
HAL Id: inria-00336435
https://inria.hal.science/inria-00336435

Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Investigation into Server Parameter Selection for
Hierarchical Fixed Priority Pre-emptive Systems

Rob Davis, Alan Burns

To cite this version:
Rob Davis, Alan Burns. An Investigation into Server Parameter Selection for Hierarchical Fixed
Priority Pre-emptive Systems. 16th International Conference on Real-Time and Network Systems
(RTNS 2008), Isabelle Puaut, Oct 2008, Rennes, France. �inria-00336435�

https://inria.hal.science/inria-00336435
https://hal.archives-ouvertes.fr

An Investigation into Server Parameter Selection for Hierarchical Fixed Priority
Pre-emptive Systems

R.I. Davis and A. Burns

Real-Time Systems Research Group, Department of Computer Science,
University of York, YO10 5DD, York (UK)

rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk

Abstract
This paper investigates the problem of server

parameter selection in hierarchical fixed priority pre-
emptive systems. A set of algorithms are provided that
determine the optimal values for a single server
parameter (capacity, period, or priority) when the other
two parameters are fixed. By contrast, the general
problem of server parameter selection is shown to be a
holistic one: typically the locally optimal solution for a
single server does not form part of the globally optimal
solution.

Empirical investigations show that improvements in
remaining utilisation (spare capacity) can be achieved
by choosing server periods that are exact divisors of
their task periods; enabling tasks to be bound to the
release of their server, enhancing task schedulability and
reducing server capacity requirements.

1. Introduction

In automotive electronics, the advent of advanced

high performance embedded microprocessors have made
possible functionality such as adaptive cruise control,
lane departure warning systems, integrated telematics
and satellite navigation as well as advances in engine
management, transmission control and body electronics.
Where low-cost 8 and 16-bit microprocessors were
previously used as the basis for separate Electronic
Control Units (ECUs), each supporting a single hard
real-time application, there is now a trend towards
integrating functionality into a smaller number of more
powerful microprocessors. The motivation for such
integration comes mainly from cost reduction, but also
offers the opportunity of functionality enhancement. This
trend in automotive electronics is following a similar
trend in avionics.

Integrating a number of real-time applications onto a
single microprocessor raises issues of resource allocation
and partitioning.

When composing a system, comprising a number of
applications, it is typically a requirement to provide
temporal isolation between the various applications. This
enables the properties of previous system designs, where
each application resided on a separate processor, to be
retained. In particular, if one application fails to meet its
time constraints, then ideally there should be no knock
on effects on other unrelated applications. There is

currently considerable interest in hierarchical scheduling
as a way of providing temporal isolation between
applications executing on a single processor.

In a hierarchical system, a global scheduler is used to
determine which application should be allocated the
processor at any given time, and a local scheduler is used
to determine which of the chosen application’s ready
tasks should actually execute. A number of different
scheduling schemes have been proposed for both global
and local scheduling. These include cyclic or time slicing
frameworks, dynamic priority based scheduling, and
fixed priority scheduling. In this paper we focus on the
use of fixed priority pre-emptive scheduling (FPPS) for
both global and local scheduling.

Fixed priority pre-emptive scheduling offers
advantages of flexibility over cyclic approaches whilst
being sufficiently simple to implement that it is possible
to construct highly efficient embedded real-time
operating systems based on this scheduling policy.

The basic framework for a system utilising
hierarchical fixed priority pre-emptive scheduling is as
follows: The system comprises a number of applications
each of which is composed of a set of tasks. A separate
server is allocated to each application. Each server has
an execution capacity and a replenishment period,
enabling the overall processor capacity to be divided up
between the different applications. Each server has a
unique priority that is used by the global scheduler to
determine which of the servers, with capacity remaining
and tasks ready to execute, should be allocated the
processor. Further, each task has a unique priority within
its application. The local scheduler, within each server,
uses task priorities to determine which of an
application’s ready tasks should execute when the server
is active.

1.1. Related work
In 1999, building upon the work of Deng and Liu [2],
Kuo and Li [1] first introduced analysis of hierarchical
fixed priority pre-emptive scheduling. They provided a
simple utilisation based schedulability test, using the
techniques of Liu and Layland [4].

In 2002, Saewong et al [5] provided response time
analysis for hierarchical systems using Deferrable
Servers or Sporadic Servers to schedule a set of hard
real-time applications. This analysis assumes that in the
worst-case a server’s capacity is made available at the
end of its period. Whilst this is a safe assumption, it is

19

also pessimistic.
In 2003, Shin and Lee [6] provided analysis of fixed

priority pre-emptive scheduling at the local level, given
the bounded delay periodic resource model, introduced
by Feng and Mok [3].

Also in 2003, Lipari and Bini [7] provided an
alternative sufficient but not necessary response time
formulation using an availability function to represent
the time made available by a server from an arbitrary
time origin. Lipari and Bini [7] investigated the problem
of server parameter selection and considered the choice
of replenishment period and capacity for a single server
in isolation, using a geometric approach based on an
approximation of the server availability function.

