
1-4244-1506-3/08/$25.00 ©2008 IEEE

Optimal On-line (m,k)-firm Constraint Assignment for Real-time Control
Tasks Based on Plant State Information

Felicioni Flavia
FCEIA – UNR

Universidad Nacional de Rosario
Rosario - Argentina
flaviaf@fceia.unr.edu.ar

Jia Ning, Françoise Simonot-Lion, Song YeQiong
LORIA – INPL

Campus Scientifique – BP 239
54506 – Vandoeuvre lès Nancy France

{Ning.Jia, simonot,song}@loria.fr

Abstract1

In this paper, we study the problem of scheduling a set
of control tasks. We distinguish three different situations
of states of controlled plants: not activated, steady state
situation and transient situation. The infinite-horizon and
finite-horizon cost functions are respectively used to
represent the performance of each control task in last two
situations. We propose a scheduling architecture in which,
according to the plant state situation, the task handler
switches between these two types of performance
criterion to determine an on-line (m,k)-constraint based
control task scheduling strategy, so that the overall
control performance is maintained at a high level in each
situation subject to the task schedulability. The approach
is exemplified on a set of controllers for different plants.

1. Introduction
We consider N physical plants. One dedicated

controller implemented as a real-time task controls each
plant. Each instance of a task is responsible for carrying
out the control law computation and has a deadline by
which it is expected to complete its computation. We
consider a centralized implementation of all the
controllers. At any time, there are n activated plants (with
n ≤ N), i.e. n activated tasks. This raises the problem of
the schedulability of these n tasks so that the stability is
ensured for each controlled plant. In addition to this
mandatory objective, we propose to define a scheduling
approach that optimizes the control performance. The
proposed approach is based on a task instance dropping
strategy.

In [9], we have presented a scheduling approach for a
set of control tasks. In this case, the infinite-horizon cost
function was used to represent the control performance of
each control task. This policy selectively rejects the
execution of task instances, so that the overall control
performance (sum of the cost function of each task) is
maintained at high level and the schedulability is ensured.

In this paper, we focus on the scheduling decision
based on the current states of controlled plants; i.e.
control tasks are scheduled in a way that reflects the
current control performance requirement. Concretely, we
distinguish different situations according to the states of
the n activated plants (steady: the plant output is in steady
state; transient: the plant output is in transient state). The

This work has been partially supported by ANR SSIA_NV_15.

infinite-horizon and finite-horizon cost functions are
respectively used in these situations for describing the
control performance of each control task. Based on these
cost functions, the proposed scheduling approach
selectively rejects the execution of control tasks instances,
so that the overall control performance is always
maximized and the set of tasks are schedulable.
Specifically, changes in plant references or disturbances
affecting the plants, may induce the corresponding tasks
to be executed more frequently than that in steady state.

Figure 1. Overall system architecture.

The system architecture is shown in Figure 1. We
suppose that a supervision function of all the controlled
plants is implemented in a separate computer. The
purpose of this function is to establish the new control
objective and to notify the task handler that has to define
the new scheduling parameters for this new objective.
Specifically, the scheduling parameters are given for each
task iτ as a (mi,ki)-firm constraint [13][14]. A (mi,ki)-firm
constraint means that the deadlines of at least mi among
any ki consecutive instances of a control task iτ must be

met (mi ,ki N +∈ , mi ≤ ki). Since the discarded instances
will not be executing the control law, this tends to
degrade the control performance. However, if each
controller is designed to accept a control performance
degradation until ki-mi deadlines misses among ki
consecutive task instances (in fact, under a suited basic
sampling period, control systems can tolerate misses of
the control law updates to a certain extent), the controlled
plant can then be conceived so that to offer the control
performance levels between (ki,ki)-firm (ideal case) and
(mi,ki)-firm (worst case) with as many intermediate levels
as the possible values between ki and mi. This results in a
controlled plant with graceful degradation of control

908

performance.
As the discarded instances can be thought of as a

sampling period variation, the controlled plant can be
thought of as a concatenation of systems in time, and it
can be modeled as a Discrete-Time Switched System
(DTSS) [18]. For that reason, we propose an explicit
analysis to ensure closed-loop stability for DTSS.

An alternative approach for achieving the scheduling
objective of this paper is to adjust on-line the period of
control tasks, as the approach proposed in [3][5][16].
However, this requires a convex cost function to
represent the performance degradation, and that is not the
general case. Furthermore, these approaches maintain the
control performance optimality and control task
schedulability by the regulation of the periods of control
tasks. However, changing the period of a task may
necessitate a change in the periods of dependant tasks as
task periods are often carefully selected for an efficient
exchange of information between relative tasks; in
addition, the change in sampling period of a sub-system
alters dynamics of the sub-system and leads to an
unavoidable additional study for the approaches based on
the regulation of the sampling periods.

The paper is organized as follows. The task model and
the scheduling properties under (m,k)-firm constraint is
contained in section 2. Section 3 shows how to choose the
(m,k)-firm constraint for a control task, presents the finite
and infinite-horizon cost function under (m,k)-firm
constraint and analyzes closed-loop stability. A formal
description and the solution of the scheduling problem are
presented in section 4. Section 5 discusses a numerical
example of the proposed scheduling approach. Finally,
we summarize our work and show the perspectives.

