantage toEDUK2 compared toEDUKandedu U3

. The quality of this bound has a
noticeable impact on the number of instances solved in the variables reduction step
or by the initialB&B (columnwdp), the number of reduced variables (column
vrs), and the number of states (columnrst) .

5.2.6 Summary

EDUK2consistently and significantly outperformed EDUK on all data sets. Once
more this is illustrated onFig. 8 where the number of points plotted on the left
and the right graphics are 2500 each. Any point is an UKP instances of 20000
(left) and of 50000 (right) variables. The average statistics for the running times of
EDUK2 and EDUK are: forSAW-UKP, generated according listing 2,EDUK2 is
10 times faster than EDUK, while fornon-SAW-UKP - 3 times. For many in-
stances,EDUK2 yielded the solution immediately while EDUK required several
minutes (sometimes more than 1 hour). The efficiency ofEDUK2 is obtained by
the cumulative effect of the different ways thatB&B and DP are integrated. Taking
into account all the new hard instances (except those generated with formula (8)),
the reduction variables step reduces the number of items to be considered on an
average varying from55% to 95%. Integrating bounds during the DP phase further
reduces the number of states from46% to 95%. The impact of the new boundU∗

b

is important for allSAW-UKP instances and it affects all steps of the algorithm.
For thenon-SAW-UKP instances no significant difference was observed between
usingU∗

b andU3.

The superiority ofEDUK2 to the general solver CPLEX is (as expected) apparent.
In the dominant case, in all tests presented in section 5.1.4EDUK2 was more
than 100 times faster than CPLEX11 . Additionally to these tests we found useful

11 CPLEX execution time was upper bounded by 600 sec.

22

Running times in seconds ofEDUK2 (on the horizontal axis) and of EDUK (on the
vertical axis). Each point corresponds to one instance. Theline is the equal-time
line. Left: data set without collective dominance generated by formula (9) with
n = 2 × 104. Right:SAW-UKP data set withn = 5 × 104.

Fig. 8. Plots of two large sets of instances

to check the performance ofEDUK2 in some recent UKP applications. One such
application is described in [16] where CPLEX has been used asUKP solver, instead
of a special purpose algorithm. We generated the same set of instances as in [16] for
n = 106. EDUK2 computed 5 such instances on an average time of 0.15 seconds,
while the respective running time in [16] is announced to be around 30 hours!

There are still hard instances with large values forn andwmin, notably those gener-
ated with formula (8), whereα < 0, wmin = 110000, n = 10000. They were solved
by EDUK2 on an average of25 to 30 minutes. For all these difficult instances, the
number of items that are not collectively dominated is very large. Thus, it appears
that for such cases, DP algorithm needs to explore a huge iteration space when
B&B fails to discover the solution.

6 Conclusion

We have shown that a hybrid approach combining several knowntechniques for
solving UKP performs significantly better than any one of these techniques used
separately. The effectiveness of the approach is demonstrated on a rich set of in-
stances with very large inputs. The combined algorithm inherits the best timing
characteristics of the parents (DP with bounds andB&B). We also proposed a new
upper bound for the UKP and demonstrated that this bound is the tightest one
known for a specific family of UKP. OurEDUK2 algorithm takes advantages of
most of the known UKP properties and is able to solve all but the very special hard
problems in a very short time. It appears that instances, previously known to be
difficult, are now solvable in less than a few minutes.

Acknowledgements Supported by Hubert Curien French-Bulgarian partnership
RILA 2006 N0 15071XF. All computations were done on the Ouest-genopole bioin-
formatics platform (http://genouest.org). Thanks to N. Malod-Dognin for his help
in running CPLEX. The authors would like to thank the two anonymous referees for
their insightful comments, corrections and suggestions that significantly improved
the paper.

23

References

[1] R. Andonov, V. Poirriez, and S. Rajopadhye. Unbounded knapsack problem : dynamic
programming revisited.European Journal of Operational Research, 123(2):168–181,
2000.

[2] D. Babayev, F. Glover, and J. Ryan. A new knapsack solution approach by
integer equivalent aggregation and consistency determination. INFORMS Journal on
Computing, 9(1):43–50, 1997.

[3] V. Boyer, M. Elkihel, and D. El Baz. Efficient heuristics for the 0/1 multidimensional
knapsack. InROADEF, pages 95–106. Presses Universitaires de Valenciennes, 2006.

[4] L. Caccetta and A. Kulanoot. Computational Aspects of Hard Knapsack Problems.
Nonlinear Analysis, 47:5547–5558, 2001.

[5] C-S. Chung, M. S. Hung, and W. O. Rom. A Hard Knapsack Problem.Naval Research
Logistics, 35:85–98, 1988.

[6] R. Garfinkel and G. Nemhauser.Integer Programming. John Wiley and Sons, 1972.

[7] P. C. Gilmore and R. E. Gomory. The Theory and Computationof Knapsack
Functions.Operations Research, 14:1045–1074, 1966.

[8] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for
the 0-1 knapsack problem.Manag. Sci., 45:414–424, 1999.

[9] S. Martello and P. Toth. A mixture of dynamic programmingand branch-and-bound
for the subset-sum problem.Manag. Sci., 30(6):765–771, 1984.

[10] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
Implementations. John Wiley and Sons, 1990.

[11] G. L. Nemhauser and L.A. Wolsey.Integer and Combinatorial Optimization. John
Willey & Sons, 1988.

[12] U. Pferschy, H. Kellerer, and D. Pisinger.Knapsack Problems. Springer, 2004.

[13] G. Plateau and M. Elkihel. A hybrid algorithm for the 0-1knapsack problem.Methods
of Oper. Res., 49:277–293, 1985.

[14] V. Poirriez and R. Andonov. Unbounded Knapsack Problem: New Results. In
Workshop Algorithms and Experiments (ALEX98), pages 103–111, February 1998.

[15] V. Poirriez, N. Yanev, and R. Andonov. Towards reduction of the class of intractable
unbounded knapsack problem. Research report, LAMIH/ROI UMR CNRS-UVHC
8530, 2004.

[16] C. Srisuwannapa and P. Charnsethikul. An exact algorithm for the unbounded
knapsack problem with minimizing maximum processing time.Journal of Computer
Science, 3(3):138–143, 2007.

[17] Nan Zhu and Kevin Broughan. On dominated terms in the general knapsack problem.
Operations Research Letters, 21:31–37, 1997.

24

