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Abstract

This paper presents a new method for sampling
the null space of the acoustic-to-articulatory map-
ping, which is considerably faster and more accurate
than the previous method presented by Ouni and La-
prie [4]. This is achieved by using a simple stochas-
tic exploration of the articulatory space instead of
complex linear programming techniques. This new
method allows for a much faster and more accurate
inversion process.

1 Introduction

It is well known that one of the main difficul-
ties of the acoustic-to-articulatory mapping is the
nonuniqueness of the inverse mapping, where differ-
ent vocal tract shapes can produce the same acous-
tics. The many-to-one nature of the inverse map-
ping was proven theoretically a long time ago, but
evidence of it in real speech is still scarce [6].

The exploration of the null space consists in find-
ing all articulatory vectors having the same acous-
tic image, in a small region of the articulatory space.
This exploration is a key point of the codebook based
inversion method developed by Ouni and Laprie [4].

In that method, inversion is performed using a
piece-wise linear approximation of the articulatory-
to-acoustic mapping computed using Maeda’s artic-
ulatory model [2] and synthesizer [3].

The local linear approximation can be reversed
by computing the pseudo-inverse, thus yielding a lo-
cal linear acoustic-to-articulatory mapping. The lin-
ear approximation is however only valid in a hyper-
cuboid; it is thus necessary to compute the intersec-
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tion of the hypercuboid with the affine space of the
general solutions. No known method exists for com-
puting this intersection in a formal way in the general
case; Ouni had developed a heuristic method based
on linear programming to sample this intersection,
but it suffered from several caveats.

In this paper, we present a new heuristic that
solves all these caveats.This new method for explor-
ing the null space is much faster, improves the ac-
curacy of inversion, and may allow for more precise
theoretical investigations of compensatory articula-
tion.

2 Inversion framework

2.1 Codebook construction

The codebook we use is a hypercuboic codebook.
Some of the specifities of this codebook were pre-
sented in [5]. The codebook itself is constructed us-
ing a recursive exploration of the articulatory space,
partitioning it into hypercuboids where the acoustic-
to-articulatory mapping is pseudo-linear with a ho-
mogeneous acoustic error. Overall, this codebook
contains a piece-wise linear approximation of the
articulatory-to-acoustic mapping, each piece being a
7-hypercuboid, i.e. the generalisation of a rectangle
in a 7-dimensional space.

A hypercuboid Hc is characterized by the coordi-
nates of its centerP0 and by theN -dimensional vec-
tor ~r of its length along each dimension, according to
the following formula:

Hc(P0, ~r) =

{x ∈ R
N |∀i ∈ {1..N}, |(x − P0)i| ≤ ri}

In such a region, an approximation of the acoustic
image of an articulatory vectorPx belonging to Hc is
computed using a linear approximation at the center
of Hc, i.e. using the formula:

f∗(Px) = F0 + Jf (P0) × (Px − P0), (1)
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whereF0 is the acoustic image (aM -dimensional
vector of formant frequencies,M = 3) of the
centerP0, and Jf (P0) is a Jacobian matrix of the
articulatory-to-acoustic mapping computed around
P0.

Therefore, each hypercuboid is characterized by
its centerP0, its length vector~r, and its acoustic im-
age byF0 andJf (P0).

2.2 Generation of inverse solutions

Given an acoustic vectorFx, the goal of acoustic-
to-articulatory inversion is to find everyPx such that
f(Px) = Fx. This is done using a codebook lookup
procedure.

For an articulatory vectorPx located in a hyper-
cuboid Hc, we can use the linear approximation rela-
tion: f(Px) ≈ F0 + Jf (P0) × (Px − P0).

Therefore, the acoustic-to-articulatory inversion
amounts to solving the equation:

Fx = F0 + JF (P0) × (Px − P0), (2)

which can be rewritten as a purely linear equation:

b = A × x, (3)

whereA = JF (P0), x = Px −P0, andb = Fx −F0.
Using the Singular Value Decomposition

(SVD) [1], it is possible to find all solutions to (3).
The SVD provides a particular solutionx0, and

also an orthonormal base of the null space of matrix
A – which is in our case a(N − M)-dimensional
vectorial space.