2. Task model and scheduling properties
In this section, we provide the task model and a task

instance classification strategy for fitting the (m,k)-firm
constraint; some properties associated to the strategy
required to assess the schedulability of control tasks and
calculate the cost functions are given as well as a
schedulability condition is introduced.

The controller of each plant is realized by a real-time
task and the n tasks are executed on a single processor.
Each instance of each task is responsible for carrying out
the control law computation; therefore each task τi is
characterized by the following parameters:
• Ti, Ci, Di: the time interval between two consecutive
instances (period), the maximum execution time and the
deadline of each instance; we consider Di=Ti
• mi, ki: the (m,k)-firm constraint for τi with mi ≤ ki.

For meeting the (m,k)-firm constraint, a task instance
classification strategy was proposed in [13][14], which
classifies the instances of each task into mandatory and
optional instances. Only the mandatory instances have to
be executed while optional instances could be not
executed at all in case of processor overload; for both
categories, deadlines have to be met must be met.

We proposed in [7], [11] the equation (1) to
determine this classification.

 i i i ia am k k m⎢ ⎥= ⎡ ⎤⎢ ⎥⎣ ⎦ (1)

For a = 0,1,…, τi is classified as mandatory if the
equation (1) is verified and as optional, otherwise.

Example 1. Let τi be under (3,5)-firm constraint, the
condition (1) is verified only for a=0+αk, 1+αk and 3+αk
(α∈N). Therefore the instances activated at 0,1,3,5, etc
are mandatory; those activated 2,4,7 are optional.

The determination of the schedulability of a set of
tasks under (m,k)-firm constraints has been proved in [13]
to be NP-hard; however, using the task instance
classification strategy (1), the schedulability of tasks can
be explicitly proved; we demonstrated in [8] that for a
single control loop, the control performance obtained
with the task classification (1) is sub-optimal.

Equation (1) implies that the mandatory instances are
periodically distributed; if the nth instance is classified as
mandatory instance, the (n+k)th instance is also classified
as mandatory instance. Below, there are some properties
of the instance classification strategy (1), which will be
used to determine the schedulability of control tasks and
to calculate the cost function.

Lemma 1 [7][14]. Under the task instance
classification strategy (1), the index of the jth mandatory
instance for each task τi is i ij m k⎢ ⎥⋅⎣ ⎦

Lemma 2 [7][14]. Under task instance classification
strategy (1), there are exactly ()i i itm T k⎡ ⎤⎢ ⎥ mandatory
instances for each task τi before time instant t.

Corollary 1. Under the task instance classification
strategy (1), the number of optional instances between the
jth and (j+1)th mandatory instances for each task τi, is
given by: ()() ()1 1j m k j m ki i i i

⎢ ⎥ ⎢ ⎥+ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Proof. the proof follows from lemma 1 and 2.

In this work, the control tasks are scheduled using the

fixed priority policy. The mandatory instances of all the
tasks are assigned the rate-monotonic priorities: the
mandatory instances of τi are assigned a higher priority
than the mandatory instances of τj if Ti<Tj.

A task under (m,k)-firm constraint is said to be
schedulable if its (m,k)-firm constraint is satisfied. For
the case where instances of each task are classified using
equation (1), the following theorem proposed in [9] can
be used to determine the task schedulability:
Theorem 1 [9]. Given a task set (τ1, τ2…τn) such that
T1<T2< ..<Tn. Let:

ij j j i jn m k T T⎡ ⎤⎡ ⎤= ⋅ ⎢ ⎥⎢ ⎥

If
1

1

i

i ij j i
j

C n C T
−

=
+ ≤∑ for all 1 ≤ i ≤ n, then the

(mi, ki)-firm constraint of each task τi is satisfied.
The above schedulability condition is sufficient and
necessary if the period of a task is multiple of the periods
of all the lower priority tasks. In the other case, it
degenerates to a sufficient condition.

909

3. Performance and Stability
In section 3.1, we establish an off-line method to

choose Ti and ki for each plant i. By using these values,
we can design the controller thanks to a control design
technique (state-feedback controller, LQ-optimal design).
For each plant i, and for each mi in the set [1.. ki], we must
calculate controller parameters as presented in section 3.2.
Section 3.3 highlights a misconception introduced in [5]
about closed-loop performance. Finally, a LMI
formulation, which guarantees the stability of the control,
is given in section 3.4.

3.1. Sampling time selection (Ti and ki) satisfying the
constraint of step response

In this section, we present how to choose both, the
value of the sampling period Ti and the value of ki for
(m,k)-firm constraint of each ith plant, so that the step
response requirement is respected by using the control
theory.

The sampling period selection is a compromise among
many factors. Most authors coincide that it is the
closed-loop bandwidth the main factor that provides the
maximum bound for its value [1]. Its limitation is stated
by the sampling theorem: ωCL (closed-loop frequency)
should be lower than π/T. Even more, to obtain a good
closed-loop performance, based on the closed-loop
temporal response, ωCL should be inside the restricted
interval proposed in [1], the “rule of thumb”:
0.2<ωCLT<0.6. As well, the open-loop plant frequency
should respect the sampling theorem (section 3.3).

