
HAL Id: inria-00336514
https://inria.hal.science/inria-00336514

Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delay Evaluation and Compensation in
Ethernet-Networked Control Systems

Boussad Addad, Saïd Amari

To cite this version:
Boussad Addad, Saïd Amari. Delay Evaluation and Compensation in Ethernet-Networked Control
Systems. 16th International Conference on Real-Time and Network Systems (RTNS 2008), Isabelle
Puaut, Oct 2008, Rennes, France. �inria-00336514�

https://inria.hal.science/inria-00336514
https://hal.archives-ouvertes.fr

Delay Evaluation and Compensation in Ethernet-Networked Control Systems

Boussad Addad, Said Amari
LURPA ENS Cachan, 61 av du Président Wilson, 94235 Cedex France

{surname.name}@lurpa.ens-cachan.fr

Abstract

Research in networked control systems (NCS), deals

with both communication networks and control.
Usually, these two points of view are treated
separately and rarely together in the same context. In
this paper, an overall study of a networked control
system is presented. First, a formal method to evaluate
the response time of Ethernet-based automation
architectures using a client server protocol is
presented. It is based on a modeling by the use of
timed event graphs and Max-plus algebra. An
algorithm and analytical formulas to evaluate the
response time are obtained. This approach is validated
using measurements taken on a real platform.
Thereafter, the results are used in the synthesis of a
Smith predictor-based delay compensation strategy to
improve the performance of the whole NCS.

1. Introduction

Nowadays automation architectures consist of many
intelligent devices connected by a local or global
communication network. Indeed, many benefits are
achieved in developing networked control systems
(NCSs). At the beginning, it was essentially to reduce
the system wirings and to ease the information
exchange between the different components of the
system. Later, the trend was the use of the same
network technology at all levels in the industrial
organizations; management and automation. A solution
that supports such vertical integration had to be able to
provide high throughputs in upper level as well as
small and accurate response time in field level.
Ethernet solutions that were initially developed to
office networks can be considered as a new generation
of fieldbuses. Currently many automation producers
and alliances developed their own industrial Ethernet
standard [1]. Each solution with a specific protocol is
best suited to a particular application. A client server
protocol like Modbus TCP/IP, even not adequate for

strict real time applications as motion control, is a
simple and a reasonable solution for many purposes in
industrial control systems. However, with such
protocol, no global resource scheduling is available
and different delays due to waiting for resource
availability or synchronization are caused. So, the
evaluation of its temporal performances like the
response time is complex and the investigations that
deal with this problem are rare. The existing methods
are often based on simulation or experimental
measurements [2]. Among them, we find exhaustive
space exploration method based on stochastic or not
model checking [3], [4]. It is not adequate for response
time distribution calculus and the computing limits are
quickly reached because of the state explosion
problem. Another method uses high level colored Petri
nets model and cases simulation with CPNTools [5],
[6]. A worst case classical method is also possible by
ignoring all dependencies in the system and
considering only pessimistic situations [7]. In this
paper, we present a novel method we developed to
asses the response time either by the use of an easy
implemented simulation algorithm or analytical
formulas for a trivial calculus.

The previous section is somewhat devoted to the
networking community that deals with communication
networks and protocols. Another community is that
which is interested in networked control strategies.
Approaching the control problem in NCS can be
achieved in two main different ways. The control is
synthesized by ignoring the delay whereas a network
scheduling is performed so as to minimize this induced
delay. The other one is to consider the priori induced
delay and look for adequate control strategies to
compensate its negative effect on the NCS. During the
last years, this topic has been actively studied and
many compensation strategies are proposed. Some
recent works without being exhaustive, apply control
theory like robust control [8], LMI based control [9],
fuzzy logic control [10], and Smith predictor-based
compensation control [11]. In these papers, it is usually
assumed that information about the delay like upper

139

bound, mean, distribution or other features are known
in advance. To our knowledge, the studies that
consider both the control synthesis and the induced
delay evaluation are rare. When it is the case as in [12]
for instance, the application protocol due delays are
ignored. It is better but not enough in NCS using client
server protocol since the delays due to waiting for
resources availability or synchronization are
considerable and above all, time varying. They have to
be taken into account.

