Bayesian occupancy filter based "Fast Clustering-Tracking" algorithm

Kamel Mekhnacha 1 Yong Mao 1 David Raulo 1 Christian Laugier 1
1 E-MOTION - Geometry and Probability for Motion and Action
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : It has been shown that the dynamic environment around the mobile robot can be efficiently and robustly represented by the Bayesian occupancy filter (BOF) . In the BOF framework, the environment is decomposed into a grid based representation in which both the occupancy and the velocity distributions are estimated for each grid cell. In such a representation, concepts such as objects or tracks do not exist and the estimation is achieved at the cell level. However, the object-level representation is mandatory for applications needing high-level representations of obstacles and their motion. To achieve this, a natural approach is to perform clustering on the BOF output grid in order to extract objects. We present in this paper a novel clustering-tracking algorithm. The main idea is to use the prediction result of the tracking module as a form of feedback to the clustering module, which reduces drastically the complexity of the data association. Compared with the traditional joint probabilistic data association filter (JPDAF) approach, the proposed algorithm demands less computational costs, so as to be suitable for environments with large amount of dynamic objects. The experiment result on the real data shows the effectiveness of the algorithm.
Type de document :
Communication dans un congrès
IROS 2008, Sep 2008, Nice, France. 2008
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00336356
Contributeur : Mao Yong <>
Soumis le : lundi 15 décembre 2008 - 10:45:10
Dernière modification le : jeudi 11 janvier 2018 - 06:21:47
Document(s) archivé(s) le : mardi 28 juin 2011 - 17:36:18

Fichier

IROSFinal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00336356, version 1

Collections

Citation

Kamel Mekhnacha, Yong Mao, David Raulo, Christian Laugier. Bayesian occupancy filter based "Fast Clustering-Tracking" algorithm. IROS 2008, Sep 2008, Nice, France. 2008. 〈inria-00336356〉

Partager

Métriques

Consultations de la notice

608

Téléchargements de fichiers

436