This rule considers the rise time as the step response
parameter, which represents how much time the output of
a second order under-damped system needs to go from
10% to 90% of its final value. Furthermore, the overshoot
should be lower than an admissible threshold (typically
10%) and the rise time Tr will be lower than a given time
TrM.

In order to relate the continuous-time equivalent
parameter with the sampling period (h), we propose to
use Nr the number of sampling periods per rise time to be
chosen between 2 and 10. Note that this rule characterizes
the rise time only when it has, among the closed-loop
poles, a conjugate-complex pole-pair that dominates the
step response. In the case of closed-loop systems with
real, stable and very different poles, a class of stiff
systems where the rise time can be approximated by
Tr=3/a (95%) where a is the continuous-time equivalent
slower pole mapped by the relationship z=esh, we propose
to adopt the Nr limits as before (2 to 10).

By changing the controller parameters at a change in
sampling period, and maintaining the value of Nr within
its bounds; the rise time remains approximately constant.

Then, this rule is useful to calculate approximately the
minimum and maximum values for the sampling period.
Specifically, we propose to assign to the sampling time Ti
the maximum value of Nr, then Ti =TirM/10. By using the
minimum value Nr=2, ki should be 5. Possible variations
(4 or 6) will depend on the real value of Nr, evaluated as
function of Ti. As we see in fig. 2, for a pendulum both,

the time and the response times, remain approximately
constant for the extreme Nr values.

Figure 2: Minimum and maximum values of Nr.

3.2. Optimal LQ design under (m,k)-firm constraint
For each plant i and each ki, we calculate the mi

controller parameters using a LQ design [5][14]. The LQ
cost functions, with respect to task instance classification,
are calculated for both, finite and infinite horizon strategy.
These functions are used by the task handler (section 4.2)
as the control performance index to calculate and assign
the (m,k)-firm constraint to each control task.

Assume that each plant i is described by the
differential equation: i i i i i icdx A x dt B u dt dv= + + (2)
where xi is the state vector containing state variables of
the controlled plant, and ui is the control signal. The
process vic has mean value of zero and uncorrelated
increments. The incremental covariance of vic is Ricdt.

Let the control task realizing the controller be under a
(m,k)-firm constraint, the period of control task to be Ti,
and let its instances be classified using equation (1). For
simplifying the cost function calculation, we suppose that
the executions of all the optional instances are rejected
(in practice, optional instances could be assigned the
lowest priority and can be scheduled also, under an
on-line schedulability test).

The control signal ui,j is computed by a mandatory
instance, therefore the time that ui,j is held as constant can
be calculated using Corollary 1. From that, the jth control
signal is held during ()() ()()1 i i i iij ih T j m k j m k⎢ ⎥ ⎢ ⎥= + −⎣ ⎦ ⎣ ⎦ . During
the time kiTi, the period hij assumes mi values of jTi.

The discrete time-varying model of the plant (2) is:
 , 1 , , ,i j ij i j ij i j i jx x u v+ = Φ + Γ + j = 0,1,2,… (3)

where
0

ijij

hAh As
ij ije e dsBΦ = Γ = ∫ (4)

vi,j is a discrete-time Gaussian white-noise process with
zero mean value and the following property:

, ,
0

TijhT A A
i j i j Vij icEv v R e R e dτ τ τ= = ∫

 Since the mandatory instances are distributed
periodically in task instance sequence, we have Φij=
Φij+mi, Γij = Γ ij +mi.
The sampled cost function that the controller aims to
minimized is chosen as:

910

()
1

' '
, , , , , ,

0

1

0
0

1 2

 (5)

i
i

i i

i
i

i i

i i
i i

i i

Hm
k T

T T T
i i j ij i j i j ij i j i j ij i j

i ii
i

Hm
k T

T
ijN i Nm m

jk k

J x Q x x M u u R u
Hm
k

E x Q x J

−

=

−

=

⎛
⎜
⎜= + + +
⎜
⎜
⎝

⎞
⎛ ⎞ ⎟
⎜ ⎟ ⎟+ +
⎜ ⎟ ⎟⎝ ⎠ ⎟

⎠

∑

∑

'

0
() ()

ijh T
ij i iQ t Q t dt= Φ Φ∫ ,

0
() ()

ijh T
ij i iM t Q t dt= Φ Γ∫

()'

0
() ()

jih T
ij i i iR t Q t R dt= Γ Γ +∫ ,

0
()

ijT
ij icJ tr Q R dτ τ⎛ ⎞= ⎜ ⎟

⎝ ⎠∫

and () iA t
i t eΦ = ,

0
() i

t A s
i it e ds BΓ = ⋅∫ ; mi i iH k T N +∈ and

Hi is the ith plant time horizon.