This paper tackles the gap that still exists between
the different communities. Indeed, we firstly develop a
formal method to assess the response time of the whole
automation architecture before to move on to the
synthesis of a compensation and control strategy using
these results.

The rest of this paper is organized as follows: first a
brief recall about the timed event graphs (TEGs) and
their modeling using the Max-Plus algebra is
presented. Then in section 3, they are used for the
modeling of the considered automation architecture.
An algorithm and analytical formulas for direct
calculus of the response times are obtained. In section
4, we check their validity by comparing them with
experimental measurements obtained on a patented
laboratory platform [13]. After in section 5, the results
are used to synthesize a Smith predictor-based
compensation strategy so as to improve the NCS
performances. Finally, a short conclusion and some
prospects are given in the last section.

2. Timed event graphs/Max-Plus algebra

 An event graph is an ordinary Petri net where all
the places have at most one upstream and one
downstream transition. An event graph is timed if the
transitions or the places are affected with delays. We
note the number of transitions with at least one
place upstream and the number of source
transitions . The only place relying the transitions

and is noted and its delay . In the modeling

of our study (section 3), we assign simply a delay
to a place .

n

it

m
ut

ip

jt

iτ
ijp ijτ

To study the dynamic behaviour of a timed event
graph, we associate to each transition the date of its
firing for time. It is noted for a source
transition and for other transitions.

thk ()iu k
()j kθ

Example:

tu2t1

3 1

tu1
Figure 1. Example of TEG.

 The timed graph of the example leads to the equation:

, that represents

the date of firing the transition for the time. It
is a linear equation in the Max-Plus algebra. Indeed, a
new algebraic structure emerged around two laws. The
classical maximum noted indifferently or “max”
with a neutral element and the classical
addition noted with a neutral element . More
details about this algebra are available in [14]. So, the
previous equation can be rewritten using these laws as:

1 1 2() max(1 (1),3 (1))k u k u kθ = + − + −

1t

ε = −∞
⊗

thk

0e =

⊕

1 1 2() (1 (1)) (3 (1))k u k u kθ = ⊗ − ⊕ ⊗ − (1)
In general, the behaviour of a TEG can be expressed
by the following Max-Plus linear equation:

0
() (() ()),k A k B u kϕ ϕϕ

θ θ ϕ ϕ
≥

= ⊕ ⊗ − ⊕ ⊗ −

()kθ ()u k
n m

thk

 (2)

where the vectors and components are the
firing times of the and transitions of the system
for the time. The matrix Aϕ with the element ,ijAϕ
represents the delay associated to the place
(with the marking

ijτ ijp
ϕ) if it exists and the neutral

element else. Similarly for ε Bϕ , it corresponds to the
delays of the places downstream of the source
transitions.
 In an analogous manner as in usual linear systems,
this form can be brought to a state space representation
by replacing all the places with markings 1ijϕ > by

ijϕ other places with (intermediate transitions.
Hence, we obtain an extended system with a state
vector

1ijϕ −)

()x k with components where the
number of added transitions.

(')n n+ 'n

The new system is now described by the equation:

0 1
ˆ ˆ ˆ() () (1) (),x k A x k A x k B u k= ⊗ ⊕ ⊗ − ⊕ ⊗ (3)

can be rewritten in an explicit form:
() (1) (),x k A x k B u k= ⊗ − ⊕ ⊗

0 1
ˆ ˆ

 (4)

where A A A∗= ⊗ 0
ˆ ˆB A∗= ⊗ , and B 0

ˆ i

i 0
ˆA A∗

∈
= ⊕

!
 is the

Kleene star of 0Â .
 The last formulations (3) and (4) permit to point out
that the dynamic behaviour of a timed event graph is
determinist, depending only on the source transitions
and the initial conditions [15].