We can thus write the general solution of (3):

x = x0 +

N−M
∑

j=1

λjvj , (4)

where thevj vectors form an orthonormal base of
the null space, and theλj are arbitrary scalars. We
therefore can find the general solution to (2):

Px = PSVD +

N−M
∑

j=1

λjvj , (5)

wherePSVD = P0 + x0.
The particular solutionx0 presents an interesting

property: it has the smallest Euclidean norm among
all possible solutions; consequentlyPSVD is the clos-
est toP0 with regards to the Euclidean norm.

The approximation of eq. (2) is however only valid
in the hypercuboid Hc; therefore a solutionPx is
only acceptable ifPx ∈ Hc; it is thus necessary to

compute the intersection of theN -dimensional hy-
percuboid Hc with the (N − M)-dimensional affine
space of the solutions.

Unfortunately, in the general case, no known
method exists for computing this intersection in a for-
mal way. Ouni developed a heuristic method based
on linear programming to sample this intersection.

Let αi
inf and αi

sup define the maximum and
minimum values of theith articulatory parameter
in Hc – i.e., Hc is the Cartesian product Hc =
ΠN

i=1[α
i
inf , α

i
sup]. Then we have

αi
inf ≤ P i

SVD +
N−M
∑

j=1

λjv
i
j ≤ αi

sup, i = 1..N, (6)

wherevi
j is the projection of thejth basis vector of

the null space onto theith articulatory parameter.

This system defines a 4-polytope, i.e., a bounded
intersection of four half-spaces. To completely de-
fine this 4-polytope, we need to find all the extreme
points of this domain, since the polytope solution is
the convex hull of these points and determine the
space contained in the polytope.

A two-step algorithm is used to approximate
the intersection. In the first step the smallest
4-dimensional hypercuboid which contains the 4-
polytope of solutions is determined by linear pro-
gramming. The second step consists in sampling this
four-dimensional hypercuboid and keeping samples
that belong to Hc. The detailed heuristic can be found
in [4].

3 Sampling of the null space revisited

The sampling of the null space is definitely one of
the weakest point in Ouni’s method. It is very slow
because of the linear programs, which take an espe-
cially long time in hypercuboids which contain no
solutions. Furthermore, the sampling does not take
into account the size of the solutions space, and sim-
ply tries to generate the same number of solutions
in each hypercuboid, which leads to a very hetero-
geneous density of solutions from a hypercuboid to
another (cf. Fig. 1 left). Finally, because of mutual
compensations along some of the articulatory axes
of the vj vectors, a simple random sampling within
a hypercuboid is not appropriate either, leading to a
Gaussian repartition of the solutions along these ar-
ticulatory axes around thePSVD solution.



3.1 Choice of the initial solution

One of the first things we would like to improve
is the time to decide whether a hypercuboid contains
solutions. To this regard, one of the first observations
one can make is that, although the property of the
initial solutionPSVD – to be the closest to the center
P0 for the Euclidean norm – is indeed quite strong,
it is not appropriate to decide whether a hypercuboid
contains solutions. LetdHc be the articulatory norm
defined as follows:

dHc(x) = max
i=1..N

|xi|

ri

(7)

It is easy to verify thatPx ∈ Hc ⇔ dHc(Px −
P0) ≤ 1. For our elementary structure, it is thus clear
that the most appropriate point for the initial solution
would be the solution closest toP0 according to the
dHc norm.

Determining an exact solution minimizing this
norm unfortunately requires linear programming. It
is however straightforward to determine an approxi-
mate solution that “almost” minimizes thedHc norm
using a stochastic exploration of the space of solu-
tions, starting fromPSVD, iteratively sampling ran-
dom solutions, and keeping it as a new starting posi-
tion when closer to the center with regards todHc.

This yields a new initial pointPHc that we will
now use to generate solutions. A hypercuboid Hc

will be considered to contain solutions if and only
if dHc(PHc − P0) ≤ 1.

3.2 Generations of points

After having decided that a hypercuboid contains
solutions, we now need to evaluate approximately the
volume of the space of solutionsvHc, in order to get
a homogeneous sampling in the whole articulatory
space. We use a formula based on the position ofPHc

with regards toP0 that appears to give fairly accurate
results.

We then generate a number of solutions propor-
tional to vHc, doing random moves in the solution
space fromPHc and keeping only points belonging
to Hc.

3.3 Boundaries of the space to explore

Another problem we can identify on Fig. 1 (left)
is an apparent Gaussian repartition of the solutions
generated around the initial solution, and it would be
preferable to have a more homogeneous distribution.
Furthermore, we would like to be able to generate the

solutions without having to compute the boundaries
of the space to sample using linear programming as
described in section 2.2.