The optimal control law that minimizes the cost
function (5) is given by [1] as:

, , ,i j i j i ju L x= − j = 0,1,2,… (6)
where

() ()1'
, , 1 , 1 ,

T T T
i j ij i j ij ij ij i j i j ijL S R S M

−
+ += Γ Γ + Γ Φ + (7)

and Si,t is obtained from the recurrent equation:

() () ()

0
,

'
, , 1

1'
, 1 , 1 , 1

i
i

i

H i
i m

kT

T
i j ij i j ij ij

TT T T T T
ij i j ij ij ij i j ij ij ij i j ij ij

S Q

S S Q

S M S R S M

+

−
+ + +

=

= Φ Φ +

− Γ Φ + Γ Γ + Γ Φ +

(8)

Because of the periodicity of Φij and Γij, the steady
state solution of the Riccati equation (7) is periodic with
period mi [2], i.e., , , ii j i j mS S += . The controller gain
matrix Li,j is designed using the steady-state solution of
Riccati equation (7) and its solution is also periodic:

Li,j=Li,j+mi
Lemma 3. The minimal value of Ji under task instance
classification strategy (1) is given as:

()
1

,0 ,0 ,0 , 1
0

1(, ,)

i i

i i

H m
T k

T
iji i i i i i i i j Vi

i i j
i

i i

J H m k x S x trS R J
H m T
T k

⎡ ⎤
−⎢ ⎥

⎢ ⎥

+
=

⎛ ⎞
⎜ ⎟
⎜ ⎟= + +⎜ ⎟⎡ ⎤
⎜ ⎟⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥

∑
 (9)

where ,
0

()
ijh

i j icJ tr Q R dτ τ⎛ ⎞= ⎜ ⎟
⎝ ⎠∫

Proof. The minimal value of Jj given by optimal LQ
controller (6) is derived in [1] as

()
1

,0 ,0 ,0 , 1
0

1 iN
T

iji i i i i j Vij
i i j

J x S x trS R J
N T

−

+
=

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

∑

where Ni is the number of control law updates. As the
control law is only updated by a mandatory instance, the
number of control law updates is therefore equal to the
number of mandatory instances. Lemma 2 shows that
there are exactly ()i i i iH m T k⎡ ⎤

⎢ ⎥ mandatory instances before

instant Hi, we therefore get ()i i i iH m T kiN ⎡ ⎤
⎢ ⎥= .

When time goes to infinity (lim iH → ∞), the
influence from the initial condition decreases and

because , , ii j i j mS S += , (9) may be written as:

1 1

, 1
0 0

1(, ,)
i im m

iji i i i j Vij
i i j j

J m k trS R J
m T

− −

+
= =

⎛ ⎞
⎜ ⎟∞ = +
⎜ ⎟
⎝ ⎠
∑ ∑ (10)

According to [8], the instance sequence is chosen as
uniformly as possible. For that, during each interval ki Ti
the varying model (2) will update mi times, and the period
hij assumes a value in the set Ψi={fi,0Ti, fi,1Ti, …,fi,mi-1Ti} (j
is replaced by fi,p obtained as in [8]). For example, if ki/mi
is an integer, the optimal sequence in [8] gives
fi,0=fi,1=…=fmi-1= ki/mi.

3.3. Closed-loop performance
From digital control theory, we know that if we reduce

the sampling time of a plant, the open-loop performance
will be closer to the continuous-time system one. So, a
similar behavior for the closed-loop performance is
expected (when the sampling period grows, the plant
response becomes worse than the continuous time one,
forcing performance degradation).

Figure 3: Cost vs. sampling time. Pendulum.

Figure 4: ωCL T vs. sampling time. Rule of thumb.
But fig. 4 in [5] shows the closed-loop cost as function

of the sampling time for a given plant (pendulum), where
the controller parameters are obtained with an infinite
time horizon LQ design. Surprisingly, in this figure, some
high peaks appear for some specifics sampling periods.
Then, the classical conception mentioned before is
contradicted, i.e. faster sampling not necessarily
increases control performance. To highlight this
unexpected conclusion, we made the same analysis as in
[5] (fig. 3), and we found that the first peak occurred
when the sampling period is T=π/ωA, where ωA is the
open-loop frequency of the plant. The reason for this
peak is that the sampling theorem is not respected for the

911

open-loop plant (plant resonance), that is unacceptable.
Even, as we show in fig. 4, one can satisfy the mentioned
“rule of thumb” inside the section limited at top and at
bottom by both red straight lines.

Summarizing, to select the maximum sampling period
(kiTi) we add to the selection criteria presented in section
3.1, the verification of the sampling theorem for the
open-loop plant. In this more restricted area, the classical
digital control conception remains valid.

3.4. Closed-loop Stability
A change in the value of mi, for a given ki, produces a

sampling period variation, and then we consider a
Discrete Time Switched System (DTSS) description. To
adapt control law parameters to this variation, we use the
design presented in section 3.2. But, as it was shown in
[15], controllers designed with optimal-LQ techniques,
may suffer from instability under certain switching
sequences, i.e. when the sampling period changes. Due to
this undesirable result, [15] adopts a linear matrix
inequalities (LMI) framework to design stable optimal
controllers.