In [8], Almeida built upon the work of Lipari and
Bini, recognising that the server availability function
depends on the “maximum jitter that periods of server
availability may suffer”. This analysis is more accurate
but can still be pessimistic.

In 2005, Davis and Burns [13] provided exact1
(sufficient and necessary) response time analysis for
independent hard real-time tasks scheduled under
Periodic, Sporadic and Deferrable Servers.

In 2006, Davis and Burns [14] introduced and
analysed the Hierarchical Stack Resource Policy (HSRP)
based on the Stack Resource Policy of Baker [11]. Using
the HSRP bounds the delays due to mutually exclusive
access to resources shared between different
applications.

In this paper, we investigate the problem of server
parameter selection, choosing the period, capacity and
priority of a server associated with each application.
Unlike previous work by Lipari and Bini [7], we
consider server parameter selection across multiple
servers within a system. Our research builds upon
previous work on schedulability analysis for hierarchical
systems. In particular, we investigate how improvements
in schedulability that can be achieved by binding tasks to
a server of the appropriate period [13], impact on the
problem of server parameter selection.

1.2. Organisation

Section 2 describes the terminology, notation and
system model used in the rest of this paper. It also
recapitulates the schedulability analysis for independent
applications in hierarchical fixed priority pre-emptive
systems given in [13]. Section 3 discusses server
parameter selection. First considering how each of the
three server parameters: capacity, period, and priority
may be set if the other two are known; then discussing
the general problem of selecting the optimal server
capacity, period, and priority when all three parameters
are effectively free variables. In Section 4, we outline an
empirical investigation into the problem of server
parameter selection, including the reductions in server
utilisation that can be achieved by matching server

1 This analysis is exact if and only if, in the best case, the server can
provide all of its capacity at the start of its period.

periods to task periods, making possible the binding of
tasks to the release of their server. Section 5 summarises
the major contributions of the paper and suggests
directions for future research.

2. Hierarchical scheduling model

2.1. Terminology and system model

We are interested in the problem of scheduling
multiple real-time applications on a single processor.
Each application comprises a number of real-time tasks.
Associated with each application is a server. The
application tasks execute within the capacity of the
associated server.

Scheduling takes place at two levels: global and
local. The global scheduling policy determines which
server has access to the processor at any given time,
whilst the local scheduling policy determines which
application task that server should execute. In this paper
we analyse systems where the fixed priority pre-emptive
scheduling policy is used for both global and local
scheduling.

Application tasks may arrive either periodically at
fixed intervals of time, or sporadically after some
minimum inter-arrival time has elapsed. Each application
task i! , has a unique priority i within its application and
is characterised by its relative deadline Di, worst-case
execution time Ci, minimum inter-arrival time Ti,
otherwise referred to as its period, and finally its release
jitter Ji defined as the maximum time between the task
arriving and it being ready to execute.

Application tasks are referred to as bound or unbound
[15]. Bound tasks have a period that is an exact multiple
of their server’s period and arrival times that coincide
with replenishment of the server’s capacity. Thus bound
tasks are only ever released at the same time as their
server. All other tasks are referred to as unbound.

Each server has a unique priority S, within the set of
servers and is characterised by its capacity CS, and
replenishment period TS. A server’s capacity is the
maximum amount of execution time that may normally
be consumed by the server in a single invocation. The
replenishment period is the maximum time before the
server’s capacity is available again.

A task’s worst-case response time Ri, is the longest
time from the task arriving to it completing execution.
Similarly, a server’s worst-case response time RS, is the
longest time from the server being replenished to its
capacity being exhausted, given that there are tasks ready
to use all of the server’s available capacity. A task is said
to be schedulable if its worst-case response time does not
exceed its deadline. A server is schedulable if its worst-
case response time does not exceed its period. The
analysis used in this paper assumes that tasks have
deadlines that are no greater than their periods, and that
servers have deadlines that are equal to their periods.

The critical instant [4] for a task is defined as the
pattern of execution of other tasks and servers that leads
to the task’s worst-case response time.

20

The schedulability analysis originally given in [13]
and revisited in the remainder of this section assumes
that all applications and tasks are independent. We note
that this restriction can be lifted using the analysis given
in [14].

In this paper we consider applications scheduled
under a simple Periodic Server. The analysis can be
extended to alternative server algorithms such as the
Deferrable Server and the Sporadic Server, however due
to space considerations these alternative server
algorithms are not discussed further.

The Periodic Server is invoked with a fixed period
and executes any ready tasks until its capacity is
exhausted. Note each application is assumed to contain
an idle task that continuously carries out built in tests,
memory checks and so on, therefore the server’s capacity
is fully consumed during each period.

