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Abstract 
This paper investigates the problem of server 

parameter selection in hierarchical fixed priority pre-
emptive systems. A set of algorithms are provided that 
determine the optimal values for a single server 
parameter (capacity, period, or priority) when the other 
two parameters are fixed. By contrast, the general 
problem of server parameter selection is shown to be a 
holistic one: typically the locally optimal solution for a 
single server does not form part of the globally optimal 
solution.  

Empirical investigations show that improvements in 
remaining utilisation (spare capacity) can be achieved 
by choosing server periods that are exact divisors of 
their task periods; enabling tasks to be bound to the 
release of their server, enhancing task schedulability and 
reducing server capacity requirements. 

 
1. Introduction 

 
In automotive electronics, the advent of advanced 

high performance embedded microprocessors have made 
possible functionality such as adaptive cruise control, 
lane departure warning systems, integrated telematics 
and satellite navigation as well as advances in engine 
management, transmission control and body electronics. 
Where low-cost 8 and 16-bit microprocessors were 
previously used as the basis for separate Electronic 
Control Units (ECUs), each supporting a single hard 
real-time application, there is now a trend towards 
integrating functionality into a smaller number of more 
powerful microprocessors. The motivation for such 
integration comes mainly from cost reduction, but also 
offers the opportunity of functionality enhancement. This 
trend in automotive electronics is following a similar 
trend in avionics. 

Integrating a number of real-time applications onto a 
single microprocessor raises issues of resource allocation 
and partitioning. 

When composing a system, comprising a number of 
applications, it is typically a requirement to provide 
temporal isolation between the various applications. This 
enables the properties of previous system designs, where 
each application resided on a separate processor, to be 
retained. In particular, if one application fails to meet its 
time constraints, then ideally there should be no knock 
on effects on other unrelated applications. There is 

currently considerable interest in hierarchical scheduling 
as a way of providing temporal isolation between 
applications executing on a single processor. 

In a hierarchical system, a global scheduler is used to 
determine which application should be allocated the 
processor at any given time, and a local scheduler is used 
to determine which of the chosen application’s ready 
tasks should actually execute. A number of different 
scheduling schemes have been proposed for both global 
and local scheduling. These include cyclic or time slicing 
frameworks, dynamic priority based scheduling, and 
fixed priority scheduling. In this paper we focus on the 
use of fixed priority pre-emptive scheduling (FPPS) for 
both global and local scheduling. 

Fixed priority pre-emptive scheduling offers 
advantages of flexibility over cyclic approaches whilst 
being sufficiently simple to implement that it is possible 
to construct highly efficient embedded real-time 
operating systems based on this scheduling policy. 

The basic framework for a system utilising 
hierarchical fixed priority pre-emptive scheduling is as 
follows: The system comprises a number of applications 
each of which is composed of a set of tasks. A separate 
server is allocated to each application. Each server has 
an execution capacity and a replenishment period, 
enabling the overall processor capacity to be divided up 
between the different applications. Each server has a 
unique priority that is used by the global scheduler to 
determine which of the servers, with capacity remaining 
and tasks ready to execute, should be allocated the 
processor. Further, each task has a unique priority within 
its application. The local scheduler, within each server, 
uses task priorities to determine which of an 
application’s ready tasks should execute when the server 
is active. 

 
1.1. Related work 
In 1999, building upon the work of Deng and Liu [2], 
Kuo and Li [1] first introduced analysis of hierarchical 
fixed priority pre-emptive scheduling. They provided a 
simple utilisation based schedulability test, using the 
techniques of Liu and Layland [4]. 

In 2002, Saewong et al [5] provided response time 
analysis for hierarchical systems using Deferrable 
Servers or Sporadic Servers to schedule a set of hard 
real-time applications. This analysis assumes that in the 
worst-case a server’s capacity is made available at the 
end of its period. Whilst this is a safe assumption, it is 
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also pessimistic. 
In 2003, Shin and Lee [6] provided analysis of fixed 

priority pre-emptive scheduling at the local level, given 
the bounded delay periodic resource model, introduced 
by Feng and Mok [3]. 

Also in 2003, Lipari and Bini [7] provided an 
alternative sufficient but not necessary response time 
formulation using an availability function to represent 
the time made available by a server from an arbitrary 
time origin. Lipari and Bini [7] investigated the problem 
of server parameter selection and considered the choice 
of replenishment period and capacity for a single server 
in isolation, using a geometric approach based on an 
approximation of the server availability function. 