We will use a LMI framework to find a Common
Quadratic Lyapunov Function (CQLF), then, asymptotic
stability is guaranteed for any (m,k)-firm sequence
proving the stability of the control. Firstly, we consider
the set of mi controller parameters to be calculated for
each possible value of mi £i={ 10 1, , , i

i i i

m
m m mL L L − }, by using

equation (7), where j=fd (fd depends on the delivery
sequence [8]) and d=0,1…,mi-1, i.e. for the set Ψi.
Secondly, we consider the set of open-loop discrete time
models (2), Θi={ () () ()1 1 2 2, , , , , ,

i ii i i i ik ikΦ Γ Φ Γ Φ Γ } and
evaluate the ki periods, taking into account possible
interruptions in a planned sequence at any time.

By using elements in both sets, we can establish a new
set of mi·ki closed-loop models, (3) without noise,

,

l d i

i d
il il mA L= Φ + Γ , where l varies between 1 and ki

((),il ilΦ Γ ∈Θi) and d between 0 and mi-1 (d
iL ∈£i).

In order to prove the stability of DTSS [18], we should
find a CQLF for the set of matrices

,n d

iA ,

where 11,.., , with 0,..,i in k d m −= = . Then, we formulate

a set of mi·ki inequalities: (), ,
0,

n d n d

Ti iA P A P n d− < ∀ ∀ ,

and for this set, we propose to use the LMI toolbox from
Matlab in order to find the common matrix P=PT>0.

4. Scheduling architecture and supervision
As we stated above, during the execution of the

application, we distinguish 3 situations of states of
controller plants: steady state, transient state and not
activated plant. This information is provided by the
supervision task. Section 4.1 describes how plant states
are identified. A new system state, determined by the
supervision task, requires the definition of new
scheduling parameters by the task handler (section 4.2).

4.1. Plant State Detection
In this section, we specify how the supervision

component identifies the situation of states of controlled
plants. We consider the situation 1- for non activated
plant and two situations for an activated one: 2- Steady
state (or near) and 3- Transient state. Situation 1 is used
when the plant does not exist for the overall system (plant
controlled only during certain time interval, plant
deactivated because its output is out of a given domain).
Reaching or leaving situation 1 for a plant modifies the
value of n.

The deadband approach presented in [12] is used to
distinguished situation 2 and 3. Each controlled plant has
a state, which asymptotically tracks the reference r, which
is supervised by the supervision task. Let y1 be this plant
state. The following condition is set up:

() () (){ }1 1 1 1 1min ,i iy h n h y n h y n h thδ+ − <

where th is a threshold to prevent false identifications due
to noise. hi is the detection period of the supervision
component for the plant i. We proposed to select this time
equal to the ith sampling period. If this condition is
verified, the plant is considered as in steady state,
otherwise, it is in transient state. This plant state detection
mechanism has as advantages that it depends on the
actual evolution and it detects, in the same way, reference
changes or/and non-modeled perturbations.

4.2. Task Handler
We implement a task handler which at each situation

change, adjusts the (m,k)-firm constraint for each task by
considering the current control performance indicator and
the task schedulability objective. In this section, we
formulate the scheduling problem and give the solution.
After, the scheduling architecture is presented.

We suppose that the value ki of each τi has been
carefully chosen (section 3.1) and is constant during the
execution of application. The value of mi is chosen in
[1 .. ki] on line by the task handler. For each control task
τi, each possible value of mi is associated with two values
gij and gij' corresponding to the control performance,
respectively, in transient situation and in steady one.
Suppose that a lower value of gij or gij' represents a better
control performance, the aim of the task handler at a
change in situation of plant states is to find, for each τi, a
value mi ∈ [1.. ki] so that the sum of gij or gij' (according
to the situation which the plants fall into) for j∈ [1.. ki]
and i∈[1.. n] is minimized subject to the task
schedulability. Then, condition in Theorem 1 is modified
taking into account the mentioned performance indicators.
This is formally formulated as the following optimization
problem:
To determine the sequence 1 2, ,..,

ii i ils s s for each task τi,

i=1,..,n that minimizes ()'

1 1

i

ij

ln

ij ij ij
i j

s g I s g F
= =

+∑∑ (11)

{ }

{ }
1

with 0,1 , 1, 1,.., , 1,.., , 1,..,

 , 0,1 , 1

il

ij ij i i i
j

s s i n j l l k

I F I F
=

∈ = = = =

∈ + =

∑

912

and such that
1

1 1
, 1,.., ,

ili

i jp jp j i j j i
j p

C s m k T T C T i n
−

= =

⎡ ⎤
⎡ ⎤+ ≤ =⎢ ⎥⎢ ⎥

⎢ ⎥
∑ ∑

where I and F are situation indicators: in transient state, I
is 1 and F is 0, and in steady state, I is 0 and F is 1.

