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Abstract1 

In this paper, we study the problem of scheduling a set 
of control tasks. We distinguish three different situations 
of states of controlled plants: not activated, steady state 
situation and transient situation. The infinite-horizon and 
finite-horizon cost functions are respectively used to 
represent the performance of each control task in last two 
situations. We propose a scheduling architecture in which, 
according to the plant state situation, the task handler 
switches between these two types of performance 
criterion to determine an on-line (m,k)-constraint based 
control task scheduling strategy, so that the overall 
control performance is maintained at a high level in each 
situation subject to the task schedulability. The approach 
is exemplified on a set of controllers for different plants.  

1. Introduction 
We consider N physical plants. One dedicated 

controller implemented as a real-time task controls each 
plant. Each instance of a task is responsible for carrying 
out the control law computation and has a deadline by 
which it is expected to complete its computation. We 
consider a centralized implementation of all the 
controllers. At any time, there are n activated plants (with 
n ≤ N), i.e. n activated tasks. This raises the problem of 
the schedulability of these n tasks so that the stability is 
ensured for each controlled plant. In addition to this 
mandatory objective, we propose to define a scheduling 
approach that optimizes the control performance. The 
proposed approach is based on a task instance dropping 
strategy.  

In [9], we have presented a scheduling approach for a 
set of control tasks. In this case, the infinite-horizon cost 
function was used to represent the control performance of 
each control task. This policy selectively rejects the 
execution of task instances, so that the overall control 
performance (sum of the cost function of each task) is 
maintained at high level and the schedulability is ensured. 

In this paper, we focus on the scheduling decision 
based on the current states of controlled plants; i.e. 
control tasks are scheduled in a way that reflects the 
current control performance requirement. Concretely, we 
distinguish different situations according to the states of 
the n activated plants (steady: the plant output is in steady 
state; transient: the plant output is in transient state). The 
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infinite-horizon and finite-horizon cost functions are 
respectively used in these situations for describing the 
control performance of each control task. Based on these 
cost functions, the proposed scheduling approach 
selectively rejects the execution of control tasks instances, 
so that the overall control performance is always 
maximized and the set of tasks are schedulable. 
Specifically, changes in plant references or disturbances 
affecting the plants, may induce the corresponding tasks 
to be executed more frequently than that in steady state. 

 

 
Figure 1. Overall system architecture. 

The system architecture is shown in Figure 1. We 
suppose that a supervision function of all the controlled 
plants is implemented in a separate computer. The 
purpose of this function is to establish the new control 
objective and to notify the task handler that has to define 
the new scheduling parameters for this new objective. 
Specifically, the scheduling parameters are given for each 
task iτ as a (mi,ki)-firm constraint [13][14]. A (mi,ki)-firm 
constraint means that the deadlines of at least mi among 
any ki consecutive instances of a control task iτ  must be 

met (mi ,ki N +∈ , mi ≤ ki). Since the discarded instances 
will not be executing the control law, this tends to 
degrade the control performance. However, if each 
controller is designed to accept a control performance 
degradation until ki-mi deadlines misses among ki 
consecutive task instances (in fact, under a suited basic 
sampling period, control systems can tolerate misses of 
the control law updates to a certain extent), the controlled 
plant can then be conceived so that to offer the control 
performance levels between (ki,ki)-firm (ideal case) and 
(mi,ki)-firm (worst case) with as many intermediate levels 
as the possible values between ki and mi. This results in a 
controlled plant with graceful degradation of control 
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performance. 
As the discarded instances can be thought of as a 

sampling period variation, the controlled plant can be 
thought of as a concatenation of systems in time, and it 
can be modeled as a Discrete-Time Switched System 
(DTSS) [18]. For that reason, we propose an explicit 
analysis to ensure closed-loop stability for DTSS. 

An alternative approach for achieving the scheduling 
objective of this paper is to adjust on-line the period of 
control tasks, as the approach proposed in [3][5][16]. 
However, this requires a convex cost function to 
represent the performance degradation, and that is not the 
general case. Furthermore, these approaches maintain the 
control performance optimality and control task 
schedulability by the regulation of the periods of control 
tasks. However, changing the period of a task may 
necessitate a change in the periods of dependant tasks as 
task periods are often carefully selected for an efficient 
exchange of information between relative tasks; in 
addition, the change in sampling period of a sub-system 
alters dynamics of the sub-system and leads to an 
unavoidable additional study for the approaches based on 
the regulation of the sampling periods. 

The paper is organized as follows. The task model and 
the scheduling properties under (m,k)-firm constraint is 
contained in section 2. Section 3 shows how to choose the 
(m,k)-firm constraint for a control task, presents the finite 
and infinite-horizon cost function under (m,k)-firm 
constraint and analyzes closed-loop stability. A formal 
description and the solution of the scheduling problem are 
presented in section 4. Section 5 discusses a numerical 
example of the proposed scheduling approach. Finally, 
we summarize our work and show the perspectives.  