In [8], Almeida built upon the work of Lipari and 
Bini, recognising that the server availability function 
depends on the “maximum jitter that periods of server 
availability may suffer”. This analysis is more accurate 
but can still be pessimistic. 

In 2005, Davis and Burns [13] provided exact1 
(sufficient and necessary) response time analysis for 
independent hard real-time tasks scheduled under 
Periodic, Sporadic and Deferrable Servers. 

In 2006, Davis and Burns [14] introduced and 
analysed the Hierarchical Stack Resource Policy (HSRP) 
based on the Stack Resource Policy of Baker [11]. Using 
the HSRP bounds the delays due to mutually exclusive 
access to resources shared between different 
applications. 

In this paper, we investigate the problem of server 
parameter selection, choosing the period, capacity and 
priority of a server associated with each application. 
Unlike previous work by Lipari and Bini [7], we 
consider server parameter selection across multiple 
servers within a system. Our research builds upon 
previous work on schedulability analysis for hierarchical 
systems. In particular, we investigate how improvements 
in schedulability that can be achieved by binding tasks to 
a server of the appropriate period [13], impact on the 
problem of server parameter selection. 

 
1.2. Organisation 

Section 2 describes the terminology, notation and 
system model used in the rest of this paper. It also 
recapitulates the schedulability analysis for independent 
applications in hierarchical fixed priority pre-emptive 
systems given in [13]. Section 3 discusses server 
parameter selection. First considering how each of the 
three server parameters: capacity, period, and priority 
may be set if the other two are known; then discussing 
the general problem of selecting the optimal server 
capacity, period, and priority when all three parameters 
are effectively free variables. In Section 4, we outline an 
empirical investigation into the problem of server 
parameter selection, including the reductions in server 
utilisation that can be achieved by matching server 

                                                 
1 This analysis is exact if and only if, in the best case, the server can 
provide all of its capacity at the start of its period. 

periods to task periods, making possible the binding of 
tasks to the release of their server. Section 5 summarises 
the major contributions of the paper and suggests 
directions for future research. 

 
2. Hierarchical scheduling model 

 
2.1. Terminology and system model 

We are interested in the problem of scheduling 
multiple real-time applications on a single processor. 
Each application comprises a number of real-time tasks. 
Associated with each application is a server. The 
application tasks execute within the capacity of the 
associated server. 

Scheduling takes place at two levels: global and 
local. The global scheduling policy determines which 
server has access to the processor at any given time, 
whilst the local scheduling policy determines which 
application task that server should execute. In this paper 
we analyse systems where the fixed priority pre-emptive 
scheduling policy is used for both global and local 
scheduling. 

Application tasks may arrive either periodically at 
fixed intervals of time, or sporadically after some 
minimum inter-arrival time has elapsed. Each application 
task i! , has a unique priority i within its application and 
is characterised by its relative deadline Di, worst-case 
execution time Ci, minimum inter-arrival time Ti, 
otherwise referred to as its period, and finally its release 
jitter Ji defined as the maximum time between the task 
arriving and it being ready to execute. 

Application tasks are referred to as bound or unbound 
[15]. Bound tasks have a period that is an exact multiple 
of their server’s period and arrival times that coincide 
with replenishment of the server’s capacity. Thus bound 
tasks are only ever released at the same time as their 
server. All other tasks are referred to as unbound. 

Each server has a unique priority S, within the set of 
servers and is characterised by its capacity CS, and 
replenishment period TS. A server’s capacity is the 
maximum amount of execution time that may normally 
be consumed by the server in a single invocation. The 
replenishment period is the maximum time before the 
server’s capacity is available again. 

A task’s worst-case response time Ri, is the longest 
time from the task arriving to it completing execution. 
Similarly, a server’s worst-case response time RS, is the 
longest time from the server being replenished to its 
capacity being exhausted, given that there are tasks ready 
to use all of the server’s available capacity. A task is said 
to be schedulable if its worst-case response time does not 
exceed its deadline. A server is schedulable if its worst-
case response time does not exceed its period. The 
analysis used in this paper assumes that tasks have 
deadlines that are no greater than their periods, and that 
servers have deadlines that are equal to their periods. 

The critical instant [4] for a task is defined as the 
pattern of execution of other tasks and servers that leads 
to the task’s worst-case response time. 
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The schedulability analysis originally given in [13] 
and revisited in the remainder of this section assumes 
that all applications and tasks are independent. We note 
that this restriction can be lifted using the analysis given 
in [14]. 