To eliminate the apparent Gaussian repartition, the
simplest solution is to explore a wider space than
necessary. It appears that increasing the length of
each boundary of the space to explore by about 30%
is a fairly good compromise. Note that this slight
modification increases the volume of the space to ex-
plore (and thus the average number of solutions to
test) by about a factor of 3.

Finally, we wish to obtain accurate boundaries
without using linear programming. We currently use
a very fast heuristic: we simply use the reciprocal of
the Euclidian norm of the vectors of the base of the
null space, normalised by the radius of Hc, i.e.:

|λj | ≤
1

√

N
∑

j=1

(

vi
j

ri

)2
[∗1.3], j = 1..4 (8)

4 Experiments

4.1 Homogeneity: qualitative and quantitative
results

To illustrate qualitatively the improvements
brought by this method, we performed the static in-
version of isolated vowels, and display the solutions
generated with both methods. In this experiment we
generated a vast number of solutions: about 200.000
solutions for each vowel; for practical purposes, e.g.
inversion of speech sequences, we typically gener-
ate only between 1000 and 5000 solutions for each
speech sample.

Fig. 1 illustrates the distribution of inverse solu-
tions (for vowel /i/) with both methods, projected
along two articulatory dimensions. It can be seen
that the sampling effect (the vertical lines, and in a
lesser extent the horizontal lines) vanishes with our
new method.

To measure quantitatively the effects of having a
more homogeneous generation of solutions, we con-
ducted inversion experiments on sequences of speech
for which we had the corresponding articulatory tra-
jectories, and we compared the solutions found to the
original one.



Figure 1:Comparisons of the solutions generated by
Ouni’s (left) and our (right) method for the inversion
of vowel /i/. Solutions are presented along two artic-
ulatory dimensions: lip protrusion and larynx height.

nbsol
New Ouni

dmin davg dmin davg

1000 0.349 1.465 0.354 1.449
3000 0.300 1.468 0.323 1.482
10000 0.265 1.471 0.279 1.484
30000 0.229 1.473 0.239 1.485
100000 0.205 1.475 0.211 1.485

In this table,dmin is the minimal Euclidean ar-
ticulatory distance to the original trajectory among
the articulatory vectors generated;davg is the aver-
age Euclidean articulatory distance.

From this table, we can observe a significant de-
crease of this distance in the case of the new method
compared to Ouni’s, for the same number of solu-
tions sampled; on average we needed to sample 70%
more points with Ouni’s method than with ours to
get the same accuracy. This demonstrates a signifant
increase in the quality of the sampling.

4.2 Computation time

The previous method was using linear program-
ming to determine the boundaries of the space to ex-
plore, which took a very long computation time, es-
pecially when there was no solution inside the hyper-
cuboid.

This problem does not happen anymore for two
reasons: the new initial point used allows us to im-
mediately decide if the intersection is empty or not;
therefore, we would not need to use linear program-
ming for the cases where there is no solution. Sec-
ond, we do not use linear programming anymore for
the exploration.

It is still interesting to measure which element
brings the most improvement in computation time;
we thus measured time to perform inversion in three
different conditions: with Ouni’s method; with the
new heuristic to determine whether an hypercuboid
contains solutions but with Ouni’s exploration; with
the complete new method.

Inversion experiments in the three different condi-
tions show that a considerable amount of time was
lost doing linear programming in hypercubes con-
taining no solutions, since inversion in the second
condition is already faster than Ouni’s method by a
factor 7. Furthermore, we can see that dropping lin-
ear programming altogether allows an additional fac-
tor 6 to be gained in computing time, and overall a
factor 40 over Ouni’s method.

5 Conclusion

We presented a considerably faster method to ex-
plore the null space of the acoustic-to-articulatory
mapping, which also noticeably increases the qual-
ity of the sampling of solutions. We should point
out however that for practical purposes, e.g. the in-
version of speech sequences, such raffinments are
mainly not needed: indeed, the number of solutions
generated in each hypercuboid has to be very strictly
controlled, or the subsequent steps of the inversion
process would have an overwhelming complexity. In
these cases, we typically generate less than 10 solu-
tions in each hypercuboid; since there is almost no
sampling of the null space, the accuracy has no real
influence, and therefore the most interesting charac-
teristic is that we can decide very rapidly whether a
hypercuboid contains solutions, which considerably
reduces the computation time.
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