2. Task model and scheduling properties  
In this section, we provide the task model and a task 

instance classification strategy for fitting the (m,k)-firm 
constraint; some properties associated to the strategy 
required to assess the schedulability of control tasks and 
calculate the cost functions are given as well as a 
schedulability condition is introduced.  

The controller of each plant is realized by a real-time 
task and the n tasks are executed on a single processor. 
Each instance of each task is responsible for carrying out 
the control law computation; therefore each task τi is 
characterized by the following parameters: 
• Ti, Ci, Di: the time interval between two consecutive 
instances (period), the maximum execution time and the 
deadline of each instance; we consider Di=Ti 
• mi, ki: the (m,k)-firm constraint for τi with mi ≤ ki. 

For meeting the (m,k)-firm constraint, a task instance 
classification strategy was proposed in [13][14], which 
classifies the instances of each task into mandatory and 
optional instances. Only the mandatory instances have to 
be executed while optional instances could be not 
executed at all in case of processor overload; for both 
categories, deadlines have to be met must be met.  

We proposed in [7], [11]  the equation (1) to 
determine this classification. 

  i i i ia am k k m⎢ ⎥= ⎡ ⎤⎢ ⎥⎣ ⎦   (1) 

For a = 0,1,…, τi is classified as mandatory if the 
equation (1) is verified and as optional, otherwise.  

Example 1. Let τi be under (3,5)-firm constraint, the 
condition (1) is verified only for a=0+αk, 1+αk and 3+αk 
(α∈N). Therefore the instances activated at 0,1,3,5, etc 
are mandatory; those activated 2,4,7 are optional.   

The determination of the schedulability of a set of 
tasks under (m,k)-firm constraints has been proved in [13] 
to be NP-hard; however, using the task instance 
classification strategy (1), the schedulability of tasks can 
be explicitly proved; we demonstrated in [8] that for a 
single control loop, the control performance obtained 
with the task classification (1) is sub-optimal. 

Equation (1) implies that the mandatory instances are 
periodically distributed; if the nth instance is classified as 
mandatory instance, the (n+k)th instance is also classified 
as mandatory instance. Below, there are some properties 
of the instance classification strategy (1), which will be 
used to determine the schedulability of control tasks and 
to calculate the cost function. 

Lemma 1 [7][14]. Under the task instance 
classification strategy (1), the index of the jth mandatory 
instance for each task τi is i ij m k⎢ ⎥⋅⎣ ⎦  

Lemma 2 [7][14]. Under task instance classification 
strategy (1), there are exactly ( )i i itm T k⎡ ⎤⎢ ⎥ mandatory 
instances for each task τi before time instant t. 

Corollary 1. Under the task instance classification 
strategy (1), the number of optional instances between the 
jth and (j+1)th mandatory instances for each task τi, is 
given by: ( )( ) ( )1 1j m k j m ki i i i

⎢ ⎥ ⎢ ⎥+ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦     

Proof. the proof follows from lemma 1 and 2.  
 
In this work, the control tasks are scheduled using the 

fixed priority policy. The mandatory instances of all the 
tasks are assigned the rate-monotonic priorities:  the 
mandatory instances of τi are assigned a higher priority 
than the mandatory instances of τj if Ti<Tj. 

A task under (m,k)-firm constraint is said to be 
schedulable if its (m,k)-firm constraint is satisfied. For 
the case where instances of each task are classified using 
equation (1), the following theorem proposed in [9] can 
be used to determine the task schedulability: 
Theorem 1 [9]. Given a task set (τ1, τ2…τn) such that 
T1<T2< ..<Tn. Let: 

ij j j i jn m k T T⎡ ⎤⎡ ⎤= ⋅ ⎢ ⎥⎢ ⎥
 

If 
1

1

i

i ij j i
j

C n C T
−

=
+ ≤∑  for all 1 ≤ i ≤ n, then the 

(mi, ki)-firm constraint of each task τi is satisfied. 
The above schedulability condition is sufficient and 
necessary if the period of a task is multiple of the periods 
of all the lower priority tasks. In the other case, it 
degenerates to a sufficient condition.  
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3. Performance and Stability 
In section 3.1, we establish an off-line method to 

choose Ti and ki for each plant i. By using these values, 
we can design the controller thanks to a control design 
technique (state-feedback controller, LQ-optimal design). 
For each plant i, and for each mi in the set [1.. ki], we must 
calculate controller parameters as presented in section 3.2. 
Section 3.3 highlights a misconception introduced in [5] 
about closed-loop performance. Finally, a LMI 
formulation, which guarantees the stability of the control, 
is given in section 3.4.  