Once the server’s capacity is exhausted, the server
suspends execution until its capacity is replenished at the
start of its next period. If a task arrives before the
server’s capacity has been exhausted then it will be
serviced. Execution of the server may be delayed and or
pre-empted by the execution of other servers at a higher
priority. The jitter of the Periodic Server is assumed to
be zero and for the sake of simplicity, server jitter is
therefore omitted from the schedulability analysis
equations. The behaviour of the server does however add
to the jitter of the tasks that it executes. The release jitter
of the tasks is typically increased by SS CT " ,
corresponding to the maximum time that a task may have
to wait from the server capacity being exhausted to it
being replenished.

The analysis presented in the next section makes use
of the concepts of busy periods and loads. For a
particular application, a priority level i busy period is
defined as an interval of time during which there is
outstanding task execution at priority level i or higher.

Busy periods may be represented as a function of the
outstanding execution time at and above a given priority
level, thus is used to represent a priority level i
busy period (or ‘window’, hence w) equivalent to the
time that the application’s server can take to execute a
given load L. The load on a server is itself a function of
the time interval considered. We use to represent
the total task executions, at priority level i and above,
released by the application within a time window of
length w.

)(Lwi

)(wLi

2.2. Task schedulability analysis

In this section we revisit the schedulability analysis
given in [13] for independent hard real-time applications.

Using the principles of Response Time Analysis [10],
the worst-case response time for a task i! , executing
under a server S, occurs following a critical instant
where:
1. The server’s capacity is exhausted by lower priority

tasks as early in its period as possible.
2. Task i! and all higher priority tasks in the

application arrive just after the server’s capacity is

exhausted.
3. The server’s capacity is replenished at the start of

each subsequent period, however further execution
of the server is delayed for as long as possible due to
interference from higher priority servers.

The worst-case response time of i! can be determined
by computing the length of the priority level i busy
period starting at the first release of the server that could
execute the task (see Figure 1). This busy period can be
viewed as being made up of three components:

1. The execution of task i! and tasks of higher
priority released during the busy period.

2. The gaps in any complete periods of the server.
3. Interference from higher priority servers in the

final server period that completes execution of
the task.

The task load at priority level i and higher, ready to
be executed in the busy period , is given by: iw

j
ihpj j

ji
iii C

T
Jw

CwL #
$% &

&
&

'

(
(
(

) *
*+

)(
)((1)

where hp(i) is the set of tasks that have priorities higher
than task i! and is the release jitter of the task,
increased by SST

jJ
C" in the case of unbound tasks, due

to the operation of the server.

Figure 1 Busy period

The total length of gaps in complete server periods,
not including the final server period, is given by:

)(1
)(

SS
S

ii CT
C

wL
",

,
-

.
/
/
0

1
"&

&

'
(
(

)
 (2)

The interference due to higher priority servers
executing during the final server period that completes
execution of task i! is dependent on the amount of task
execution that the server needs to complete before the
end of the busy period. The exact interference can be
calculated using information about server priorities,
capacities and replenishment periods.

Figure 1 illustrates the interference in the final server
period. The extent to which the busy period extends
into the final server period is given by:

iw

S
S

ii
i T

C
wL

w ,
,
-

.
/
/
0

1
"&

&

'
(
(

)
" 1

)(
 (3)

The full extent of the busy period, including
interference from higher priority servers in the final
server period, can be found using the recurrence relation

21

from [13], given by Equation (4):

X

servers
ShpX X

S
S

n
iin

i

SS
S

n
iin

ii
n
i

C
T

T
C

wL
w

CT
C

wL
wLw

#
$%

*

&
&
&
&
&
&

&

'

(
(
(
(
(
(

(

)

,
,

-

.

/
/

0

1
,
,
-

.
/
/
0

1
"&

&

'
(
(

)
"

*",
,
-

.
/
/
0

1
"&

&

'
(
(

)
*+

)(

1

1
)(

,0max

)(1
)(

)(

 (4)

where hp(S) is the set of servers with higher priority
than server S.

Recurrence starts with a value of
and ends either when

 in which case gives the task’s worst-
case response time or when in which
case the task is not schedulable.

) '2 3)(1/0
SSSiii CTCCCw ""*+

n
i

n
i ww +*1

i
n
i Jw *

n
iw ii JD "41*

Note the use of max(0, …) in the 3rd term in Equation
(4) ensures that the extent to which the busy period
extends into the final server period is not considered to
be an interval of negative length.

3. Server Parameter Selection

In this section, we consider the problem of server

parameter selection.
The overall problem may be stated as follows: Given

a set of applications to be scheduled, with each
application allocated a single server, what is the optimum
set of server parameters (priority, period and capacity)
that leads to a schedulable system whilst preserving the
maximum remaining processor utilisation.

#
$%

"
serversX X

X

T
C1 (5)

We use remaining processor utilisation as a metric as
this provides a broad measure of the processing time that
could potentially be made available to other applications
that might be added to the system.

There are two sets of schedulability constraints on
any given system.