In this paper we consider applications scheduled 
under a simple Periodic Server. The analysis can be 
extended to alternative server algorithms such as the 
Deferrable Server and the Sporadic Server, however due 
to space considerations these alternative server 
algorithms are not discussed further. 

The Periodic Server is invoked with a fixed period 
and executes any ready tasks until its capacity is 
exhausted. Note each application is assumed to contain 
an idle task that continuously carries out built in tests, 
memory checks and so on, therefore the server’s capacity 
is fully consumed during each period. 

Once the server’s capacity is exhausted, the server 
suspends execution until its capacity is replenished at the 
start of its next period. If a task arrives before the 
server’s capacity has been exhausted then it will be 
serviced. Execution of the server may be delayed and or 
pre-empted by the execution of other servers at a higher 
priority. The jitter of the Periodic Server is assumed to 
be zero and for the sake of simplicity, server jitter is 
therefore omitted from the schedulability analysis 
equations. The behaviour of the server does however add 
to the jitter of the tasks that it executes. The release jitter 
of the tasks is typically increased by SS CT " , 
corresponding to the maximum time that a task may have 
to wait from the server capacity being exhausted to it 
being replenished. 

The analysis presented in the next section makes use 
of the concepts of busy periods and loads. For a 
particular application, a priority level i busy period is 
defined as an interval of time during which there is 
outstanding task execution at priority level i or higher. 

Busy periods may be represented as a function of the 
outstanding execution time at and above a given priority 
level, thus  is used to represent a priority level i 
busy period (or ‘window’, hence w) equivalent to the 
time that the application’s server can take to execute a 
given load L. The load on a server is itself a function of 
the time interval considered. We use  to represent 
the total task executions, at priority level i and above, 
released by the application within a time window of 
length w. 

)(Lwi

)(wLi

 
2.2. Task schedulability analysis 

In this section we revisit the schedulability analysis 
given in [13] for independent hard real-time applications. 

Using the principles of Response Time Analysis [10], 
the worst-case response time for a task i! , executing 
under a server S, occurs following a critical instant 
where: 
1. The server’s capacity is exhausted by lower priority 

tasks as early in its period as possible. 
2. Task i!  and all higher priority tasks in the 

application arrive just after the server’s capacity is 

exhausted. 
3. The server’s capacity is replenished at the start of 

each subsequent period, however further execution 
of the server is delayed for as long as possible due to 
interference from higher priority servers. 

The worst-case response time of i!  can be determined 
by computing the length of the priority level i busy 
period starting at the first release of the server that could 
execute the task (see Figure 1). This busy period can be 
viewed as being made up of three components: 

1. The execution of task i!  and tasks of higher 
priority released during the busy period. 

2. The gaps in any complete periods of the server. 
3. Interference from higher priority servers in the 

final server period that completes execution of 
the task. 

The task load at priority level i and higher, ready to 
be executed in the busy period , is given by: iw

j
ihpj j

ji
iii C

T
Jw

CwL #
$% &

&
&

'

(
(
(

) *
*+

)(
)(    (1) 

where hp(i) is the set of tasks that have priorities higher 
than task i!  and  is the release jitter of the task, 
increased by SST

jJ
C"  in the case of unbound tasks, due 

to the operation of the server. 

 
Figure 1 Busy period 

The total length of gaps in complete server periods, 
not including the final server period, is given by: 
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The interference due to higher priority servers 
executing during the final server period that completes 
execution of task i!  is dependent on the amount of task 
execution that the server needs to complete before the 
end of the busy period. The exact interference can be 
calculated using information about server priorities, 
capacities and replenishment periods. 

Figure 1 illustrates the interference in the final server 
period. The extent to which the busy period  extends 
into the final server period is given by: 
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The full extent of the busy period, including 
interference from higher priority servers in the final 
server period, can be found using the recurrence relation 
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from [13], given by Equation (4): 
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where hp(S) is the set of servers with higher priority 
than server S. 

Recurrence starts with a value of 
and ends either when 

 in which case gives the task’s worst-
case response time or when  in which 
case the task is not schedulable. 
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Note the use of max(0, …) in the 3rd term in Equation 
(4) ensures that the extent to which the busy period 
extends into the final server period is not considered to 
be an interval of negative length. 