140

3. Modeling and response time evaluation

In this study, the automation architecture works
according to Modbus TCP/IP client server protocol.
The communication module of the PLC
(programmable logic controller) is the client and the
remote input output modules (RIOMs) are the servers.
The considered PLC comprises two modules, the CPU
(central processing unit) that executes the user
program and the Ethernet board (ETHb) that sends
requests (combined requests: read and write data) to
the RIOMs. They operate cyclically but are not
synchronized. The CPU accomplishes periodically the
tasks: reading inputs, execution of user program and
update of the outputs with respect of the cycle period.
Regardless of the CPU, the ETHb sends requests to
RIOMs and waits for the returned answers. Once all
answers arrived, it waits the end of cycle time to begin
a new scanning. In this study, no frames loss or time-
out have to be taken into account.

NET
PLC

RIOM D r

1 2 3 4 5

S D

Figure 2. Automation architecture

Whatever is the used protocol in the automation

architecture, a major criterion of real time
performances evaluation is the response time . It is
the delay between the occurrence of an event on the
plant and the occurrence of the reaction event issued
from the controller, on the controlled plant (Figure 2).
Two cases are to be considered in control
architectures. It may be, for instance, the reaction delay
to the detection of danger. In this case the evaluation
of the maximal bound of the reaction time is of top
priority. However, if the automation system concerns
cyclical control, it is distribution rather than bounds of
the response time that is more important to assess.

rD

In our work, we consider the general case
regardless of the consequences of the occurring events.

3.1. Architecture modeling with TEGs

According to the previous description of the
architecture, we got to the model of Figure 3. It
comprises two independent TEGs: one at the left that
models the CPU and the other at the right for the rest

of the system. This model is very abstract and
represents only the application layer protocol. It is over
TCP/IP and all what is linked to these protocols can be
simply represented by abstract processing steps. We
are looking for time performances and only these
phases due delays interest us. They can be obtained
experimentally and sometimes from the components
vendors. So, the details about these delays are out of
our study and they are supposed known beforehand.

In Figure 3, we assigned simply a delay to a
place . So, the places , and with delays

 and of the CPU, model respectively the
phases of waiting, user program execution during

 (reading and writing included), CPU busy and
finally CPU idle. So, we easily note the periodical
operating of the CPU with cycle period noted

. Similarly, is the scanning period of
the ETHb and a token in the place means it is busy
during at least this period. The requests are sent from
the ETHb in an invariant order as shown on Figure 3.
The RIOMs are affected with indexes according to the
order of their scanning. We associate the index i to the
RIOM receiving the request from the ETHb.
Particularly, and

iτ

3τ
T

ip

3, ,τ
1 2 3, ,p p p

thi

4p

1 2τ τ

CLCT

CPUT

4τ

SN

15τ SCN

15p

DN

i

 are the indexes assigned to
respectively the event source (S) and destination (D) of
its consequence. On Figure 2 for example, and

. The model comprises scanned RIOMs and

therefore 1 . So, the sending of the request
starts by firing the transition (except for the first

where it is) and finishes by firing , or
being the required time to send a frame. A token in

 means that all the requests are sent and the ETHb
is waiting for the answers. The places and
model the network (a store and forward switch in our
study) delays imposed to the sent request and the
corresponding returned answer. The separation of
these places is made possible since the links are full
duplex and colliding is not possible. Once this answer
arrives to the input buffer of the ETHb in , it is put
in a FIFO queue for a time . According to the
FIFO policy, once its turn arrives, it is processed and
copied into the shared memory with the CPU in a time
equal to T (practically negligible). The places

, and represent the scanned

RIOM. It stays waiting in until the i request
arrives to its input buffer . By firing , the

2

T

p

S =

th

7it

N

τ

13

th

4=

8 9, ,i i

DN

14p

p p

N

5(1)it −

thi

13iτ

9ip

8ip

i≤ ≤ N

p

i

6i

i

th

4

CPY

i

t

10p

5it

7ip

p

i

EM

12i

11

141

processing starts and goes on for a time equal to
. At the end, it puts the answer in its output

buffer . On Figure 3, only the first RIOM is
represented since all the RIOMs are modeled similarly.