1. The servers must have worst-case response
times that do not exceed their periods. (Each
server S must guarantee to provide capacity
in each of its periods T).

SC
S

2. The tasks executed by the servers must have
worst-case response times that do not exceed
their deadlines.

The problem of server parameter selection can be
generalized further by permitting more than one server to
be used to handle each application (i.e. statically
allocating the tasks from a single application to more
than one server) this is however beyond the scope of this
paper.

3.1. Determining Server Capacities

In this section, we consider the sub-problem of
determining server capacities given a known set of server
priorities and periods. Given these parameters, we can

use the following algorithm to derive the optimal set of
server capacities for the set of server periods and
priorities provided.
OPTIMAL SERVER CAPACITY ALLOCATION ALGORITHM
for each server, highest priority first
{
 binary search between 0 and the
 server period for the minimum capacity
 Z that results in the server and its
 tasks being schedulable.
 if no schedulable capacity found
 {
 exit system not schedulable
 }
 else
 {
 set the capacity of the server to Z
 }
}

This algorithm works because:
1. The capacities of lower priority servers are not

required when determining the schedulability of a
higher priority server or the tasks that it services.

2. Any increase in the capacity of a higher priority
server cannot decrease the response time of a lower
priority server or the tasks it schedules. Hence
increasing the capacity of a higher priority server
beyond that determined by the above algorithm
cannot lead to a lower priority server requiring less
capacity to schedule its tasks.

Thus the set of minimum server capacities calculated in
descending priority order are optimal for the given set of
server priorities and periods.

3.2. Determining Server Priorities

For a set of Periodic Servers, rate-monotonic priority
ordering (RMPO) [19] is the optimal priority ordering
with respect to server schedulability. However, when
task schedulability is considered, RMPO is no longer
optimal, as shown by the examples in Sections 3.4 and
4.1. Similarly, deadline-monotonic priority assignment
[20] based on the deadline of the shortest deadline task in
each application is not optimal either.

For the sub-problem where server periods and
capacities are known then a feasible priority ordering can
be determined, if one exists, using a variation on the
Optimal Priority Assignment Algorithm devised by
Audsley [11].
The algorithm, given below, works because:
1. The specific priority ordering of higher priority

servers has no effect on the schedulability of a lower
priority server or the tasks that it executes.

2. The parameters selected for a low priority server
have no bearing on the schedulability of the higher
priority servers or the tasks that they execute.

The optimal server priority assignment algorithm
requires n(n+1)/2 tests of server and associated task
schedulability compared to the n! potential server
priority orderings.
 Note, as the server periods and capacities are fixed
in this case, the remaining processor utilisation does not

22

change with different priority orderings, instead, the
algorithm given below is optimal in the sense that it
always finds a feasible priority ordering if such a priority
ordering exists. The interested reader is directed to [11]
for proof of why this method is optimal, despite the fact
that it makes a greedy allocation, assigning the first
unallocated yet schedulable server found to each priority
level.

OPTIMAL SERVER PRIORITY ASSIGNMENT ALGORITHM
for each priority level, lowest first
{
 for each unallocated server
 {
 if the server and its tasks are
 schedulable at this priority level
 {
 allocate server to this priority
 break (continue with outer loop)
 }
 }
 return unschedulable
}
return schedulable

3.3. Determining Server Periods

If the server priorities and capacities are fixed, then a
set of server periods can be systematically derived using
the algorithm given below.
OPTIMAL SERVER PERIOD ALLOCATION ALGORITHM
for each server, highest priority first
{
 binary search for the maximum server
 period Z that results in the server and
 its tasks being schedulable.
 if no schedulable period found
 {
 exit system not schedulable
 }
 else
 {
 set the period of the server to Z
 }
}

This algorithm works because:
1. The parameters selected for a low priority server

have no bearing on the schedulability of the higher
priority servers or the tasks that they execute.

2. The interference on lower priority servers and the
tasks they execute is monotonically non-increasing
with respect to increases in the period of each higher
priority server.

The optimal server period allocation algorithm given
above is optimal for the given set of server priorities and
capacities, in the sense that the servers will have the
minimum total utilisation and the system will be
schedulable with this set of server periods if it is
schedulable for any selection of server periods.

3.4. Overall parameter selection

Although it is possible to systematically derive one of
the server parameters (priority, period or capacity) if the
other two are fixed, this still leaves the general problem
of server parameter selection.

Our experiments have shown that even if the problem
is simplified by fixing server priorities, it is still difficult
to find the combination of server periods and capacities
required to achieve the minimum total utilisation. This is
because the set of period and capacity values for each
server that result in the minimum total utilisation (global
optima), do not necessarily correspond to those values
that result in the minimum utilisation for any of the
servers taken individually (local optima). This can be
seen in systems of just two servers. Typically the period-
capacity pair that results in the minimum utilisation for
the higher priority server has a long period and large
capacity; however, as a consequence of the large
capacity of the higher priority server, the period of the
lower priority server has to be reduced, increasing its
overall utilisation. In fact, the lower priority server and
its tasks may simply be unschedulable due to the large
amount of interference from the higher priority server.
Halving the period of the higher priority server increases
its utilisation, as a result of overheads, but also typically
allows the lower priority server to have a much longer
period for the same capacity. Although a shorter period
for the higher priority server results in a larger utilisation
for that server, this can be more than compensated for by
a reduction in utilisation of the lower priority server.