 
3. Server Parameter Selection 

 
In this section, we consider the problem of server 

parameter selection. 
The overall problem may be stated as follows: Given 

a set of applications to be scheduled, with each 
application allocated a single server, what is the optimum 
set of server parameters (priority, period and capacity) 
that leads to a schedulable system whilst preserving the 
maximum remaining processor utilisation. 

#
$%

"
serversX X

X
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C1      (5) 

We use remaining processor utilisation as a metric as 
this provides a broad measure of the processing time that 
could potentially be made available to other applications 
that might be added to the system. 

There are two sets of schedulability constraints on 
any given system. 

1. The servers must have worst-case response 
times that do not exceed their periods. (Each 
server S must guarantee to provide capacity  
in each of its periods T ). 

SC
S

2. The tasks executed by the servers must have 
worst-case response times that do not exceed 
their deadlines. 

The problem of server parameter selection can be 
generalized further by permitting more than one server to 
be used to handle each application (i.e. statically 
allocating the tasks from a single application to more 
than one server) this is however beyond the scope of this 
paper. 

 
3.1. Determining Server Capacities 

In this section, we consider the sub-problem of 
determining server capacities given a known set of server 
priorities and periods. Given these parameters, we can 

use the following algorithm to derive the optimal set of 
server capacities for the set of server periods and 
priorities provided. 
OPTIMAL SERVER CAPACITY ALLOCATION ALGORITHM 
for each server, highest priority first 
{ 
 binary search between 0 and the 
 server period for the minimum capacity 
 Z that results in the server and its 
 tasks being schedulable. 
 if no schedulable capacity found 
 { 
  exit system not schedulable 
 } 
 else 
 { 
  set the capacity of the server to Z 
 } 
} 

This algorithm works because: 
1. The capacities of lower priority servers are not 

required when determining the schedulability of a 
higher priority server or the tasks that it services. 

2. Any increase in the capacity of a higher priority 
server cannot decrease the response time of a lower 
priority server or the tasks it schedules. Hence 
increasing the capacity of a higher priority server 
beyond that determined by the above algorithm 
cannot lead to a lower priority server requiring less 
capacity to schedule its tasks. 

Thus the set of minimum server capacities calculated in 
descending priority order are optimal for the given set of 
server priorities and periods. 
 
3.2. Determining Server Priorities 

For a set of Periodic Servers, rate-monotonic priority 
ordering (RMPO) [19] is the optimal priority ordering 
with respect to server schedulability. However, when 
task schedulability is considered, RMPO is no longer 
optimal, as shown by the examples in Sections 3.4 and 
4.1. Similarly, deadline-monotonic priority assignment 
[20] based on the deadline of the shortest deadline task in 
each application is not optimal either. 

For the sub-problem where server periods and 
capacities are known then a feasible priority ordering can 
be determined, if one exists, using a variation on the 
Optimal Priority Assignment Algorithm devised by 
Audsley [11]. 
The algorithm, given below, works because: 
1. The specific priority ordering of higher priority 

servers has no effect on the schedulability of a lower 
priority server or the tasks that it executes. 

2. The parameters selected for a low priority server 
have no bearing on the schedulability of the higher 
priority servers or the tasks that they execute. 

The optimal server priority assignment algorithm 
requires n(n+1)/2 tests of server and associated task 
schedulability compared to the n! potential server 
priority orderings. 
 Note, as the server periods and capacities are fixed 
in this case, the remaining processor utilisation does not 
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change with different priority orderings, instead, the 
algorithm given below is optimal in the sense that it 
always finds a feasible priority ordering if such a priority 
ordering exists. The interested reader is directed to [11] 
for proof of why this method is optimal, despite the fact 
that it makes a greedy allocation, assigning the first 
unallocated yet schedulable server found to each priority 
level. 
 
OPTIMAL SERVER PRIORITY ASSIGNMENT ALGORITHM 
for each priority level, lowest first 
{ 
 for each unallocated server 
 { 
  if the server and its tasks are  
  schedulable at this priority level 
  { 
   allocate server to this priority 
   break (continue with outer loop) 
  } 
 } 
 return unschedulable 
} 
return schedulable 

 
3.3. Determining Server Periods 

If the server priorities and capacities are fixed, then a 
set of server periods can be systematically derived using 
the algorithm given below. 
OPTIMAL SERVER PERIOD ALLOCATION ALGORITHM 
for each server, highest priority first 
{ 
 binary search for the maximum server 
 period Z that results in the server and 
 its tasks being schedulable. 
 if no schedulable period found 
 { 
  exit system not schedulable 
 } 
 else 
 { 
  set the period of the server to Z 
 } 
} 

This algorithm works because: 
1. The parameters selected for a low priority server 

have no bearing on the schedulability of the higher 
priority servers or the tasks that they execute. 

