Scheduling messages with offsets on Controller Area Network: a major performance boost

Mathieu Grenier 1 Lionel Havet 1 Nicolas Navet 1
1 TRIO - Real time and interoperability
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Résumé With the increasing amount of electronics, making best usage of the bandwidth becomes of primary importance in automotive networks. One solution that is being investigated by car manufacturers is to schedule the messages with offsets, which leads to a desynchronization of the message streams. As it will be shown, this "traffic shaping" strategy is very beneficial in terms of worst-case response times. In this chapter, the problem of choosing the best offsets is addressed in the case of Controller Area Network, which is a de-facto standard in the automotive world. Comprehensive experiments shown in this chapter give insight into the fundamental reasons why offsets are efficient, and demonstrate that offsets actually provide a major performance boost in terms of response times. These experimental results suggest that sound offset strategies may extend the lifespan of CAN further, and may defer the introduction of FlexRay and additional CAN networks.
Type de document :
Chapitre d'ouvrage
Nicolas Navet and Françoise Simonot-Lion. Automotive Embedded Systems Handbook, Taylor & Francis / CRC Press, pp.14.1--14.15, 2009, Industrial Information Technology Series, 978-0-8493-8026-6
Liste complète des métadonnées

https://hal.inria.fr/inria-00336170
Contributeur : Nicolas Navet <>
Soumis le : lundi 3 novembre 2008 - 09:40:14
Dernière modification le : jeudi 11 janvier 2018 - 06:20:05

Identifiants

  • HAL Id : inria-00336170, version 1

Collections

Citation

Mathieu Grenier, Lionel Havet, Nicolas Navet. Scheduling messages with offsets on Controller Area Network: a major performance boost. Nicolas Navet and Françoise Simonot-Lion. Automotive Embedded Systems Handbook, Taylor & Francis / CRC Press, pp.14.1--14.15, 2009, Industrial Information Technology Series, 978-0-8493-8026-6. 〈inria-00336170〉

Partager

Métriques

Consultations de la notice

222