10iτ

or

/I OiT

11ip

SCNT

The grey arrows represent the source (data coming
from the sensor) and output (data toward the actuator).
They are not considered at this stage since the system
is not constrained and data are available at the output
of the sensor as long as it is functional. Another reason
is that at every scanning cycle, an event is generated at
the input and we are interested in its corresponding
response time. In this way, we are sure to consider all
the possible situations in the system and therefore the
calculated bounds are formal as we will see later.

To solve the problem of conflicts due to sharing the
switch and the ETHb, we introduce variable delays
that a frame suffers according to its arrival to these
shared resources. This is made possible since all the
responses come back before the considered scanning
period elapses. The blue places represent the
switch delays affecting the sent requests and the
yellow places the delays affecting the returned
responses. Finally, the green places represent the
delays in the FIFO queue of responses sharing the
input buffer of the ETHb. So, this solution is initially
graphical with TEGs and subsequently analytical to
calculate the variable delays of the colored places. For
this purpose, we introduce the function to

define the order of arrival of the frames to a shared
resource. So, gives the order of the sent

request relative to the RIOM at the scanning
cycle and the order of arrival of the
corresponding response. In this paper, we define the
FIFO policy in the switch. Thus, at the scanning
cycle, the variable delays are given by:

7ip

13ip
12ip

der

(,)forder i l
thi

(,)border i l

7 '

'

10

(, ()

x(, ()

x(, ()

i SWf j

SWb j j

CPY j

l T

l T

l T

τ θ
τ θ
τ θ

= −
= −
= +

(,)j l order=

thl

thl

)

()

SWf

l

+
+
−

' 6=

5

12 9

13 13 10

() m ())

() ()

() ())

j i

i i SWb

i j i CPY

l l T

l l T

l l T

θ
θ
τ θ

!
""
#
"
"$

ax

ma

ma

der

 (5)

+

Where , if (,) 1x yor i l − j x f≡

and if ' 1= 0j x b≡ SWfT

71()τ

, and are the intrinsic
switch delays imposed respectively to a sent request
and a returned response. The system (5) is initialized
by considering the first frames to arrive to the switch
and the ETHb i.e. and

SWT

SWfl T=

b

13 ()j CPYl T=τ

4)τ

where . mi

1 2

(

k k
k k
k k

n()b bi
j i

1

2

3

(1))
()

)

τ
τ
τ

= − ⊗
= ⊗
= ⊗

=

By applying the method of the section 2 to the
model of the architecture with the initial conditions on
Figure 3, we got to the Max-Plus equations:

 (6)
3

2 1

3 1

() (((1)
()
()

kθ θ θ
θ θ
θ θ

⊕ − ⊗!
"
#
"
$

!2

!1

t1 t3

!3

!4

t2

!5

CPU

t4 t12

!14

!15

!16

t51

!61

!71

!12

!81
t61

t91

t11

t81 !11

!101

t71

!91

…

t5N

!6N

!7N
t6N …

…

!12N t9N

 RIOMs NET ETHb

…

!131 t101

!13N t10N

Figure 3. TEGs model of the Automation architecture.

142

4 11 5 12 16

50 4

5 5(1) 6

6 5 7

7 6 8 8 9

8 7 10

9 8

50

1

() ((1)) ((1))
() ()

1
() ()

() () ()
() (()) ((1))
() () ()

// : //

() ()

i i i

i i i

i i i i i

i i i

i i

only for loop initializati
l l l
l l

i to N
l l

l l l
l l l
l l l
l l

on
for

θ θ τ θ τ
θ θ

θ θ τ
θ θ τ
θ θ τ θ τ
θ θ τ
θ θ τ

θ

−

= − ⊗ ⊕ − ⊗
=
=

= ⊗
= ⊗
= ⊗ ⊕ − ⊗
= ⊗
= ⊗ 1

10 9 12

11 5 14 10 131

12 4 15

() () ()
() (()) (() ())

() ()

i

i i i

N jj N

l l l
l l l l

l l

endθ θ τ
θ θ τ θ τ

θ θ τ
≤ ≤

!
"
"
"
"
"
"
"
"
#
"
"
"
" = ⊗"
" = ⊗ ⊕ ⊕ ⊗
"
" = ⊗$

j

)

τ⊗

r

−

(7)

The systems (6) and (7) can be written in a similar
form as (4) but with time-variant matrix. As we can
note, they are assigned different indexes (k and l).
Indeed they are not synchronized, exactly like the CPU
and the ETHb. It is the main difficulty of this study.