2. The interference on lower priority servers and the 
tasks they execute is monotonically non-increasing 
with respect to increases in the period of each higher 
priority server. 

The optimal server period allocation algorithm given 
above is optimal for the given set of server priorities and 
capacities, in the sense that the servers will have the 
minimum total utilisation and the system will be 
schedulable with this set of server periods if it is 
schedulable for any selection of server periods. 
 
3.4. Overall parameter selection 

Although it is possible to systematically derive one of 
the server parameters (priority, period or capacity) if the 
other two are fixed, this still leaves the general problem 
of server parameter selection. 

Our experiments have shown that even if the problem 
is simplified by fixing server priorities, it is still difficult 
to find the combination of server periods and capacities 
required to achieve the minimum total utilisation. This is 
because the set of period and capacity values for each 
server that result in the minimum total utilisation (global 
optima), do not necessarily correspond to those values 
that result in the minimum utilisation for any of the 
servers taken individually (local optima). This can be 
seen in systems of just two servers. Typically the period-
capacity pair that results in the minimum utilisation for 
the higher priority server has a long period and large 
capacity; however, as a consequence of the large 
capacity of the higher priority server, the period of the 
lower priority server has to be reduced, increasing its 
overall utilisation. In fact, the lower priority server and 
its tasks may simply be unschedulable due to the large 
amount of interference from the higher priority server. 
Halving the period of the higher priority server increases 
its utilisation, as a result of overheads, but also typically 
allows the lower priority server to have a much longer 
period for the same capacity. Although a shorter period 
for the higher priority server results in a larger utilisation 
for that server, this can be more than compensated for by 
a reduction in utilisation of the lower priority server. 

Example: 
Consider two Periodic Servers A  and B . Each 

server has a single (unbound) hard real-time task to 
accommodate. The task parameters are given in the table 
below: 

S S

Table 1 

Task Ci Ti Di Server 

1!  10 20 20 AS  
2!  4 24 24 BS  

Further, assume that server context switch 
overheads2 are 1 time unit and that the processor needs 
to provide each invocation of a server with this context 
switch time before it can execute its tasks. 

Now consider the choice of server periods, assuming 
that A  has the higher priority. The lowest utilisation for 

A  occurs for a period of 20 and a capacity of 11 (55% 
utilisation). However, with these parameters for A  
there are no parameters for B  that result in a 
schedulable system. To accomodate task 

S
S

S
S

2! , the period 
of  is constrained according to:  BS

2)( CnTCT BABBB * D5C **"  
and so 13)1( 5* BTn

S
 where n+1 is the number of 

invocations of B  that are used to service task 2! . Also 
for B  to be schedulable BAB . Thus possible 
periods for B  are constrained to lie in the range 11 to 
13 with a maximum possible capacity for BS of 2. None 
of these parameter selections result in task 

S CCT *6
S

2!  being 
schedulable. 
                                                 
2 Such overheads are incorporated in our analysis, by assuming that 
each server must utilise part of its capacity for the context switch to it, 
prior to executing any of its tasks.  
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However if we choose 10+AT ,  then AS  has 
a utilisation of 60% which is 5% greater than before. 
However, B  is now just schedulable with 

6+AC

S 9+BT , 
 (33.3% utilisation). The overall server utilisation 

is 93.3%. Note that the servers are in the reverse of rate-
monotonic priority order. 

3+BC

 
3.5. Greedy Algorithms 

In this section, we compare the performance of a 
greedy method of server parameter selection with that of 
optimal parameter selection. 

The greedy algorithm proceeds as follows. For each 
server, highest priority first: scan through the range of 
potential server periods. For each possible server period, 
use a binary search to determine the minimum possible 
server capacity. Select the pair of server parameters 
(period and capacity) that provide the minimum 
utilisation for the server (local optima). This process is 
then repeated for each lower priority server in turn. 

For comparison purposes an exhaustive search of 
possible server period combinations was used to 
determine the optimal selection of periods and capacities. 
This was possible for simple systems comprising just 
two applications. For each combination of server 
periods, the optimal server capacities were computed 
using the algorithm described in Section 3.1. This 
method yields the global optima. 