The values gij and gij' are given in two way: one is
using directly the cost (8) and (10), and the other way is
to take the relative performance degradation percentage:

(, ,) (, ,)
(, ,)

ij i i i

i i

J H m k J H k k
J H k k

− and (, ,) (, ,)
(, ,)

ij i i i

i i

J m k J k k
J k k

∞ − ∞
∞

 (12)

Using the first control performance representation
method, the optimization problem is to minimize the
overall cost of the application. However, the sub-systems
with lower costs may suffer from great control
performance degradation due to a low value of mi. That is,
the task handler maintains the value of each mi as great as
possible for the sub-systems with greater costs by
reducing the value of mi for the sub-systems with lower
costs. Using (12) as the control performance criteria
avoids such a situation. The control performance
degradation of each sub-system is treated equally. On the
other hand, the overall cost of application may not be
optimal. So, the choice of control performance
representation should be identified according to the
application requirements.

The time horizon Hi for the finite-horizon cost
functions is an important design parameter, which
directly affects the overall control performance, and need
to be carefully chosen. Here, we choose Hi as the settling
time (approx. three times the rise time). To calculate (12)
in an off-line form, we considered the typical values of
the reference values neglecting noise.

The optimization problem (11) has the similar form as
that in [9] which was qualified as the multiple-choice
multi-dimension knapsack problem (MMKP) [17], and
was proved to be NP-hard problem. For solving the
optimization problem, the heuristic algorithm based on a
so-called computationally cheaper heuristic algorithm
(HEU) proposed in [10] is used. It has been shown that
the algorithm is efficient and suitable for an on-line use
for real-time application.

At each change in the situation of at least one plant,
the task handler receives the information about the
current plants states. Based on this information (n current
activated plants), and the values of vij that were evaluated
off-line, it deduces the new (m,k)-firm constraint for each
control task by solving the optimization problem (11).
The control tasks are then scheduled according to these
(m,k)-firm constraints.

5. Case study
In this section, we illustrate the scheduling approach

presented above by studying the control of four plants.
Plant1 (resp. Plant2, Plant3, Plant4) corresponds to a
harmonic oscillator system, (resp. to a cart system, a
pendulum and an inverted pendulum).

5.1. Plants and Controllers
Each plant is modeled by the differential equation (2):

Plant1:
0 1 0

,
-18 0 516

A B⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 and vc has the

incremental covariance:
1

0.0025 -0.005
=

-0.005 0.01cR
⎡ ⎤
⎢ ⎥
⎣ ⎦

;

Plant2 : 0 1 0
,

0 -12.6558 1.9243
A B⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 and vc has the

incremental covariance
1

0.005625 -0.075
=

-0.075 1cR
⎡ ⎤
⎢ ⎥
⎣ ⎦

;

Plant3 : 0 1 0
,

-22.206 -0.9424 0.48036
A B⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

and vc has

the incremental covariance
3

0 0
=

0 22.2066cR
⎡ ⎤
⎢ ⎥
⎣ ⎦

;

Plant4 :

0 1 0 0 0
0 0 -14 0 2

,
0 0 0 1 0
0 0 28 0 2

A B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 and vc has the

incremental covariance
1

0 0 0 0
0 0.0025 0 0

=
0 0 0 0
0 0 0 0

cR

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

The controller of Planti is denoted Controlleri.
Rise time specifications TrM of each plant are

respectively 0.2, 0.2, 0.3 and 0.5. Then, sampling periods
are related to rise time specifications, i.e., 0.02s for Plant1,
0.02s for Plant2, 0.03s for Plant3, and 0.05s for Plant4.

The first state variable in vector x of each plant is the
variable supervised by the supervision component, in
other words, the controller tries to keep it asymptotically
tracking the plant state reference. The step response
target for the cart is an overdamped response, while for
the others they are underdamped ones, being the damping
coefficient upper than 0.6 (overshoot < 10%).

The controllers are designed using (8) for each mi
value. The design weights, which allow the satisfaction
of the mentioned rise time and overshoot, are:

Controller1 :
1

5 0 0
0 0 0
0 0 25

Q
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, R1=200

Controller2 :
2

1.25 0
0 0.0085

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, R2=0.0001.

Controller3:
3

1 0
0 0

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, R3=0.00001.

Controller4 :
4

1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, R4=0.001.

Using the LMI control toolbox, the set of inequalities
(for the overall set of discrete plants and controllers
parameters), has a QCLF, guarantying stability.

To allow for fast changes between different (m,k)-firm
constraints at an m adjustment, the controller parameters
are calculated off-line and stored in a table.

Since the control tasks are assigned the
rate-monotonic priority, the task with the largest period
has the lowest priority; its execution has no influence on

913

the other tasks. Therefore, no task instance classification
will be applied to Controller4, or in other words, it is
executed under (k,k)-firm constraint.

Using the approach proposed in section 4, the value of
ki is set to respectively 6, 5, 5 and 4. The value of m for
the plants may vary within [1.. ki].

5.2. Performance specification and simulation setup
Table 1a gives, for Controller1 the optimal costs

associated with different (m,k)-firm constraint. The
column labeled “OC_IH/Degradation (%)” lists the
optimal infinite-horizon costs and the relative
performance degradation compared to (k,k)-firm
constraint. The column “OC_FH / Degradation(%)” lists
the optimal finite-horizon costs for typical initial plant
states and the relative performance degradation compared
to (k,k)-firm constraint. The time interval of the
finite-horizon cost functions is set equal the settling time
for each system (see section 4.2).