3.2. Principle of the proposed method

First we solve (6) and (7) to find the dates of firing
the transitions as functions of the indexes k and l.
However, the systems are time-variant and their
resolution is not obvious. We bypass it by regarding
only the beginning of the two modules cycles .i.e. the
transitions and whose dates are trivially
obtained under the previous assumptions. The other
transition dates are deduced accordingly. So, the
resolution of the Max-Plus equations systems leads to:

1θ 4θ

1

2

3

() (1)
() (1)
()

CPU

CPU CLC

CPU

k k T
k k T T
k k T

θ
θ
θ

= − ⋅!
" = − ⋅ ⊗#
" = ⋅$

 (8)

Let us put the time between the
beginning of scanning and the reception of the
response from the event source. Then, we obtain the
equations:

4 50 4

5 5(1) 6

6 5 7

7 6 8 8 9

8 7 10

9 8 11

10 9 12

11 5 14 1

() (1) , () ();
1
() ()

() () ()
() (()) ((1))
() () ()
() ()
() () ()

() (())

SCN

i i i

i i i

i i i i i

i i i

i i i

i i i

N

l l T l l
i to N

l l

l l l
l l l
l l l

for

e
l l
l l dl n

l l

θ θ θ

θ θ τ
θ θ τ
θ θ τ θ τ
θ θ τ
θ θ τ
θ θ τ

θ θ τ

−

= − ⋅ =
=

= ⊗
= ⊗
= ⊗ ⊕ − ⊗
= ⊗
= ⊗
= ⊗

= ⊗ ⊕ ⊕ 10 13

12 4 15

(() ()

() ()

j jj N
l l

l l

θ τ

θ θ τ
≤ ≤

!
"
"
"
"
"
"
"
#
"
"
"
"
" ⊗
"
" = ⊗$

 (9)

The loop is used to avoid repeating the same calculus
for the N RIOMs. The variable delays involved in each

step are given by the calculus in (5).
 The second step of our method is the fusion of the
two systems (8) and (9). So, we have to consider the
important events that link the CPU and the ETHb. In
the model, the transition models only the fact that a
new cycle will not begin while all the responses are not
received. So, an important event to be considered is the
end of copy of the response frame coming from the
event source (S) to the shared memory with the CPU.
For this purpose, we introduce a virtual transition
that represents this important event i.e.

.

11t

13S S

Sθ

10 5 14() max(() (), ())S N N Nl l l lθ θ τ θ= +

Thus, in the previous solutions, only the equations that
represent the following events interest us:
- Beginning of a new CPU cycle (). 1θ
- End of processing in CPU and output update (). 2θ
- Beginning of a new scanning cycle (). 4θ
- Reception of the answer in the shared memory (). Sθ
Indeed, they are the events that link the CPU and the
ETHb. When the answer coming from the event source
arrives (), it is taken into account (with already
arrived responses) at the next beginning of the CPU
cycle (). They are read and used in calculus in the
CPU. Once the processing finishes, the results are
written in a shared memory with the ETHb ().
Finally, they are encapsulated in frames and sent in
order to the corresponding RIOMs at the next
beginning of the scanning cycle ().