Our experimental investigation involved generating 
simulated systems comprising two applications of 3 
unbound tasks each with overall task utilisation levels of 
40 to 85%. 100 systems were generated for each 
utilisation level. For each system we then used the 
greedy and exhaustive (optimal) algorithms to select 
server periods and capacities. Note that the server 
priority ordering was fixed and the use of Periodic 
Servers was assumed. 

 
Figure 2 

Figure 2 shows the performance of the greedy 
algorithm in terms of the number of systems it was able 
to schedule compared to the optimal algorithm. At low 
system utilisations, the greedy approach is able to find a 
schedulable set of server parameters however its 
performance drops off significantly before that of the 
optimal algorithm. We also compared the number of 
solutions that the greedy algorithm produced that were 

within 1% of the optimal server utilisation levels. It is 
apparent from the graph that even at relatively low 
utilisation levels, the greedy approach results in a large 
number of sub-optimal solutions. 

We would expect that the performance of the greedy 
approach to deteriorate with an increasing number of 
servers. As performance is relatively poor even for two 
server systems, this approach has little to recommend it. 

To summarise, in the general case, server parameter 
selection does not appear to have an analytical solution. 
The best that we can achieve is to select server priorities 
and periods according to some search algorithm 
(potentially exhaustive search in the case of simple 
systems) and to derive the optimal set of server 
capacities via a binary search using the analysis 
presented in section 3. 

It is clear that any approach to server parameter 
selection based on determining the best parameters for a 
single server in isolation is flawed. The parameters 
chosen for one server influence the choice of feasible 
parameters for others servers in such a way that choosing 
solutions that are locally optimal does not typically lead 
to a globally optimal solution. 

 
4. Empirical Investigation 

 
In this section we present the results of empirical 

investigations into the selection of server parameters for 
simple systems. 

The aim of these investigations is to highlight 
interesting properties of the server parameter selection 
problem, which may be useful in devising solutions that 
are appropriate for real systems. The algorithms and 
techniques that we use in our investigation, such as 
exhaustive search, are not intended as solutions to the 
general problem, they are merely tools with which to 
improve our understanding. We therefore give no 
analysis of the complexity or execution time of these 
methods. Similarly, the tasksets used in the experiments 
detailed here are not meant to reflect the sets of tasks 
found in real applications; instead, simple tasksets were 
used so that we could reason about the properties that 
they have in common with real systems, such as 
harmonic / non-harmonic task periods, and periods that 
are multiplies of the server period. 

With systems comprising just two Periodic Servers, it 
is possible to exhaustively evaluate all possible 
combinations of server periods. In this experimental 
investigation, we used a binary search and the algorithm 
presented in section 3.1, to determine the minimum 
capacity for each Periodic Server, for every possible 
combination of server periods. 

The results of the experiments are presented as 3-D 
graphs of the remaining processor utilisation: 

#
$%

"
serversX X

X

T
C1  

The remaining utilisation (z-axis) is plotted against 
the period of the lower priority server (x-axis) and the 
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period of the higher priority server (y-axis). The 
remaining utilisation surface is colour coded according 
to its value. Peaks in the surface represent the best 
choices of server periods. 

Although it is possible to understand and interpret the 
figures in this section when they are viewed in black and 
white on a printed copy, the figures are clearer when 
displayed in colour. It is therefore suggested that readers 
view this paper online; the figures will then appear in 
colour. 

 
4.1. Experiment 1 

In this experiment, we used a simple taskset 
comprising the three tasks given in Table 2 below. 

Table 2 

Priority Exec. Time Period Deadline 
1 5 50 50 
2 7 125 125 
3 6 300 300 

Each server was required to execute a copy of this 
taskset, thus making the server priority ordering 
irrelevant. A server context switch overhead of 2 time 
units was assumed. 

Figure 3 illustrates the remaining processor 
utilisation for all combinations of low priority (LP) and 
high priority (HP) server periods in the range 4-100. In 
this case, all the tasks were considered to be unbound, 
irrespective of whether their periods were a multiple of 
the server’s period. 

 
Figure 3 

The graph shows a jagged landscape of remaining 
utilisation, dependent on the relationship between the 
server periods and those of the tasks. The peaks in 
remaining utilisation are closer together at shorter server 
periods. This is because the peaks relate to values of the 

server periods that are fractions of the task periods. For 
example: 1/6, 1/5, 1/4, 1/3, 1/2. 