3.1. Sampling time selection (Ti and ki) satisfying the 
constraint of step response  

In this section, we present how to choose both, the 
value of the sampling period Ti and the value of ki for 
(m,k)-firm constraint of each ith plant, so that the step 
response requirement is respected by using the control 
theory.  

The sampling period selection is a compromise among 
many factors. Most authors coincide that it is the 
closed-loop bandwidth the main factor that provides the 
maximum bound for its value [1]. Its limitation is stated 
by the sampling theorem: ωCL (closed-loop frequency) 
should be lower than π/T. Even more, to obtain a good 
closed-loop performance, based on the closed-loop 
temporal response, ωCL should be inside the restricted 
interval proposed in [1], the “rule of thumb”: 
0.2<ωCLT<0.6. As well, the open-loop plant frequency 
should respect the sampling theorem (section 3.3).     

This rule considers the rise time as the step response 
parameter, which represents how much time the output of 
a second order under-damped system needs to go from 
10% to 90% of its final value. Furthermore, the overshoot 
should be lower than an admissible threshold (typically 
10%) and the rise time Tr will be lower than a given time 
TrM. 

In order to relate the continuous-time equivalent 
parameter with the sampling period (h), we propose to 
use Nr the number of sampling periods per rise time to be 
chosen between 2 and 10. Note that this rule characterizes 
the rise time only when it has, among the closed-loop 
poles, a conjugate-complex pole-pair that dominates the 
step response. In the case of closed-loop systems with 
real, stable and very different poles, a class of stiff 
systems where the rise time can be approximated by 
Tr=3/a (95%) where a is the continuous-time equivalent 
slower pole mapped by the relationship z=esh, we propose 
to adopt the Nr limits as before (2 to 10). 

By changing the controller parameters at a change in 
sampling period, and maintaining the value of Nr within 
its bounds; the rise time remains approximately constant.  

Then, this rule is useful to calculate approximately the 
minimum and maximum values for the sampling period. 
Specifically, we propose to assign to the sampling time Ti 
the maximum value of Nr, then Ti =TirM/10. By using the 
minimum value Nr=2, ki should be 5. Possible variations 
(4 or 6) will depend on the real value of Nr, evaluated as 
function of Ti. As we see in fig. 2, for a pendulum both, 

the time and the response times, remain approximately 
constant for the extreme Nr values. 

 
Figure 2: Minimum and maximum values of Nr. 

3.2. Optimal LQ design under (m,k)-firm constraint 
For each plant i and each ki, we calculate the mi 

controller parameters using a LQ design [5][14]. The LQ 
cost functions, with respect to task instance classification, 
are calculated for both, finite and infinite horizon strategy. 
These functions are used by the task handler (section 4.2) 
as the control performance index to calculate and assign 
the (m,k)-firm constraint to each control task. 

Assume that each plant i is described by the 
differential equation: i i i i i icdx A x dt B u dt dv= + +    (2) 
where xi is the state vector containing state variables of 
the controlled plant, and ui is the control signal. The 
process vic has mean value of zero and uncorrelated 
increments. The incremental covariance of vic is Ricdt.  

Let the control task realizing the controller be under a 
(m,k)-firm constraint, the period of control task to be Ti, 
and let its instances be classified using equation (1). For 
simplifying the cost function calculation, we suppose that 
the executions of all the optional instances are rejected 
(in practice, optional instances could be assigned the 
lowest priority and can be scheduled also, under an 
on-line schedulability test).  

The control signal ui,j is computed by a mandatory 
instance, therefore the time that ui,j is held as constant can 
be calculated using Corollary 1. From that, the jth control 
signal is held during ( )( ) ( )( )1 i i i iij ih T j m k j m k⎢ ⎥ ⎢ ⎥= + −⎣ ⎦ ⎣ ⎦ . During 
the time kiTi, the period hij assumes mi values of jTi.  

The discrete time-varying model of the plant (2) is:  
    , 1 , , ,i j ij i j ij i j i jx x u v+ = Φ + Γ +  j = 0,1,2,…   (3) 

where 
0

      
ijij

hAh As
ij ije e dsBΦ = Γ = ∫       (4) 

vi,j is a discrete-time Gaussian white-noise process with 
zero mean value and the following property: 

, ,
0

TijhT A A
i j i j Vij icEv v R e R e dτ τ τ= = ∫

 Since the mandatory instances are distributed 
periodically in task instance sequence, we have Φij= 
Φij+mi, Γij = Γ ij +mi. 
The sampled cost function that the controller aims to 
minimized is chosen as: 
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0
( ) ( )

ijh T
ij i iQ t Q t dt= Φ Φ∫ , 

0
( ) ( )

ijh T
ij i iM t Q t dt= Φ Γ∫  

( )'

0
( ) ( )

jih T
ij i i iR t Q t R dt= Γ Γ +∫ , 

0
( )

ijT
ij icJ tr Q R dτ τ⎛ ⎞= ⎜ ⎟

⎝ ⎠∫  

and ( ) iA t
i t eΦ = ,

0
( ) i

t A s
i it e ds BΓ = ⋅∫ ; mi i iH k T N +∈  and 

Hi is the ith plant time horizon. 
 