Sθ

1θ

2θ

4θ
4() () (),r ST l l lθ θ= −

1

2

() (1)
() (1)

CPU

CPU CLC

k k T
k k T T

θ
θ

= − ⋅!
= − ⋅ +$

4 () (1)
() (1) ()

SCN

S SCN

l l T
l l T T l

θ
θ

= − ⋅!
= − ⋅ +$

thl
()S lθ
thm

()S lθ

1/ ()
min

Si i
m Arg

θ θ∈ >
=

!

minArg

 (10)

 (11)

At the scanning cycle, the answer is received at
time and to be taken into account, it has to wait

for (but immediate next one with respect to
) beginning of the CPU cycle. The condition to

check is: where

“ ” is the converse function which gives the
index that minimizes the positive term: .

1
()

(() ())S
l

i lθ θ

1(() ())Si lθ θ−

143

Hence, we introduce a new variable that represents

this event:
1̂θ

CLCT+1 2 1
ˆ () () () .l m mθ θ θ= =

2̂θ

2 4() ()l nθ θ=

4 1

4 1
/ () ()

ˆmin (() ())
j j l

rg j l
θ θ

θ θ
∈ >

= −

()l 8 ()
DN nθ

()e pθ

ˆ () ()r f el pθ θ= −

()e pθ p

thl

7
ˆ() () ()

S

As soon as the results of calculus are obtained, they
are written in a shared memory with the ETHb. At the
next beginning of scanning cycle, the one, the
results are encapsulated in the requests frames and sent
in order to the RIOMs. In similar way, we add another
new variable that represents this important event

with: and verifying the condition:

. So, the date of arrival

of the event consequence to the controlled process,
noted , is therefore . Finally, for the

event generated at a time and taken into account

at the scanning cycle, the associated response time
of the architecture is given by:

thn

ˆ

n A
!

ˆ
fθ

thl

thp

()D l (12)
This formula enables to have the distribution of the

response time if a model of generating the events is
given i.e. as a function of or l .

This delay is minimal if the data coming from the
sensor are used in processing in the RIOM (S)
immediately after they are generated. So the minimal
delay relative to the scanning cycle is:

MIND l f N fl l dθ θ= − + , (13)

fd being the delay due to data filtering in the sensor.
On the contrary, this delay is maximal if the data

arrived immediately after the beginning of the RIOM
processing relative to the previous scanning cycle. So,
it is given by:

7
ˆ() () (1)

SMAXD l f N fl lθ θ= − − + d (14)
These delays are always valid and it is the case if the
frequency of update of the sensor output is smaller
than the frequency of scanning. Else, some events may
be erased and not used in any processing. This case is
not useful to be considered since it is not really
necessary to the response time evaluation.

To sum up, the proposed method is achieved by
following the steps: modeling the architecture using
TEGs, writing the corresponding Max-Plus equations,
resolution of these equations and finally the
introduction of the secondary variables to their fusion.
Hence, we obtained an algorithm to evaluate the
response time of the architecture relative to any
occurring event. It is fast and easily implemented using
any programming language. The features of the system
are introduced as parameters with constant or variable

values and even stochastic. So, it is flexible for use for
different configurations of the architecture with
realistic time characteristics considerations.
Simulations of this algorithm are used to check the
validity of the formulas obtained next.

3.3. Analytical calculus of response time

The previous algorithm is enough to calculate the
bounds of the response time and its distribution.
However, it is preferable to have formal analytic
formulas giving directly these results, and above all,
eases the analysis of the influence of the architecture
parameters on its performances. It is the object of this
section. We use the results (10), (11) and the principle
of the previous algorithm.

Let us put: () ,r l CPU l CPUT l T Tα γ= ⋅ + ⋅

7

12 13

()

() ()),
S

S S S

M S EM N

N N N

N T l

l l l

τ
τ τ τ

⋅ +

+

with

 (15)
10

() max(,

()
r ET l N T= ⋅

+ +

where and lα lγ are respectively the entire part and
fractional part of the division result of by . ()rT l CPUT
Let us put also: CLC CPUT Tβ= ⋅ (1β <) and

SCN CPU CT r T PU CPUT Tρ ε+ ⋅= ⋅ = ⋅ where ρ and
are respectively the entire and fractional part of .