A number of interesting features are visible in the 
graph. In the region indicated by label “A”, the low 
priority server’s period exceeds that of the highest 
priority task it must execute, this results in the server’s 
capacity increasing with each increase in its period, 
leading to a significant tail off in the remaining processor 
utilisation. In the region indicated by label “B”, long 
high priority server periods and the resultant large 
capacity of that server result in the low priority server 
being unschedulable with relatively short periods. 

The optimal selection of server periods ( 50+HPT and 
43+LPT ) gives a maximum remaining utilisation of 

52.4%. Note this optimum selection of parameters has 
the servers in the opposite of rate-monotonic priority 
ordering. This is a clear example of the fact that although 
the optimum priority ordering for Periodic Servers is 
rate-monotonic when only server schedulability is 
considered, this is not the case when task schedulability 
is also a factor. 

 
Figure 4 

Figure 4 shows a very similar graph to Figure 3; 
however, this time whenever a server’s period is an exact 
divisor of the period of a task, that task is bound to the 
server. This results in two increased ‘ridges’ with respect 
to treating the tasks as always being unbound. These 
ridges occur for low priority server periods of 25 and 50. 

Comparing Figure 3 and Figure 4 shows that 
allowing tasks to be bound to the release of their server 
results in a change in the optimal server parameters. 
With bound tasks, the maximum remaining utilisation of 
54% occurs when both servers have a period of 50, 
which is a harmonic of two of the task periods (50 and 
300). 

It is interesting to note that there are no additional 
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ridges corresponding to particular values of the high 
priority server period, despite the fact that this server 
executes an identical taskset. The reason for this is that 
in the case of the highest priority server only, if a task’s 
deadline is equal to its period and is also an exact 
multiple of the server’s period, then the amount of 
execution time that a server of a given capacity can make 
available to the task is the same irrespective of whether 
the task is bound to the release of the server or not. As 
the task’s period is an exact multiple n of the server’s 
period, then in both bound and unbound cases, the server 
can make exactly n times its capacity available by the 
task’s deadline (which is also equal to n times the 
server’s period), hence there is no observable advantage 
in tasks being bound to the high priority server in this 
case. 

 
4.2. Experiment 2 

In this experiment we used a simple taskset 
comprising the four tasks given in Table 3 below. Each 
server was required to execute a copy of this taskset, 
making the server priority ordering irrelevant. Again a 
server context switch overhead of 2 time units was 
assumed. 

Table 3 

Priority Exec. T ime Period Deadline 
1 8 160 100 
2 12 240 200 
3 16 320 300 
4 24 480 400 

In this case, the task periods and deadlines were 
chosen to emphasize the effect of having tasks bound to 
the release of the server. The task periods were chosen 
such that they would be harmonics of a number of 
different server periods. Further, the task deadlines were 
chosen to be strictly less than the corresponding task 
periods as this also enhances the difference between the 
server capacity required if tasks are treated as bound 
versus unbound. It should however be noted that this 
taskset is a reasonable one: there are many real world 
systems that have such harmonic relationships between 
their task periods.  

Figure 5 illustrates the remaining processor 
utilisation for various server periods for the taskset in 
Table 3. In this case, all the tasks were assumed to be 
unbound. The optimal selection of server periods 
( and ) gives a maximum remaining 
utilisation of 42.875%. 

64+HPT 100+LPT

By comparison, Figure 6 illustrates the remaining 
utilisation for various server periods when tasks can 
potentially be bound to the servers. A task is treated as 
being bound to its server if the task’s period is an exact 
multiple of the server’s period. Note that Figure 6 shows 
only data for those server periods that result in one or 
more bound tasks and where the resultant remaining 
utilisation is higher than it would otherwise be if all the 
tasks were treated as being unbound. This makes it easy 

to see the advantage of binding tasks to the servers. 

 
Figure 5 

 

 
Figure 6 

There are a large number of possible server periods 
that the task periods are harmonics of. The harmonic 
periods that provide an advantage in terms of reduced 
server capacity are 16, 20, 32, 40, 48, 60, 64, 80, 96 and 
160 in the case of the low priority server and 48, 60, 96, 
120 and 160 for the high priority server. The optimal 
selection of server periods ( and 160+HPT 160+LPT ) 
gives a maximum remaining utilisation of 51.25%. This 
is a significant increase in remaining utilisation 
compared with treating all the tasks as unbound 
(42.875%). 
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Recall that task deadlines were less than periods for 
the taskset used in this experiment. This highlights the 
difference between the analysis of bound and unbound 
tasks. If a task is unbound, then for server periods greater 
than the task’s deadline, the server’s capacity has to 
increase significantly to ensure that the task is 
schedulable, resulting in a marked reduction in 
remaining utilisation. This is not the case when a task is 
bound to the server, with both task and server sharing the 
same period, a short deadline task may be schedulable 
for a small server capacity. 

