Robust vision-based underwater homing using self-similar landmarks

Abstract : Next-generation autonomous underwater vehicles (AUVs) will be required to robustly identify underwater targets for tasks such as inspection, localization, and docking. Given their often unstructured operating environments, vision offers enormous potential in underwater navigation over more traditional methods; however, reliable target segmentation often plagues these systems. This paper addresses robust vision-based target recognition by presenting a novel scale and rotationally invariant target design and recognition routine based on self-similar landmarks that enables robust target pose estimation with respect to a single camera. These algorithms are applied to an AUV with controllers developed for vision-based docking with the target. Experimental results show that the system performs exceptionally on limited processing power and demonstrates how the combined vision and controller system enables robust target identification and docking in a variety of operating conditions.
Type de document :
Article dans une revue
Journal of Field Robotics, Wiley, 2008, Special Issue on Field and Service Robotics, 25 (6-7), pp.360-377
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00335278
Contributeur : Amaury Nègre <>
Soumis le : mercredi 29 octobre 2008 - 09:43:52
Dernière modification le : mercredi 11 avril 2018 - 01:57:44
Document(s) archivé(s) le : mardi 28 juin 2011 - 17:33:05

Fichier

JFR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00335278, version 1

Collections

Citation

Amaury Nègre, Cédric Pradalier, Matthew Dunbabin. Robust vision-based underwater homing using self-similar landmarks. Journal of Field Robotics, Wiley, 2008, Special Issue on Field and Service Robotics, 25 (6-7), pp.360-377. 〈inria-00335278〉

Partager

Métriques

Consultations de la notice

268

Téléchargements de fichiers

525