The optimal control law that minimizes the cost 
function (5) is given by [1] as:  

, , ,i j i j i ju L x= −  j = 0,1,2,…      (6) 
where 

( ) ( )1'
, , 1 , 1 ,

T T T
i j ij i j ij ij ij i j i j ijL S R S M

−
+ += Γ Γ + Γ Φ +    (7) 

and Si,t is obtained from the recurrent equation: 

( ) ( ) ( )

0
,

'
, , 1

1'
, 1 , 1 , 1       

i
i

i

H i
i m

kT

T
i j ij i j ij ij

TT T T T T
ij i j ij ij ij i j ij ij ij i j ij ij

S Q

S S Q

S M S R S M

+

−
+ + +

=

= Φ Φ +

− Γ Φ + Γ Γ + Γ Φ +

(8) 

Because of the periodicity of Φij and Γij, the steady 
state solution of the Riccati equation (7) is periodic with 
period mi [2], i.e., , , ii j i j mS S += . The controller gain 
matrix Li,j is designed using the steady-state solution of 
Riccati equation (7) and its solution is also periodic: 

Li,j=Li,j+mi  
Lemma 3. The minimal value of Ji under task instance 
classification strategy (1) is given as:  

( )
1

,0 ,0 ,0 , 1
0

1( , , )

i i

i i

H m
T k

T
iji i i i i i i i j Vi

i i j
i

i i

J H m k x S x trS R J
H m T
T k

⎡ ⎤
−⎢ ⎥

⎢ ⎥

+
=

⎛ ⎞
⎜ ⎟
⎜ ⎟= + +⎜ ⎟⎡ ⎤
⎜ ⎟⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥

∑
 (9) 

where ,
0

( )
ijh

i j icJ tr Q R dτ τ⎛ ⎞= ⎜ ⎟
⎝ ⎠∫     

Proof. The minimal value of Jj given by optimal LQ 
controller (6) is derived in [1] as 

( )
1

,0 ,0 ,0 , 1
0

1 iN
T

iji i i i i j Vij
i i j

J x S x trS R J
N T

−

+
=

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

∑    

where Ni is the number of control law updates. As the 
control law is only updated by a mandatory instance, the 
number of control law updates is therefore equal to the 
number of mandatory instances. Lemma 2 shows that 
there are exactly ( )i i i iH m T k⎡ ⎤

⎢ ⎥  mandatory instances before 

instant Hi, we therefore get ( )i i i iH m T kiN ⎡ ⎤
⎢ ⎥= .   

When time goes to infinity ( lim iH → ∞ ), the 
influence from the initial condition decreases and 

because , , ii j i j mS S += , (9) may be written as: 

 
1 1

, 1
0 0

1( , , )
i im m

iji i i i j Vij
i i j j

J m k trS R J
m T

− −

+
= =

⎛ ⎞
⎜ ⎟∞ = +
⎜ ⎟
⎝ ⎠
∑ ∑   (10) 

According to [8], the instance sequence is chosen as 
uniformly as possible. For that, during each interval ki Ti 
the varying model (2) will update mi times, and the period 
hij assumes a value in the set Ψi={fi,0Ti, fi,1Ti, …,fi,mi-1Ti} (j 
is replaced by fi,p obtained as in [8]). For example, if ki/mi 
is an integer, the optimal sequence in [8] gives 
fi,0=fi,1=…=fmi-1= ki/mi.  

3.3. Closed-loop performance   
From digital control theory, we know that if we reduce 

the sampling time of a plant, the open-loop performance 
will be closer to the continuous-time system one. So, a 
similar behavior for the closed-loop performance is 
expected (when the sampling period grows, the plant 
response becomes worse than the continuous time one, 
forcing performance degradation). 

 

 
Figure 3: Cost vs. sampling time. Pendulum. 

   
Figure 4: ωCL T vs. sampling time. Rule of thumb. 
But fig. 4 in [5] shows the closed-loop cost as function 

of the sampling time for a given plant (pendulum), where 
the controller parameters are obtained with an infinite 
time horizon LQ design. Surprisingly, in this figure, some 
high peaks appear for some specifics sampling periods. 
Then, the classical conception mentioned before is 
contradicted, i.e. faster sampling not necessarily 
increases control performance. To highlight this 
unexpected conclusion, we made the same analysis as in 
[5] (fig. 3), and we found that the first peak occurred 
when the sampling period is T=π/ωA, where ωA is the 
open-loop frequency of the plant. The reason for this 
peak is that the sampling theorem is not respected for the 
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open-loop plant (plant resonance), that is unacceptable. 
Even, as we show in fig. 4, one can satisfy the mentioned 
“rule of thumb” inside the section limited at top and at 
bottom by both red straight lines.  