ε
r

At the scanning cycle, we have: thl
S Cr() (1) ()PU l ll l T Tθ α CPUγ= − + + ⋅⋅ ⋅ (16)

Let us take i where: ∈!
(1) (1)li l iγ ε≤ + ⋅ − < + (*)

For 1 (1) 1lk l iρ α− = − ⋅ + + +
() 1 ((1))S lk l i lγ ε= + + − + ⋅ −% &' (

 we get:
 (17) 1() Tθ θ ⋅ CPU

Since in (*) (1) (1)li l iγ ε≤ + ⋅ − < +

((1))S l l Tβ γ ε+ − + ⋅ − ⋅% &' (

, then:

. (18) 1̂() () 1l l iθ θ= + + CPU

PU

We have also:
4 () (1) CPUn n r Tθ = − ⋅ ⋅

4 () CPUn l r Tθ = ⋅ ⋅
 and for then:

 i.e.
1n l= +

4 1̂() () 1 (1)l Cn k r i l Tθ θ β α ε% &= + − + + + − ⋅ − ⋅% &' (' (. (19)

From (*), we deduce: 1 (1) 1l li lγ ε γ< + − ⋅ − ≤ +
Let us put: with: , 1 (1l i l i lα εΓ = + + − ⋅ −

l l

)

, 1l l l iα γ α γ+ < Γ ≤ +

,,
min ()

+ and note the bounds:

MIN l ii l∈ ∈
Γ = Γ

! !
 and ,,

max ()MAX l ii l∈ ∈
Γ = Γ

! !
.

So, (19) becomes: .

Thus, on condition Cd:
4 1 ,

ˆ() () ()l i CPUn k r Tθ θ β% &= + − + Γ ⋅' (
()MAXr β> + Γ

4 1)lθ + 8
ˆ () (1)

Df Nl lθ θ= +

, we can write:

 and ,
which implies:

2 4
ˆ () () (l nθ θ= =

144

8

8 7

8 7

ˆ () (1)

() (1) ()

() (1) (1)

D

D S

D S

f N

MIN N N f

MAX N N f

l l

D l l l d

D l l l d

θ θ
θ θ
θ θ

! = +
"" = + − +#
" = + − − +"$

 (20)

Finally:

8

() () (,1)
() 2 () (1,2)

() (1) ()
D

MIN SCN D S EM

MAX SCN D S EM

r N e

D l T N N T l
D l T N N T l
D p l pθ θ

! = + − ⋅ + ∆
"

= ⋅ + − ⋅ + ∆ −#
" = + −$

 (21)

where:
7 7 10(,) () () ()

D S DN N Nl q l q l l q dτ τ τ∆ = + − + + + f

)

2

1)
1)

)

10 (
DN l qτ +

(+

 being the processing time of the RIOM

(D) at the scanning cycle.)thl q
In practice the condition Cd is often respected and the
results (21) are valid since the scanning period is by far
longer than the period of the CPU (). SCN CPUT T"
But if the condition Cd is not respected, the calculus of
delays will depend on . So, the conditions of
bounds calculus are global (absolute) and the delay
condition relative to the generated event is local.

,l iΓ

thp
Thus, on the following global and local conditions:

{

1 1

2

3 , 3

() (
:

() (

: () (1

MIN

MAX

l i

r q r q
Global

r q r q

Local r q r q

β
β

β

⋅ > Γ + > ⋅ −!
⋅ > Γ + > ⋅ −$

⋅ > Γ + > ⋅ −
,

the generalized response times are:

1

2

8 3

() () (,)
() (1) () (1, 1)

() () ()
D

MIN SCN D S EM

MAX SCN D S EM

r N e

D l q T N N T l q
D l q T N N T l q
D p l q pθ θ

! = ⋅ + − ⋅ +∆
"

= + ⋅ + − ⋅ +∆ − +#
" = + −$

2 1q =
()

 (22)

We point out that the optimal case (where the maximal
bound is minimal) is obtained if () or the
condition Cd: MAXr β> + Γ is satisfied. In analysis,
two cases can be considered:

• (0)

)

r ε∈ =!
In this case and to satisfy (*), we have
to take simply and therefore the optimality
condition becomes Cd1:

, 1l i l iαΓ = + +
0i =

r (1lβ α> + + .