Example:
Consider two Periodic Servers A and B . Each

server has a single (unbound) hard real-time task to
accommodate. The task parameters are given in the table
below:

S S

Table 1

Task Ci Ti Di Server

1! 10 20 20 AS
2! 4 24 24 BS

Further, assume that server context switch
overheads2 are 1 time unit and that the processor needs
to provide each invocation of a server with this context
switch time before it can execute its tasks.

Now consider the choice of server periods, assuming
that A has the higher priority. The lowest utilisation for

A occurs for a period of 20 and a capacity of 11 (55%
utilisation). However, with these parameters for A
there are no parameters for B that result in a
schedulable system. To accomodate task

S
S

S
S

2! , the period
of is constrained according to: BS

2)(CnTCT BABBB * D5C **"
and so 13)1(5* BTn

S
 where n+1 is the number of

invocations of B that are used to service task 2! . Also
for B to be schedulable BAB . Thus possible
periods for B are constrained to lie in the range 11 to
13 with a maximum possible capacity for BS of 2. None
of these parameter selections result in task

S CCT *6
S

2! being
schedulable.

2 Such overheads are incorporated in our analysis, by assuming that
each server must utilise part of its capacity for the context switch to it,
prior to executing any of its tasks.

23

However if we choose 10+AT , then AS has
a utilisation of 60% which is 5% greater than before.
However, B is now just schedulable with

6+AC

S 9+BT ,
 (33.3% utilisation). The overall server utilisation

is 93.3%. Note that the servers are in the reverse of rate-
monotonic priority order.

3+BC

3.5. Greedy Algorithms

In this section, we compare the performance of a
greedy method of server parameter selection with that of
optimal parameter selection.

The greedy algorithm proceeds as follows. For each
server, highest priority first: scan through the range of
potential server periods. For each possible server period,
use a binary search to determine the minimum possible
server capacity. Select the pair of server parameters
(period and capacity) that provide the minimum
utilisation for the server (local optima). This process is
then repeated for each lower priority server in turn.

For comparison purposes an exhaustive search of
possible server period combinations was used to
determine the optimal selection of periods and capacities.
This was possible for simple systems comprising just
two applications. For each combination of server
periods, the optimal server capacities were computed
using the algorithm described in Section 3.1. This
method yields the global optima.

Our experimental investigation involved generating
simulated systems comprising two applications of 3
unbound tasks each with overall task utilisation levels of
40 to 85%. 100 systems were generated for each
utilisation level. For each system we then used the
greedy and exhaustive (optimal) algorithms to select
server periods and capacities. Note that the server
priority ordering was fixed and the use of Periodic
Servers was assumed.

Figure 2

Figure 2 shows the performance of the greedy
algorithm in terms of the number of systems it was able
to schedule compared to the optimal algorithm. At low
system utilisations, the greedy approach is able to find a
schedulable set of server parameters however its
performance drops off significantly before that of the
optimal algorithm. We also compared the number of
solutions that the greedy algorithm produced that were

within 1% of the optimal server utilisation levels. It is
apparent from the graph that even at relatively low
utilisation levels, the greedy approach results in a large
number of sub-optimal solutions.

We would expect that the performance of the greedy
approach to deteriorate with an increasing number of
servers. As performance is relatively poor even for two
server systems, this approach has little to recommend it.

To summarise, in the general case, server parameter
selection does not appear to have an analytical solution.
The best that we can achieve is to select server priorities
and periods according to some search algorithm
(potentially exhaustive search in the case of simple
systems) and to derive the optimal set of server
capacities via a binary search using the analysis
presented in section 3.

It is clear that any approach to server parameter
selection based on determining the best parameters for a
single server in isolation is flawed. The parameters
chosen for one server influence the choice of feasible
parameters for others servers in such a way that choosing
solutions that are locally optimal does not typically lead
to a globally optimal solution.

4. Empirical Investigation

In this section we present the results of empirical

investigations into the selection of server parameters for
simple systems.

The aim of these investigations is to highlight
interesting properties of the server parameter selection
problem, which may be useful in devising solutions that
are appropriate for real systems. The algorithms and
techniques that we use in our investigation, such as
exhaustive search, are not intended as solutions to the
general problem, they are merely tools with which to
improve our understanding. We therefore give no
analysis of the complexity or execution time of these
methods. Similarly, the tasksets used in the experiments
detailed here are not meant to reflect the sets of tasks
found in real applications; instead, simple tasksets were
used so that we could reason about the properties that
they have in common with real systems, such as
harmonic / non-harmonic task periods, and periods that
are multiplies of the server period.