Summarizing, to select the maximum sampling period 
(kiTi) we add to the selection criteria presented in section 
3.1, the verification of the sampling theorem for the 
open-loop plant. In this more restricted area, the classical 
digital control conception remains valid. 

3.4. Closed-loop Stability  
A change in the value of mi, for a given ki, produces a 

sampling period variation, and then we consider a 
Discrete Time Switched System (DTSS) description. To 
adapt control law parameters to this variation, we use the 
design presented in section 3.2. But, as it was shown in 
[15], controllers designed with optimal-LQ techniques, 
may suffer from instability under certain switching 
sequences, i.e. when the sampling period changes. Due to 
this undesirable result, [15] adopts a linear matrix 
inequalities (LMI) framework to design stable optimal 
controllers.   

We will use a LMI framework to find a Common 
Quadratic Lyapunov Function (CQLF), then, asymptotic 
stability is guaranteed for any (m,k)-firm sequence 
proving the stability of the control. Firstly, we consider 
the set of mi controller parameters to be calculated for 
each possible value of mi £i={ 10 1, , , i

i i i

m
m m mL L L − }, by using 

equation (7), where j=fd (fd depends on the delivery 
sequence [8]) and d=0,1…,mi-1, i.e. for the set Ψi.  
Secondly, we consider the set of open-loop discrete time 
models (2), Θi={ ( ) ( ) ( )1 1 2 2, , , , , ,

i ii i i i ik ikΦ Γ Φ Γ Φ Γ } and 
evaluate the ki periods, taking into account possible 
interruptions in a planned sequence at any time. 

By using elements in both sets, we can establish a new 
set of mi·ki closed-loop models, (3) without noise, 

,
 

l d i

i d
il il mA L= Φ + Γ , where l varies between 1 and ki 

( ( ),il ilΦ Γ ∈Θi) and d between 0 and mi-1 ( d
iL ∈£i).  

In order to prove the stability of DTSS [18], we should 
find a CQLF for the set of matrices

,n d

iA , 

where 11,.., , with 0,..,i in k d m −= = . Then, we formulate 

a set of mi·ki inequalities: ( ), ,
0,

n d n d

Ti iA P A P n d− < ∀ ∀ , 

and for this set, we propose to use the LMI toolbox from 
Matlab in order to find the common matrix P=PT>0.  

4. Scheduling architecture and supervision 
As we stated above, during the execution of the 

application, we distinguish 3 situations of states of 
controller plants: steady state, transient state and not 
activated plant. This information is provided by the 
supervision task. Section 4.1 describes how plant states 
are identified. A new system state, determined by the 
supervision task, requires the definition of new 
scheduling parameters by the task handler (section 4.2).    

4.1. Plant State Detection 
In this section, we specify how the supervision 

component identifies the situation of states of controlled 
plants. We consider the situation 1- for non activated 
plant and two situations for an activated one: 2- Steady 
state (or near) and 3- Transient state. Situation 1 is used 
when the plant does not exist for the overall system (plant 
controlled only during certain time interval, plant 
deactivated because its output is out of a given domain). 
Reaching or leaving situation 1 for a plant modifies the 
value of n.   

The deadband approach presented in [12] is used to 
distinguished situation 2 and 3. Each controlled plant has 
a state, which asymptotically tracks the reference r, which 
is supervised by the supervision task. Let y1 be this plant 
state. The following condition is set up: 

( ) ( ) ( ){ }1 1 1 1 1min ,i iy h n h y n h y n h thδ+ − <  

where th is a threshold to prevent false identifications due 
to noise. hi is the detection period of the supervision 
component for the plant i. We proposed to select this time 
equal to the ith sampling period. If this condition is 
verified, the plant is considered as in steady state, 
otherwise, it is in transient state. This plant state detection 
mechanism has as advantages that it depends on the 
actual evolution and it detects, in the same way, reference 
changes or/and non-modeled perturbations.  

4.2. Task Handler 
We implement a task handler which at each situation 

change, adjusts the (m,k)-firm constraint for each task by 
considering the current control performance indicator and 
the task schedulability objective. In this section, we 
formulate the scheduling problem and give the solution. 
After, the scheduling architecture is presented. 

