A 2D-3D visualization support for human-centered rule-mining

Abstract : On account of the enormous amounts of rules that can be produced by data mining algorithms, knowledge post-processing is a diffcult stage in an association rule discovery process. In order to find relevant knowledge, the user needs to rummage through the rules. To make this task easier, we propose a new interactive mining methodology based on well-adapted dynamic visual representations. It allows the user to drive the discovery process by focusing his/her attention on limited subsets of rules. We have implemented our methodology with two complementary 2D and 3D visualization supports. These implementations exploit the user's focus to guide the generation of the rules by means of a specific constraint-based rule-mining algorithm.
Type de document :
Article dans une revue
Computer and Graphics, Elsevier, 2007, 31 (3), pp.350-360. 〈10.1016/j.cag.2007.01.026〉
Liste complète des métadonnées

Littérature citée [53 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00335928
Contributeur : Julien Blanchard <>
Soumis le : vendredi 31 octobre 2008 - 11:07:14
Dernière modification le : jeudi 5 avril 2018 - 10:36:25
Document(s) archivé(s) le : mardi 9 octobre 2012 - 14:43:48

Fichier

papier_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Julien Blanchard, Bruno Pinaud, Pascale Kuntz, Fabrice Guillet. A 2D-3D visualization support for human-centered rule-mining. Computer and Graphics, Elsevier, 2007, 31 (3), pp.350-360. 〈10.1016/j.cag.2007.01.026〉. 〈inria-00335928〉

Partager

Métriques

Consultations de la notice

213

Téléchargements de fichiers

239