With systems comprising just two Periodic Servers, it
is possible to exhaustively evaluate all possible
combinations of server periods. In this experimental
investigation, we used a binary search and the algorithm
presented in section 3.1, to determine the minimum
capacity for each Periodic Server, for every possible
combination of server periods.

The results of the experiments are presented as 3-D
graphs of the remaining processor utilisation:

#
$%

"
serversX X

X

T
C1

The remaining utilisation (z-axis) is plotted against
the period of the lower priority server (x-axis) and the

24

period of the higher priority server (y-axis). The
remaining utilisation surface is colour coded according
to its value. Peaks in the surface represent the best
choices of server periods.

Although it is possible to understand and interpret the
figures in this section when they are viewed in black and
white on a printed copy, the figures are clearer when
displayed in colour. It is therefore suggested that readers
view this paper online; the figures will then appear in
colour.

4.1. Experiment 1

In this experiment, we used a simple taskset
comprising the three tasks given in Table 2 below.

Table 2

Priority Exec. Time Period Deadline
1 5 50 50
2 7 125 125
3 6 300 300

Each server was required to execute a copy of this
taskset, thus making the server priority ordering
irrelevant. A server context switch overhead of 2 time
units was assumed.

Figure 3 illustrates the remaining processor
utilisation for all combinations of low priority (LP) and
high priority (HP) server periods in the range 4-100. In
this case, all the tasks were considered to be unbound,
irrespective of whether their periods were a multiple of
the server’s period.

Figure 3

The graph shows a jagged landscape of remaining
utilisation, dependent on the relationship between the
server periods and those of the tasks. The peaks in
remaining utilisation are closer together at shorter server
periods. This is because the peaks relate to values of the

server periods that are fractions of the task periods. For
example: 1/6, 1/5, 1/4, 1/3, 1/2.

A number of interesting features are visible in the
graph. In the region indicated by label “A”, the low
priority server’s period exceeds that of the highest
priority task it must execute, this results in the server’s
capacity increasing with each increase in its period,
leading to a significant tail off in the remaining processor
utilisation. In the region indicated by label “B”, long
high priority server periods and the resultant large
capacity of that server result in the low priority server
being unschedulable with relatively short periods.

The optimal selection of server periods (50+HPT and
43+LPT) gives a maximum remaining utilisation of

52.4%. Note this optimum selection of parameters has
the servers in the opposite of rate-monotonic priority
ordering. This is a clear example of the fact that although
the optimum priority ordering for Periodic Servers is
rate-monotonic when only server schedulability is
considered, this is not the case when task schedulability
is also a factor.

Figure 4

Figure 4 shows a very similar graph to Figure 3;
however, this time whenever a server’s period is an exact
divisor of the period of a task, that task is bound to the
server. This results in two increased ‘ridges’ with respect
to treating the tasks as always being unbound. These
ridges occur for low priority server periods of 25 and 50.

Comparing Figure 3 and Figure 4 shows that
allowing tasks to be bound to the release of their server
results in a change in the optimal server parameters.
With bound tasks, the maximum remaining utilisation of
54% occurs when both servers have a period of 50,
which is a harmonic of two of the task periods (50 and
300).

It is interesting to note that there are no additional

25

ridges corresponding to particular values of the high
priority server period, despite the fact that this server
executes an identical taskset. The reason for this is that
in the case of the highest priority server only, if a task’s
deadline is equal to its period and is also an exact
multiple of the server’s period, then the amount of
execution time that a server of a given capacity can make
available to the task is the same irrespective of whether
the task is bound to the release of the server or not. As
the task’s period is an exact multiple n of the server’s
period, then in both bound and unbound cases, the server
can make exactly n times its capacity available by the
task’s deadline (which is also equal to n times the
server’s period), hence there is no observable advantage
in tasks being bound to the high priority server in this
case.

4.2. Experiment 2

In this experiment we used a simple taskset
comprising the four tasks given in Table 3 below. Each
server was required to execute a copy of this taskset,
making the server priority ordering irrelevant. Again a
server context switch overhead of 2 time units was
assumed.

Table 3

Priority Exec. T ime Period Deadline
1 8 160 100
2 12 240 200
3 16 320 300
4 24 480 400

In this case, the task periods and deadlines were
chosen to emphasize the effect of having tasks bound to
the release of the server. The task periods were chosen
such that they would be harmonics of a number of
different server periods. Further, the task deadlines were
chosen to be strictly less than the corresponding task
periods as this also enhances the difference between the
server capacity required if tasks are treated as bound
versus unbound. It should however be noted that this
taskset is a reasonable one: there are many real world
systems that have such harmonic relationships between
their task periods.

Figure 5 illustrates the remaining processor
utilisation for various server periods for the taskset in
Table 3. In this case, all the tasks were assumed to be
unbound. The optimal selection of server periods
(and) gives a maximum remaining
utilisation of 42.875%.