We suppose that the value ki of each τi has been 
carefully chosen (section 3.1) and is constant during the 
execution of application. The value of mi is chosen in 
[1 .. ki] on line by the task handler. For each control task 
τi, each possible value of mi is associated with two values 
gij and gij' corresponding to the control performance, 
respectively, in transient situation and in steady one. 
Suppose that a lower value of gij or gij' represents a better 
control performance, the aim of the task handler at a 
change in situation of plant states is to find, for each τi, a 
value mi ∈ [1.. ki] so that the sum of gij or gij' (according 
to the situation which the plants fall into) for j∈ [1.. ki] 
and i∈[1.. n] is minimized subject to the task 
schedulability. Then, condition in Theorem 1 is modified 
taking into account the mentioned performance indicators. 
This is formally formulated as the following optimization 
problem:  
To determine the sequence 1 2, ,..,

ii i ils s s for each task τi, 

i=1,..,n that minimizes ( )'

1 1

i

ij

ln

ij ij ij
i j

s g I s g F
= =

+∑∑   (11) 

{ }

{ }
1

with  0,1 , 1,  1,.., ,   1,.., , 1,..,

        , 0,1 , 1

il

ij ij i i i
j

s s i n j l l k

I F I F
=

∈ = = = =

∈ + =

∑  
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and such that  
1

1 1
,  1,.., ,

ili

i jp jp j i j j i
j p

C s m k T T C T i n
−

= =

⎡ ⎤
⎡ ⎤+ ≤ =⎢ ⎥⎢ ⎥

⎢ ⎥
∑ ∑   

where I and F are situation indicators: in transient state, I 
is 1 and F is 0, and in steady state, I is 0 and F is 1. 

The values gij and gij' are given in two way: one is 
using directly the cost (8) and (10), and the other way is 
to take the relative performance degradation percentage: 

( , , ) ( , , )
( , , )

ij i i i

i i

J H m k J H k k
J H k k

−  and ( , , ) ( , , )
( , , )

ij i i i

i i

J m k J k k
J k k

∞ − ∞
∞

 (12) 

Using the first control performance representation 
method, the optimization problem is to minimize the 
overall cost of the application. However, the sub-systems 
with lower costs may suffer from great control 
performance degradation due to a low value of mi. That is, 
the task handler maintains the value of each mi as great as 
possible for the sub-systems with greater costs by 
reducing the value of mi for the sub-systems with lower 
costs. Using (12) as the control performance criteria 
avoids such a situation. The control performance 
degradation of each sub-system is treated equally. On the 
other hand, the overall cost of application may not be 
optimal. So, the choice of control performance 
representation should be identified according to the 
application requirements.  

The time horizon Hi for the finite-horizon cost 
functions is an important design parameter, which 
directly affects the overall control performance, and need 
to be carefully chosen. Here, we choose Hi as the settling 
time (approx. three times the rise time). To calculate (12) 
in an off-line form, we considered the typical values of 
the reference values neglecting noise.  

The optimization problem (11) has the similar form as 
that in [9] which was qualified as the multiple-choice 
multi-dimension knapsack problem (MMKP) [17], and 
was proved to be NP-hard problem. For solving the 
optimization problem, the heuristic algorithm based on a 
so-called computationally cheaper heuristic algorithm 
(HEU) proposed in [10] is used. It has been shown that 
the algorithm is efficient and suitable for an on-line use 
for real-time application. 

At each change in the situation of at least one plant, 
the task handler receives the information about the 
current plants states. Based on this information (n current 
activated plants), and the values of vij that were evaluated 
off-line, it deduces the new (m,k)-firm constraint for each 
control task by solving the optimization problem (11). 
The control tasks are then scheduled according to these 
(m,k)-firm constraints. 

5. Case study 
In this section, we illustrate the scheduling approach 

presented above by studying the control of four plants. 
Plant1  (resp. Plant2, Plant3, Plant4) corresponds to a 
harmonic oscillator system, (resp. to a cart system, a 
pendulum and an inverted pendulum).  

5.1. Plants and Controllers 
Each plant is modeled by the differential equation (2): 

Plant1: 
0 1 0

,  
-18 0 516

A B⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 and vc has the 

incremental covariance: 
1

0.0025 -0.005
=

-0.005 0.01cR
⎡ ⎤
⎢ ⎥
⎣ ⎦

; 

Plant2 : 0 1 0
,  

0 -12.6558 1.9243
A B⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 and vc has the 

incremental covariance 
1

0.005625 -0.075
=

-0.075 1cR
⎡ ⎤
⎢ ⎥
⎣ ⎦

; 

Plant3 :  0 1 0
,  

-22.206 -0.9424 0.48036
A B⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

and vc has 

the incremental covariance 
3

0 0
=

0 22.2066cR
⎡ ⎤
⎢ ⎥
⎣ ⎦

; 

Plant4 : 

0 1 0 0 0
0 0 -14 0 2

,  
0 0 0 1 0
0 0 28 0 2

A B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 and vc has the 

incremental covariance 
1

0 0 0 0
0 0.0025 0 0

=
0 0 0 0
0 0 0 0

cR

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.  

