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Behavior learning using emotional conditioning

Guillaume Grenet and Frédéric Alexandre1

LORIA - INRIA, Cortex team, Nancy (France)

Abstract. We present a novel way to design a control system for a robot, using emotions as a way to produce
richer internal states. We believe that using a single scalar as an evaluation of the quality of the policy and
stating that the goal of the agent is to gather reward, as it is proposed by reinforcement learning, is not an
appropriate granularity for creating an autonomous control system : even with a fine-tuned reward function,
efficient on a specific task, it is often impractical to derive any useful knoweldge from it in order to build more
flexible, neuromimetics control systems. A complete shift of paradigm is necessary for a bottom up approach :
the robot is given pain and pleasure perception circuits and we examine how emotions arise and are the basis
for respondant and operant conditioning. Inspired from the cerebral circuits of superior mammals responsible
of this behavior, we propose an implementation in an autonomous robot using models of adaptive neural
networks.

1 Motivations and emotions

As sensorimotor capabilities are given to a robot, the subsequent question is to wonder what makes the robot
use these capabilities and act in the environment: What are its motivations? Reinforcement learning defines some
states of the environment as goals/sub-goals (necessary steps to reach the main goal) and introduces a reward
signal as a measure of the distance to those goals. This learning selects optimal policies from the anticipation and
unfolding through time of the consequences of each possible action on the environment. Despite the impressive
results achieved by reinforcement learning, it seems that it may be too naive to consider the reward signal as a
proper way to describe goals : it does not promote rich internal states, as exploited by us, humans, when asked to
describe our motivational strategies.

This latter statement is the basis of the ongoing researches that we present in this paper: inspired by a behavioral,
psychological and physiological analysis of motivation in humans, a richer model of internal states in robots could
endow them with more realistic motivational characteristics. Several considerations are at the basis of the choices
that have been made for the internal architecture:

1. Two different circuits related to pain and pleasure perception are the way by which we perceive states of
the world (including ourselves) as goals to be avoided or looked after. Those two signals are sufficient to describe
a wide range of emotions as described in [12], for instance, fear can be seen as the anticipation of pain while
frustration can be seen as the absence of an expected pleasure. While it may be argued that a positive/negative
single reward signal could be enough, the use of two distinct circuits allows to deal with situations where stimuli
have both positive and negative valence in a satisfactory way. It is also our purpose here to demonstrate how
giving an adaptive meaning to both signals can lead to an efficient control architecture.

2. Some situations are innately ”unconditioned stimuli” for which we ”automatically” anticipate pain or pleasure.
New neutral situations can be associated by learning and become ”conditioned stimuli”. This is classical (or
Pavlovian) conditioning, the rules of which have been extensively modeled [13][7]. In our approach, we pro-
pose that this learning (often associated to the limbic system) is also the basis for our discrimination

capabilities (developed in the cortical temporal areas, ideally localized between the perceptual cortical regions
and the limbic system): consistently with the Rescorla-Wagner rule [11], we learn to discriminate stimuli which
evoke surprise (not predicted) whereas a neutral stimulus does not deserve to be recognized. This learning gives
emotional ”colors” to our world. Some situations are now perceived as associated to a cost (a pain) or a benefit
(a pleasure). See [8] [9] for an extensive study of fear conditioning.

3. Then, depending on present internal or external active goals (eg: I am thirsty; I am walking through the room),
some stimuli with emotional colors are transformed into motivations (eg: I have to grasp a bottle of
beer and it will give me some pleasure; I have to avoid the table or it will give me pain). Using the knoweldge of
the consequences of the actions on the world, the correct actions to be performed can be selected. This latter
process corresponds to operant conditioning and is clearly related to reinforcement learning. We discuss later
how this could lead to less computationally expensive models.



Fig. 1. Overview of the architecture

2 Architecture description

2.1 Overview

The full architecture of our proposal for a control system is shown in figure 1. First, the visual input may trigger
direct reflexes after a gross analysis, which represents the innate knowledge of what is absolutely necessary to stay
alive. This kind of general architecture is not without common grounds with the Per’Ac architecture introduced in
[6]. Second, an adaptive visual analysis is carried along two pathways described below.

Visual processing relies on the classical What/Where functional analysis [14] [10] : the What pathway represents
the analysis of what is currently shown in central vision and the Where pathway associates vision to actions by
integrating various informations : the emotional evaluation of what has been seen in central vision, and the position
of the object in the visual field (by using the angular position of the eyes). By supposing that the What pathway
only deals with central vision, we are simplifying the analysis process and implicitly use ocular saccades to explain
how the visual field is analyzed and how to contend with multiple interesting objects. This idea is similar to the
embodiment level presented in [1] : in the Where pathway, the remaining informations from the What pathway will
be the emotional evaluation of the object along with the angular position of the eyes that made the object be in
central vision.

Considering the simple scenario where only the color of boxes scattered in the environement matters (blue could
mean healthy food while red could be poisoned food), the innate knoweldge would be that when a red box is right
in front of the agent, it should avoid eating it and when a box is seen somewhere in the visual field, the agent should
get closer. With those two simple reflexes, it is expected to see basic survival behavior : exploration and avoidance
of instant death. Over time, the agent will learn that the blue leads to pleasure (satiety) and the red will lead to
pain (stomachaches), which is passive conditioning. It will also learn that when there is something that leads to
pleasure on the right, it should turn right, while if it is something painful, it should go to the left to avoid it, which
is operant conditioning.