64+HPT 100+LPT

By comparison, Figure 6 illustrates the remaining
utilisation for various server periods when tasks can
potentially be bound to the servers. A task is treated as
being bound to its server if the task’s period is an exact
multiple of the server’s period. Note that Figure 6 shows
only data for those server periods that result in one or
more bound tasks and where the resultant remaining
utilisation is higher than it would otherwise be if all the
tasks were treated as being unbound. This makes it easy

to see the advantage of binding tasks to the servers.

Figure 5

Figure 6

There are a large number of possible server periods
that the task periods are harmonics of. The harmonic
periods that provide an advantage in terms of reduced
server capacity are 16, 20, 32, 40, 48, 60, 64, 80, 96 and
160 in the case of the low priority server and 48, 60, 96,
120 and 160 for the high priority server. The optimal
selection of server periods (and 160+HPT 160+LPT)
gives a maximum remaining utilisation of 51.25%. This
is a significant increase in remaining utilisation
compared with treating all the tasks as unbound
(42.875%).

26

Recall that task deadlines were less than periods for
the taskset used in this experiment. This highlights the
difference between the analysis of bound and unbound
tasks. If a task is unbound, then for server periods greater
than the task’s deadline, the server’s capacity has to
increase significantly to ensure that the task is
schedulable, resulting in a marked reduction in
remaining utilisation. This is not the case when a task is
bound to the server, with both task and server sharing the
same period, a short deadline task may be schedulable
for a small server capacity.

Permitting tasks to be bound to their server results in
solutions that are very different, in terms of server
utilisation, from those that are available when all the
tasks are unbound.

It is interesting to note that the optimum selection of
server periods occurs as a spike in the remaining
utilisation surface. This has implications for search
techniques aimed at determining the optimal selection of
server parameters. Given such a discontinuous
landscape, a general-purpose search technique such as
simulated annealing or genetic algorithms may not be
effective without the use of heuristics to locate potential
good solutions based on harmonics.

4.3. Additional Experiments

We performed a number of additional experiments
similar to those described earlier. The basic trends
visible in these experiments were as follow:
7 Number of tasks: Increasing the number of tasks in

an application (or more correctly increasing the
number of distinct task periods) results in a change
in the topology of the remaining utilisation
landscape. More tasks imply an increased number of
valleys each with less depth. With 10 or more tasks
with co-prime periods precise choice of server
period becomes less important. In this case there is a
region of values that give similar levels of remaining
utilisation.

7 Harmonic task periods: If a period can be chosen for
the server that exactly divides a number of task
periods and those tasks can be bound to the server
then a significant increase in remaining utilisation
can be achieved.

7 Deadline less than period: Binding tasks to a server
appears to have the biggest impact when the shortest
deadline task is bound to the server. This is because
the range of values possible for the server’s period is
effectively constrained to less than the shortest task
deadline in the case of unbound tasks and to less
than the shortest task period in the case of bound
tasks. Permitting a greater useful range of server
periods typically results in better solutions as longer
server periods lead to lower overheads.

5. Summary and conclusions

In this paper we investigated the problem of selecting

appropriate server parameters for a single processor

system, running multiple applications using hierarchical
fixed priority pre-emptive scheduling. The motivation
for this work comes from the automotive, avionics and
other industries where the advent of high performance
microprocessors is now making it both possible and cost
effective to implement multiple applications on a single
platform.

5.1. Contribution
The major contributions of this work are as follows:
7 Providing a set of algorithms that determine the

optimal value for one server parameter (capacity,
period, or priority) when the other two parameters
are fixed.

7 Showing that in general server parameter selection is
a holistic problem. It is not sufficient to determine
the optimal set of server parameters for each server
in isolation as these parameters have an effect on the
choice of possible values for other servers. Deriving
local optima (for each server) does not lead to the
globally optimal solution.

7 Showing that whilst Rate Monotonic Priority
Assignment (RMPO) is the optimal priority
assignment policy for Periodic Servers when only
server schedulability is considered, this is no longer
the case when the schedulability of tasks executed
by the server is also taken into account.

7 Illustrating the increase in remaining utilisation
(spare capacity) that can be achieved by choosing
server periods that are exact divisors of their task
periods. This enables tasks to be bound to the
release of their server, greatly enhancing task
schedulability.

5.2. Future work

Today it is possible using the analysis techniques
described in this paper to determine the optimal set of
server parameters via an exhaustive search of possible
periods and priorities for simple systems comprising 3 or
4 applications. Further work is required to provide an
effective algorithm capable of choosing an optimal or
close to optimal set of server parameters given systems
comprising ten or more applications.

A global optimisation technique such as simulated
annealing or genetic algorithms could possibly be used
as the high-level search method, with selection of locally
optimal server capacities via a binary search. It should be
noted however that the spiky topography of the
remaining utilisation surface makes effective search
difficult. As an alternative approach, the use of
heuristics, such as checking all possible combinations of
harmonics, may be effective in some cases.