In practice, the task handler can calculate the optimal
finite-horizon costs on-line. They are listed here to
illustrate how task handler chooses the (m,k)-firm
constraints for each controller.
(m,k)-firm
constraint OC_IH/ Degradation(%) OC_FH/Degradation(%)

(1,6) 0.0022639 / 18.05 0.2837 / 9.83
(2,6) 0.0020682 / 7.85 0.2645 / 2.4
(3,6) 0.0019941 / 3.99 0.26 / 0.66
(4,6) 0.0019682 / 2.64 0.2597 / 0.54
(5,6) 0.0019428 / 1.32 0.2587 / 0.15
(6,6) 0.0019175 / 0 0.2583 / 0

Table 1. Optimal costs associated with different
(m,k)-firm constraints (controller 1)

The simulation model was created using Simulink and
the TrueTime toolbox [4]. The execution time of each
controller is approximately 9ms.

5.3. Simulation results
The simulation results obtained with the proposed

approach are given in this section.
The model has been evaluated under the setup shown

in Table 2. There, we identify the state (st) of each plant
as follow: -1→Not activated, 0 → Steady-state and 1→
Transient-state. State changes (or transitions) are detected
by the supervision component and, in the proposed
simulation; they arrived at time « Time-Event ».
Therefore, the task handler at the “Time-event”, based on
the overall system state, calculates the value of each mi.

At the system starting (time 0-) only Plant1 and Plant3
are activated (both in steady state situation). At time 0+,
the task associated with Plant3 is activated, and then the
task handler is executed in order to admit the new task
(Plant1 -> state transition from -1 to 0). The
schedulability condition at time 0- {0.009<0.02,
0.018<0.02} allows the system to accept all the instances,
i.e. m1= k1 and m3 = k3. At time 0+, with mi = ki,
schedulability conditions are {0.009<0.02, 0.018<0.02,
0.063>0.05}, i.e. the third condition is not verified,
justifying the execution of the task handler and the
changes in the values of each mi.

At time 0.27, the transient state of Plant1 is detected by
the supervision component and the task handler is
executed, then the values of all mi are adjusted
accordingly. Clearly m1 is augmented with respect to its
previous value to provide better transient performance of
Plant1. This choice of (m,k)-firm constraints is done
verifying the condition proposed in section 4, whose goal
is to reduce the overall performance degradation. Other
choice makes either the tasks non-schedulable or a worse
overall performance degradation.

At time 0.5, Plant2 is activated, and then a new
configuration is required to manage 4 Plants. In this case
the schedulability condition {0.009<0.02, 0.018<0.02,
0.045> 0.03, 0.081>0.05}, i.e. if we do not reduce the
values of mi, the tasks will be non-schedulable.

The extinction of the Plant1 transient, at time 0.62,
produces a new set of mi values. In the same way, the
detection of the Plant2 transient at 0.8 requires the
adjustment of the mi values. See Table 2.

At time 1.76, an inadmissible perturbation enters in
the Plant3, the output reaches π/2, and consequently this
plant is deactivated reducing the number of tasks to 3.
Then, the task handler can augment m1 and m2 values
using condition in section 3. Both values cannot assume
their maximum, k1 and k2, because the schedulability
conditions for the 3 systems are {0.009<0.02, 0.027>0.02,
0.045>0.03}. Finally, at time 1.8 the detection of the
Plant2 transient forces to augment m2.

0(-) 0 (+) 0.27 0.5 0.62 Time
event st mi st mi st mi st mi st mi
Plant1 0 6 0 4 1 6 1 3 0 2
Plant2 -1 0 -1 0 -1 0 0 1 0 1
Plant3 0 5 0 5 0 2 0 2 0 5
Plant4 -1 0 0 4 1 4 1 4 1 4

0.8 1.05 1.1 1.76 1.8 Time
event st mi st mi st mi st mi st mi
Plant1 0 2 0 2 0 2 0 6 0 2
Plant2 1 2 1 1 0 1 0 1 1 5
Plant3 0 2 1 5 1 5 -1 0 -1 0
Plant4 1 4 -1 4 0 4 1 4 1 4

Table 2. Simulation setup, mi values vs Event.
Note that as the (m,k)-firm constraint of Controller4 is

hold as (k,k) throughout the execution of application, the
change in the state of the Plant4 has not effect on the
decision of task handler.

Throughout the simulation, the rise-time requirements
of plants are all met thanks to a judicious selection of ki.

The minimum delay is 9ms, i.e. the computation time.

Figure 5: Scheduling of Controller2.

In fig. 5, we show the scheduling of Controller2. The

914

three possible levels are 1–Running (task being executed
by the processor), 0.5–Preempted (the execution is
preempted by other task); and 0–Waiting (task waits for
an activation). We could verify that each task deadline is
always respected (it is guaranteed by the event-triggered
execution of the task handler). Evolution of the plant
outputs is given in fig.6.

a) Harmonic oscillator system

b) Cart system

c) Pendulum.

d) Inverted pendulum

Figure 6: Output evolution of Plants.