The controller of Planti is denoted Controlleri.  
Rise time specifications TrM of each plant are 

respectively 0.2, 0.2, 0.3 and 0.5. Then, sampling periods 
are related to rise time specifications, i.e., 0.02s for Plant1, 
0.02s for Plant2, 0.03s for Plant3, and 0.05s for Plant4. 

The first state variable in vector x of each plant is the 
variable supervised by the supervision component, in 
other words, the controller tries to keep it asymptotically 
tracking the plant state reference. The step response 
target for the cart is an overdamped response, while for 
the others they are underdamped ones, being the damping 
coefficient upper than 0.6 (overshoot < 10%).  

The controllers are designed using (8) for each mi 
value. The design weights, which allow the satisfaction 
of the mentioned rise time and overshoot, are: 

Controller1 : 
1

5 0 0
0 0 0
0 0 25

Q
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  R1=200 

Controller2 : 
2

1.25 0
0 0.0085

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  R2=0.0001. 

Controller3: 
3

1 0
0 0

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  R3=0.00001. 

Controller4 : 
4

1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,  R4=0.001.  

Using the LMI control toolbox, the set of inequalities 
(for the overall set of discrete plants and controllers 
parameters), has a QCLF, guarantying stability.  

To allow for fast changes between different (m,k)-firm 
constraints at an m adjustment, the controller parameters 
are calculated off-line and stored in a table. 

Since the control tasks are assigned the 
rate-monotonic priority, the task with the largest period 
has the lowest priority; its execution has no influence on 
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the other tasks. Therefore, no task instance classification 
will be applied to Controller4, or in other words, it is 
executed under (k,k)-firm constraint.  

Using the approach proposed in section 4, the value of 
ki is set to respectively 6, 5, 5 and 4. The value of m for 
the plants may vary within [1.. ki]. 

5.2. Performance specification and simulation setup 
Table 1a gives, for Controller1 the optimal costs 

associated with different (m,k)-firm constraint. The 
column labeled “OC_IH/Degradation (%)” lists the 
optimal infinite-horizon costs and the relative 
performance degradation compared to (k,k)-firm 
constraint. The column “OC_FH / Degradation(%)” lists 
the optimal finite-horizon costs for typical initial plant 
states and the relative performance degradation compared 
to (k,k)-firm constraint. The time interval of the 
finite-horizon cost functions is set equal the settling time 
for each system (see section 4.2). 

In practice, the task handler can calculate the optimal 
finite-horizon costs on-line. They are listed here to 
illustrate how task handler chooses the (m,k)-firm 
constraints for each controller. 
(m,k)-firm 
constraint OC_IH/ Degradation(%) OC_FH/Degradation(%)

(1,6) 0.0022639 / 18.05 0.2837 / 9.83 
(2,6) 0.0020682 / 7.85 0.2645 / 2.4 
(3,6) 0.0019941 / 3.99 0.26 / 0.66 
(4,6) 0.0019682 / 2.64 0.2597 / 0.54 
(5,6) 0.0019428 / 1.32 0.2587 / 0.15 
(6,6) 0.0019175 / 0 0.2583 / 0 

Table 1. Optimal costs associated with different 
(m,k)-firm constraints (controller 1) 

The simulation model was created using Simulink and 
the TrueTime toolbox [4]. The execution time of each 
controller is approximately 9ms. 

5.3. Simulation results 
The simulation results obtained with the proposed 

approach are given in this section.  
The model has been evaluated under the setup shown 

in Table 2. There, we identify the state (st) of each plant 
as follow: -1→Not activated, 0 → Steady-state and 1→ 
Transient-state. State changes (or transitions) are detected 
by the supervision component and, in the proposed 
simulation; they arrived at time « Time-Event ». 
Therefore, the task handler at the “Time-event”, based on 
the overall system state, calculates the value of each mi.  

At the system starting (time 0-) only Plant1 and Plant3 
are activated (both in steady state situation). At time 0+, 
the task associated with Plant3 is activated, and then the 
task handler is executed in order to admit the new task 
(Plant1 -> state transition from -1 to 0). The 
schedulability condition at time 0- {0.009<0.02, 
0.018<0.02} allows the system to accept all the instances, 
i.e. m1= k1 and m3 = k3. At time 0+, with mi = ki, 
schedulability conditions are {0.009<0.02, 0.018<0.02, 
0.063>0.05}, i.e. the third condition is not verified, 
justifying the execution of the task handler and the 
changes in the values of each mi.     

At time 0.27, the transient state of Plant1 is detected by 
the supervision component and the task handler is 
executed, then the values of all mi are adjusted 
accordingly. Clearly m1 is augmented with respect to its 
previous value to provide better transient performance of 
Plant1. This choice of (m,k)-firm constraints is done 
verifying the condition proposed in section 4, whose goal 
is to reduce the overall performance degradation. Other 
choice makes either the tasks non-schedulable or a worse 
overall performance degradation. 