As a proof of concept, we now present how each of the modules of this system has been implemented.

2.2 Visual analysis

It is not our purpose to propose here novel methods of analysis of the visual input. The Where pathway in our
model is not purely about location, it is also a How pathway considering how it leads directly to action. Our
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Fig. 2. Schematic representation of the classification modules

What analysis extracts shape (orientation in our experiments) and color, as in V4. Our Where pathway extracts
the location of the object currently seen in central vision in an egocentric coordinate system, using among other
informations the angular position of the eyes.

2.3 Classification modules

The What and Where classifications use the exact same implementation. The main purpose of this system is, as
shown in figure 2, to classify an arbitrarily large input vector into as few cases as possible. It is an incremental
neural network similar to Fritzke’s Growing Neural Gas as described in [4] without the topology as it is irrelevant
in this context. We decided to use incremental learning as it is clear that it is not possible to consider all possible
configuration of stimuli. For instance, in the What pathway, the characteristics extracted from the visual input are
mainly shapes and colors : the number of neurons necessary to encode each possible configuration will increase
heavily as more colors or shapes are considered, even though not all configurations are relevant. This is why we
have added two inputs to the classification modules : novelty and importance. The novelty of a configuration in the
case of the What pathway is computed from the difference between the current emotional evaluation and the real
pain and pleasure signals. In other words, if the body is feeling pleasure from eating while the emotional evaluation
system is not predicting it, the novelty signal will be high. Likewise, if the emotional evaluation is predicting pain
while the body is feeling pleasure, the novelty will also be high. The novelty signal is irrelevant for the Where
pathway, it has been set to a high value to let the body react more quickly to objects it has already identified. In
both pathways, the importance signal is the sum of the pain and pleasure signals coming from the body : if it is
high, it means that something is going on and learning should take place. Those two signals are used to control the
creation rate of new neurons to represent configurations of input stimuli and to control how close the prototype
of the neurons will be to the input stimuli. Unlike the vigilance signal in Grossberg’s ART [2], which shares many
common points with our classification modules, our novelty and importance signals are tightly bound to the rest of
the system and are not external parameters chosen in advance.

2.4 Conditioning modules

The pain and pleasure conditioning modules are based on Moren’s amygdala model, as presented in [7] , extended
to allow real-time learning by adding a Short Term Memory trace to the inputs. As explained previously, the input
of the conditioning modules are not directly the visual stimuli but a small subset of configurations chosen by the
classification module. Concerning the non-stationary nature of the classification, we also had to modify Moren’s
model to unlearn association which have lost their meaning due to the modification of the classification. Specifically,
when the classes in the what classification module change, the association of the inputs in the conditioning modules
with the emotional response decrease.

2.5 Winner Takes All

Each of the output neuron of the classification in the where pathway is linked with a weight between 0 and 1 to
each neuron in the Winner take all module. The neuron of the WTA which has the highest output becomes the only
one firing to control the associated action. To learn those weights, we use a mechanism very similar to Q-Learning
using TD(0). Once a neuron of the ouput layer of the classification has been activated, it has a very slow decay,
hence keeping a trace of the fact that it has been chosen for a long time. In the TD(0) algorithm, this neuron would
encode the eligibility of the action. When pleasure or pain is felt, weights increase or decrease accordingly, hence
favoring or leading to avoidance of the last chosen actions, proportional to the value of the eligibility trace.



On a side note, the reflex pathway is connected to the WTA with small constant weights so that a learned behavior
can quickly but not instantaneously take over reflexes.

3 Discussion

The architecture has been simulated and is now being tested on a wheeled robot, with the scenario given in the
architecture overview. We expect to observe the mentioned bootstrapping effect and autonomous learning once we
have adapted all the time constants and various parameters from the simulation to the actual robot.

This architecture offers a base on which higher levels of abstraction can build upon. It is an attempt at creating a
comprehensive learning and control system based on biological data and vastly supported hypothesis. In a similar
way than how the What/Where pathways are built upon the Reflexes pathway, we strongly believe that it will be
possible to implement higher level functionalities which will take over those reflexes when necessary, such as the
executive functions of the frontal lobe [3] [5].

It is interesting to note how abstract concepts such as frustration or relief (difference between the expected
pleasure/pain and the actual pleasure/pain, called importance in the classification module), fear and anticipation
quickly stem from the embodiment of the learning process. Our point is not to decide whether those are actual
feelings or not, but how the use of the semantics of emotions can be helpful in designing learning system in a bottom
up approach.

As it is a work in progress, many improvements are expected. Currently, our main focus is on the Where pathway :
as mentioned earlier, it is our belief that one of the ways to deal with the computational complexity, that usually
comes with control systems learning by classical reinforcement learning, is to firstly only consider pertinent elements
(emotionaly colored) in the environment, and secondly only consider the actions related to the current movitations.
Such ways of computing are possible, and even natural, with an embodied cognition and richer internal states.
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