Another interesting area of future research involves
incorporating Quality of Service (QoS) requirements into
hierarchical fixed priority pre-emptive systems. Here
additional servers could be deployed at both levels in the
hierarchy to make spare capacity available responsively.
An interesting alternative would be to use Dual Priority
Scheduling [17] as the policy of choice at both global

27

and local scheduling levels.

6. Acknowledgements

This work was partially funded by the EU funded

FRESCOR project.

7. References

[1] T-W. Kuo, C-H. Li. “A Fixed Priority Driven Open
Environment for Real-Time Applications”. In proceedings of IEEE
Real-Time Systems Symposium, pp. 256-267, IEEE Computer
Society Press, December 1999.
[2] Z. Deng, J.W-S. Liu. “Scheduling Real-Time Applications in
an Open Environment”. In proceedings of the IEEE Real-Time
Systems Symposium. pp. 308-319, IEEE Computer Society Press,
December 1997.
[3] X. Feng, A. Mok. “A Model of Hierarchical Real-Time Virtual
Resources”. In proceedings of IEEE Real-Time Systems
Symposium. pp. 26-35, IEEE Computer Society Press, December
2002.
[4] C.L. Liu, J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment” JACM, 20
(1) 46-61, January 1973.
[5] S. Saewong, R. Rajkumar, J. Lehoczky, M. Klein. “Analysis of
Hierarchical Fixed priority Scheduling”. In proceedings of the
ECRTS, pp. 173-181, 2002.
[6] I. Shin, I. Lee. “Periodic Resource Model for Compositional
Real-Time Guarantees”. In proceedings of the IEEE Real-Time
Systems Symposium. pp. 2-13, IEEE Computer Society Press,
December 2003.
[7] G. Lipari, E. Bini. “Resource Partitioning among Real-Time
Applications”. In proceedings of the ECRTS, pp July 2003.
[8] L. Almeida. “Response Time Analysis and Server Design for
Hierarchical Scheduling”. In proceedings of the IEEE Real-Time
Systems Symposium Work-in-Progress, December 2003.
[9] G. Bernat, A. Burns. “New Results on Fixed Priority Aperiodic
Servers”. In proceedings of the IEEE Real-Time Systems
Symposium, pp. 68-78, IEEE Computer Society Press, December
1999.
[10] N.C. Audsley, A. Burns, M. Richardson, A.J.Wellings.
“Applying new Scheduling Theory to Static Priority Pre-emptive
Scheduling”. Software Engineering Journal, 8(5) pp. 284-292,
1993.
[11] T.P. Baker. “Stack-based Scheduling of Real-Time
Processes.” Real-Time Systems Journal (3)1, pp. 67-100, 1991.
[12] L. Sha, J.P. Lehoczky, R. Rajkumar. “Solutions for some
Practical Problems in Prioritised Preemptive Scheduling” In
proceedings of the IEEE Real-Time Systems Symposium, pp. 181-
191, IEEE Computer Society Press, December 1986.
[13] R.I. Davis, A. Burns “Hierarchical Fixed Priority Pre-emptive
Scheduling” In proceedings of the IEEE Real-Time Systems
Symposium, pp. 389-398, IEEE Computer Society Press, December
2005.
[14] R.I. Davis, A. Burns “Resource Sharing in Hierarchical Fixed
Priority Pre-emptive Systems” In proceedings of the IEEE Real-
Time Systems Symposium, pp. 257-268, IEEE Computer Society
Press, December 2006.
[15] EU Information Society Technologies (IST) Program, Flexible
Integrated Real-Time Systems Technology (FIRST) Project, IST-
2001-34140.
[16] M. Caccamo, L. Sha. “Aperiodic Servers with Resource
Constraints” In proceedings of the IEEE Real-Time Systems
Symposium. pp. 161-170, IEEE Computer Society Press, December
2001.
[17] G. Lamastra, G. Lipari, L. Abeni. “A Bandwidth Inheritance
Algorithm for Real-Time Task Synchronisation in Open Systems”
In proceedings of the IEEE Real-Time Systems Symposium, pp.
151-160, IEEE Computer Society Press, December 2001.

[18] L. Sha, R. Rajkumar, J.P. Lehoczky. “Priority inheritance
protocols: An approach to real-time synchronization”. IEEE
Transactions on Computers, 39(9): 1175-1185, 1990.
[19] C.L. Liu, J.W. Layland. "Scheduling Algorithms for
Multiprogramming in a Hard-Real-time Environment", Journal
of the ACM, 20(1): 46-61, January 1973.
[20] J.Y.-T. Leung, J. Whitehead, "On the Complexity of
Fixed-Priority Scheduling of Periodic Real-time Tasks".
Performance Evaluation, 2(4): 237-250, December 1982.

28