At time 0.5, Plant2 is activated, and then a new 
configuration is required to manage 4 Plants. In this case 
the schedulability condition {0.009<0.02, 0.018<0.02, 
0.045> 0.03, 0.081>0.05}, i.e. if we do not reduce the 
values of mi, the tasks will be non-schedulable. 

The extinction of the Plant1 transient, at time 0.62, 
produces a new set of mi values. In the same way, the 
detection of the Plant2 transient at 0.8 requires the 
adjustment of the mi values. See Table 2.  

At time 1.76, an inadmissible perturbation enters in 
the Plant3, the output reaches π/2, and consequently this 
plant is deactivated reducing the number of tasks to 3. 
Then, the task handler can augment m1 and m2 values 
using condition in section 3. Both values cannot assume 
their maximum, k1 and k2, because the schedulability 
conditions for the 3 systems are {0.009<0.02, 0.027>0.02, 
0.045>0.03}. Finally, at time 1.8 the detection of the 
Plant2 transient forces to augment m2. 

0(-)  0 (+) 0.27 0.5 0.62 Time  
event st mi st mi st mi st mi st mi 
Plant1 0 6 0 4 1 6 1 3 0 2 
Plant2 -1 0 -1 0 -1 0 0 1 0 1 
Plant3 0 5 0 5 0 2 0 2 0 5 
Plant4 -1 0 0 4 1 4 1 4 1 4 

0.8 1.05 1.1 1.76 1.8 Time  
event st mi st mi st mi st mi st mi 
Plant1 0 2 0 2 0 2 0 6 0 2 
Plant2 1 2 1 1 0 1 0 1 1 5 
Plant3 0 2 1 5 1 5 -1 0 -1 0 
Plant4 1 4 -1 4 0 4 1 4 1 4 

Table 2. Simulation setup, mi values vs Event.  
Note that as the (m,k)-firm constraint of Controller4 is 

hold as (k,k) throughout the execution of application, the 
change in the state of the Plant4 has not effect on the 
decision of task handler. 

Throughout the simulation, the rise-time requirements 
of plants are all met thanks to a judicious selection of ki.  

The minimum delay is 9ms, i.e. the computation time.  

 
Figure 5: Scheduling of Controller2. 

In fig. 5, we show the scheduling of Controller2. The 
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three possible levels are 1–Running (task being executed 
by the processor), 0.5–Preempted (the execution is 
preempted by other task); and 0–Waiting (task waits for 
an activation). We could verify that each task deadline is 
always respected (it is guaranteed by the event-triggered 
execution of the task handler). Evolution of the plant 
outputs is given in fig.6. 

 
a) Harmonic oscillator system 

 
b) Cart system 

 
c) Pendulum.  

 
d) Inverted pendulum 

Figure 6: Output evolution of Plants. 

In order to analyze the performance degradation, we 
evaluate the LQ cost for each system during the 
simulation time. Considering that we have a dedicated 
CPU for each system, we calculated the nominal 
performance of each plant (Table 3) as the reference 
values. The values of Performance overall system were 
evaluated considering the simulation setup described 
before. These results depend on the simulation setup, and 
they are only exposed to show that using the proposed 
technique, the degradation of the performance should be 
maintained as small as possible in each situation subject 
to the task schedulability. Plant4 suffered the lower cost 
degradation; due to the m4 is always equal 4. Plant2, 
suffered the maximum cost degradation, due to Plant2 
performance indicators, which generates the reduction of 
m2 if the other plants require the use of CPU. 

 
 Plant1 Plant2 Plant3 Plant4 

Perf. Nominal 359 40.04 154.6 25.31 
Perf. Overall System 395 52.5 199.4 26.347 
Degradation 10% 31.1% 29.1 % 0.05 % 

Table 3. Performance costs of Planti. 

6. Conclusion 
This paper has presented a scheduling approach based 

on the (m,k)-firm constraint model for scheduling a set of 
control tasks. Given the current states of the controlled 
plants, the proposed approach derives a (m,k)-firm 
constraint for each control task, and the control tasks are 
scheduled using these (m,k)-firm constraints so that the 
schedulability of control tasks is guaranteed and the 

overall control performance is maintained at a high level. 
Compared with feedback scheduling approaches in the 

literature, the advantages of the proposed approach are: 
the approach does not depend on the type and property of 
the control performance (whatever the functions of the 
control performance are convex, the proposed approach 
can always keep the overall control performance at high 
level while guarantying the schedulability of control 
tasks); at a system configuration change, the 
event-triggered solution reacts immediately reducing the 
periods of the tasks. 
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