Permitting tasks to be bound to their server results in 
solutions that are very different, in terms of server 
utilisation, from those that are available when all the 
tasks are unbound. 

It is interesting to note that the optimum selection of 
server periods occurs as a spike in the remaining 
utilisation surface. This has implications for search 
techniques aimed at determining the optimal selection of 
server parameters. Given such a discontinuous 
landscape, a general-purpose search technique such as 
simulated annealing or genetic algorithms may not be 
effective without the use of heuristics to locate potential 
good solutions based on harmonics. 

 
4.3. Additional Experiments 

We performed a number of additional experiments 
similar to those described earlier. The basic trends 
visible in these experiments were as follow: 
7 Number of tasks: Increasing the number of tasks in 

an application (or more correctly increasing the 
number of distinct task periods) results in a change 
in the topology of the remaining utilisation 
landscape. More tasks imply an increased number of 
valleys each with less depth. With 10 or more tasks 
with co-prime periods precise choice of server 
period becomes less important. In this case there is a 
region of values that give similar levels of remaining 
utilisation. 

7 Harmonic task periods: If a period can be chosen for 
the server that exactly divides a number of task 
periods and those tasks can be bound to the server 
then a significant increase in remaining utilisation 
can be achieved. 

7 Deadline less than period: Binding tasks to a server 
appears to have the biggest impact when the shortest 
deadline task is bound to the server. This is because 
the range of values possible for the server’s period is 
effectively constrained to less than the shortest task 
deadline in the case of unbound tasks and to less 
than the shortest task period in the case of bound 
tasks. Permitting a greater useful range of server 
periods typically results in better solutions as longer 
server periods lead to lower overheads. 

 
5. Summary and conclusions 

 
In this paper we investigated the problem of selecting 

appropriate server parameters for a single processor 

system, running multiple applications using hierarchical 
fixed priority pre-emptive scheduling. The motivation 
for this work comes from the automotive, avionics and 
other industries where the advent of high performance 
microprocessors is now making it both possible and cost 
effective to implement multiple applications on a single 
platform. 

 
5.1. Contribution 
The major contributions of this work are as follows: 
7 Providing a set of algorithms that determine the 

optimal value for one server parameter (capacity, 
period, or priority) when the other two parameters 
are fixed. 

7 Showing that in general server parameter selection is 
a holistic problem. It is not sufficient to determine 
the optimal set of server parameters for each server 
in isolation as these parameters have an effect on the 
choice of possible values for other servers. Deriving 
local optima (for each server) does not lead to the 
globally optimal solution. 

7 Showing that whilst Rate Monotonic Priority 
Assignment (RMPO) is the optimal priority 
assignment policy for Periodic Servers when only 
server schedulability is considered, this is no longer 
the case when the schedulability of tasks executed 
by the server is also taken into account. 

7 Illustrating the increase in remaining utilisation 
(spare capacity) that can be achieved by choosing 
server periods that are exact divisors of their task 
periods. This enables tasks to be bound to the 
release of their server, greatly enhancing task 
schedulability. 

 
5.2. Future work 

Today it is possible using the analysis techniques 
described in this paper to determine the optimal set of 
server parameters via an exhaustive search of possible 
periods and priorities for simple systems comprising 3 or 
4 applications. Further work is required to provide an 
effective algorithm capable of choosing an optimal or 
close to optimal set of server parameters given systems 
comprising ten or more applications. 

A global optimisation technique such as simulated 
annealing or genetic algorithms could possibly be used 
as the high-level search method, with selection of locally 
optimal server capacities via a binary search. It should be 
noted however that the spiky topography of the 
remaining utilisation surface makes effective search 
difficult. As an alternative approach, the use of 
heuristics, such as checking all possible combinations of 
harmonics, may be effective in some cases. 

Another interesting area of future research involves 
incorporating Quality of Service (QoS) requirements into 
hierarchical fixed priority pre-emptive systems. Here 
additional servers could be deployed at both levels in the 
hierarchy to make spare capacity available responsively. 
An interesting alternative would be to use Dual Priority 
Scheduling [17] as the policy of choice at both global 
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and local scheduling levels. 
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