In order to analyze the performance degradation, we
evaluate the LQ cost for each system during the
simulation time. Considering that we have a dedicated
CPU for each system, we calculated the nominal
performance of each plant (Table 3) as the reference
values. The values of Performance overall system were
evaluated considering the simulation setup described
before. These results depend on the simulation setup, and
they are only exposed to show that using the proposed
technique, the degradation of the performance should be
maintained as small as possible in each situation subject
to the task schedulability. Plant4 suffered the lower cost
degradation; due to the m4 is always equal 4. Plant2,
suffered the maximum cost degradation, due to Plant2
performance indicators, which generates the reduction of
m2 if the other plants require the use of CPU.

 Plant1 Plant2 Plant3 Plant4

Perf. Nominal 359 40.04 154.6 25.31
Perf. Overall System 395 52.5 199.4 26.347
Degradation 10% 31.1% 29.1 % 0.05 %

Table 3. Performance costs of Planti.

6. Conclusion
This paper has presented a scheduling approach based

on the (m,k)-firm constraint model for scheduling a set of
control tasks. Given the current states of the controlled
plants, the proposed approach derives a (m,k)-firm
constraint for each control task, and the control tasks are
scheduled using these (m,k)-firm constraints so that the
schedulability of control tasks is guaranteed and the

overall control performance is maintained at a high level.
Compared with feedback scheduling approaches in the

literature, the advantages of the proposed approach are:
the approach does not depend on the type and property of
the control performance (whatever the functions of the
control performance are convex, the proposed approach
can always keep the overall control performance at high
level while guarantying the schedulability of control
tasks); at a system configuration change, the
event-triggered solution reacts immediately reducing the
periods of the tasks.

7. References
[1] Åström, K. J. and B. Wittenmark, Computer-Controlled

Systems, third edition. Prentice Hall. 1997.
[2] Bittanti, S. Bittanti, P. Colaneri, G. De Nicolao, The

periodic Riccati equation, in The Riccati Equation,
Springer-Verlag, Berlin, 1991.

[3] Cervin, A., Eker, J., Bernhardsson. B., and Årzén, K.-E.,
“Feedback feedforward scheduling of control tasks”
Real-Time System., vol. 23, no. 1-2, pp. 25--53, 2002.

[4] Cervin, A., Henriksson, D., Lincoln, B., Eker, J., d Årzén,
K.-E., “How does control timing affect performance” IEEE
Control Systems Magazine, 23:3, pp. 16-30, 2003

[5] Eker, J., Hagander, P., and Årzén, K.E., “A Feedback
Scheduler for Real-Time Controller Tasks”, Control
Engineering Practice, vol. 12, no.8, p. 1369-1378, 2000.

[6] Henriksson, D., Cervin, A., Optimal On-line Sampling
Period Assignment for Real-Time Control Tasks Based on
Plant State Information, ECC 2005, Spain, Dec. 2005.

[7] Jia, N., Hyon, E., Song, Y.Q., “Ordonnancement sous
contraintes (m,k)-firm et combinatoire des mots”, RTS'2005,
Paris, France, 2005.

[8] Jia. N., Song. Y.Q, Simonot-Lion. F., “Graceful
Degradation of the Quality of Control through Data Drop
Policy”, ECC'07, Kos, Greece, July 2007.

[9] Jia. N., Song. Y.Q, Simonot-Lion. F., “Feedback scheduling
based on (m,k)-firm constraint model for the handling of a
set of real-time controllers”, RTNS'07, France, March 2007.

[10]Khan, S., LI, K.F., Manning, E.G. and Akbar, M. “Solving
the knapsack problem for adaptive multimedia systems”,
Studia Informatica Universalis, Vol. 2 (1), 157-178, 2002.

[11]Lothaire., M. “Algebraic Combinatorics on Words”,
Cambridge University Press, 2002.

[12] Otanez P., Moyne J., y Tilbury D., “Using Deadbands to
Reduce communication in Networked Control Systems,”
American Contr. Conf. (2002).

[13] Quan, G., and Hu, X., “Enhanced Fixed-priority
Scheduling with (m,k)-firm Guarantee ”, Proc. Of 21st
IEEE Real-Time Systems Symposium, 79-88, USA, 2000.

[14] Ramanathan, P., “Overload management in Real-Time
control applications using (m,k)-firm guarantee”, IEEE
Trans. on Parallel and Distr. Syst., 10(6), 549-559, 1999.

[15] Schinkel M., W.-H Chen, A. Rantzer. “Optimal control for
systems with varying sampling rate”. ACC 2002.

[16]Seto, D., Lehoczkyn, J. P., Sha, L., Shin, K. G., “On task
schedulability in real-time control systems”, Proc. of 17th
IEEE Real-Time Syst., 13-21, USA, 1996.

[17] Silvano Martello, Paolo Toth (1990). “Knapsack
Problems: Algorithms and Computer Implementations”,
John Wiley & Sons. ISBN 0-471-92420-2, 1990.

[18] Theys J. “Joint Spectral Radius: theory and
approximations”, PhD Thesis. Univ. de Louvain. 2005.

915

	Main
	Welcome Messages
	Committees
	Keynotes
	Program at a Glance
	Industry Day
	Technical Program
	Reviewers
	Author Index
	Local Information

