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Summary. This study focuses on stabilizing reduced order model (ROM) based
on proper orthogonal decomposition (POD) and on improving t he POD functional
subspace. A modi�ed ROM that incorporates directly the pres sure term is proposed.
The ROM is stabilized using Navier-Stokes equations residuals and exploiting ideas
similar to the variational multiscale method. The POD funct ional subspace is im-
proved thanks to an hybrid method that couple DNS and POD ROM. Results are
shown for a 2D con�ned cylinder wake ow.

1 Introduction

This paper focuses on improving reduced order modeling (ROM) based on
proper orthogonal decomposition (POD). Besides the possible inherent lack
of numerical stability of POD/Galerkin methods [10], the ma in shortcomings
are the following. Firstly, since in most of the POD applications the ROM is
built from a velocity database it is necessary to model the pressure term [8, 5].
To overcome this di�culty, a pressure extended ROM is introd uced in x2,
so that the pressure term can be directly approximated usingthe pressure
mode. Secondly, due to the energetic optimality of the POD basis, only few
modes are su�cient to give a good representation of the ow kinetic energy.
However, the viscous dissipation mainly takes place in the small unresolved
eddies. A ROM built with very few modes is thus not able to dissipate enough
energy. It is then necessary to close the ROM by modeling the e�ects of the
unresolved modes. In this study, we use the residuals of the Navier-Stokes (NS)
equations (x3) and exploit ideas similar to the variational multiscale method
(VMS) [1]. Finally, since POD basis functions are optimal to represent the
main characteristics of the ow con�guration used to build t hem, the same
basis functions are not optimal to represent the main characteristics of other
ow con�gurations [9, 7, 3]. To overcome this problem, we propose an hybrid
method that couples DNS and ROM to adapt the POD basis functions at low
numerical costs (x4).
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Fig. 1. Flow con�guration and vorticity snapshot at Re = 200.

Our paradigm is the con�ned square cylinder wake ow (�gure 1 ) in lam-
inar regime, i.e. at Reynolds number Re = U1 L=� � 200, with U1 =
u(0; H=2), L the lenght of the side of the square cylinder and� the kine-
matic visosity. We use the same parameters as those introduced in [5].

2 A pressure extended Reduced Order Model

It has been proven [8] that neglecting the pressure term can lead to large
ROM errors. One solution is to model this pressure term [8, 5]. The pressure
term can also be calculated using a pressure extended ROM with p = ep.
Indeed, the POD ow �elds write eu (x ; t) =

P N r
i =1 ai (t)� i (x ) and ep(x ; t) =

P N r
i =1 ai (t) i (x ), see [2] for more details. Moreover, it is possible to evaluate

the Navier-Stokes residuals (x3). The ROM, noted A [N r ], is:

N rX

j =1

L ij
daj

dt
=

N rX

j =1

B ij aj +
N rX

j =1

N rX

k=1

; Cijk aj ak (1)

where the ROM coe�cients are given in [2]. The A [N r ] model is tested at
Re = 200. The POD snapshot method introduced by Sirovich [11] was used.
Here, only the �rst 5 modes are su�cient to represent more than 98% of the
kinetic energy. As it is shown in �gure 2, the solution of model (1) built with
5 modes reaches erroneous limit cycles, and can even divergewith 3 modes.

3 Stabilization of reduced order models

The aim of this section is to derive stabilization methods that involve very
few empirical parameters. The two kinds of stabilization methods presented
in what follows use the residual of the Navier-Stokes operator evaluated with
the POD ow �elds eu and ep. These residuals, called POD-NS residuals, are:

R M (x ; t) =
@eu
@t

+ ( eu � r ) eu + r ep �
1

Re
� eu ; (2a)

RC (x ; t) = r � eu : (2b)
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Fig. 2. Comparison of the NS } and the ROM ��� limit cycles.

We look for the missing scalesu 0(x ; t) = u (x ; t) � eu(x ; t) and p0(x ; t) =
p(x ; t) � ep(x ; t), where u and p denote the exact �elds. Since the resolution
of the �ne scales equations requires high computational costs, the objective is
to derive stabilization methods based on approximations ofthese �ne scales.

3.1 Residuals based stabilization method: model B [N r ;K ]

The goal of this method is to approximate the �ne scalesu0 and p0 onto some
adapted basis functions. The method is the following.

1. Integrate the ROM A [N r ] to obtain Ns coe�cients ai (tk ), k = 1 ; : : : ; Ns.
2. Compute the �elds eu(x ; tk ) and ep(x ; tk ), and then R M (x ; tk ) and RC (x ; tk ).
3. Compute the POD modes� 0

i (x ) and  0
i (x ) of R M (x ; tk ) and RC (x ; tk ) .

4. Add the K �rst residual modes � 0
i and  0

i to the existing POD basis � i and
 i (using Gram-Schmidt process) and build a new ROM, notedB [N r ;K ].

3.2 SUPG and VMS methods: models C [N r ]and D [N r ]

The streamline upwind Petrov-Galerkin (SUPG) method is a simpli�ed ver-
sion of the complete variational multiscale (VMS) method [1]. The main idea
of both methods is to approximate the �ne scales by u 0 ' � � M R M and
p0 ' � � C RC . The SUPG and VMS ROMs can be formally written:

N rX

j =1

L ij
daj

dt
=

N rX

j =1

B ij aj +
N rX

j =1

N rX

k=1

Cijk aj ak + Fi (t): (3)

� For the SUPG reduced order model, notedC [N r ], we have:

F SUP G
i (t) = ( eu �r � i + r  i ; � M R M (x ; t)) 
 +( r �� i ; � C RC (x ; t)) 
 : (4)