• (0)r ε+∈ ≠#
Let us put 1 2n nε = . Then it is enough to take

 and to obtain . This
implies

2(1)l − = n 1i n=
1

, 1l i lαΓ = +

MAXΓ ≥ lα+ and since the optimality
condition is: Cd2: ()MAXr β> + Γ , then we can deduce
that the condition Cd2 is more restrictive than Cd1.

It is an important result which suggests to fix the
period of scanning as a multiple of the period of the

CPU (of course minimize first), in order to
minimize the maximal bound of the response time.

CPUT

On the other hand, for a given architecture without
acyclic traffic and RIOMs with constant processing
times (or slightly varying which is case in practice),

 is practically invariant and we have to calculate it
only once. Thus, the formulae of (22) become:
∆

1

2

()
(1) ()

MIN SCN D S EM

MAX SCN D S EM

D q T N N T
D q T N N T

= ⋅ + − ⋅ + ∆!
= + ⋅ + − ⋅ + ∆$

 (23)

The results (22) and (23) are very interesting and to
minimize the response time, we should assign a great
index to the source and small one to the destination:
the order of scanning the RIOMs is important.
However, we have to keep in mind that the condition
of calculus of the delays depends on or (see
(15)) and we should decrease . So, the optimal case
is got by increasing while remains equal to 1.

()rT l lα
SN

2qSN

4. Validation

To check the validity of the model and the results
developed previously, we consider the configuration of
Figure 4. We compare the results obtained using
simulation of the algorithm and the developed
formulas with measurements taken on a laboratory
platform [13].
We are interested in the delay between an event
generated on the input of the RIOM R4 and its
consequence on the output of the RIOM R5. The
histograms of Figure 5 represent a series of 10,000
experimental measurements and simulations of the
algorithm for this configuration.

S D

PLC

R1 R2 R3 R5 R4

SW1 SW2

R6

Figure 4. Application architecture.

The CPU period is set up to 5 ms and scanning to

10 ms. However, in practice the architecture presents
a jitter of 15% with a maximum value of 10.74 ms and
a minimum of 9.24 ms. These bounds of time are used
in the formulas (21) to calculate the bounds of
response time. The jitter is also considered in the
algorithm by imposing a random distribution of
scanning cycles with a mean of 10 ms. We obtained
the results of Figure 5 and Table 1.

145

10 12 14 16 18 20 22 24
0

200

400

600

800

time (ms)

Meas
Sim

Figure 5. Histograms of measured (blue) and

simulated delays (red).

Table 1. Results of delays calculus.

Response delays in ms 2r = , 0.22lγ ≈ , ,0α =
0.6β = , , 1 1q = q2 1= Min Max Mean

Measures 10.65 21.25 16.40
Simulation 10.31 22.49 16.12
Formulas 10.31 22.49 /

Classical 5.91 32.44 /

As expected, the results of simulation of the

algorithm and the formulas are exactly the same in all
cases. Indeed, they are based on the same principle.

In all cases, we can conclude about the validity of
the formulas because the maximal delay is greater than
the measured one and smaller than the obtained using
the classical method (worst case method). On the other
hand, the minimum delay calculated using the formulas
or the algorithm is valid compared to the results of the
other methods. The gaps of delays, with respect to
measurements bounds, are in all cases smaller than
3.27% for analytical formulas or simulations. This gap
is only about 1.73% in the calculus of the mean of
responses times. A random event generator is used in
simulation to obtain realistic distribution of delays (to
offset effects of the jitter). Consequently, the shapes of
the measurements and simulations histograms are very
similar (Figure 5).

5. Application: Smith predictor synthesis

In the study, the plant and the control strategy are
ignored so far. However, the final aim is the
performance evaluation of the whole NCS. Whatever
is the controlled plant, the main feature of the NCSs is
the introduction of a delay that menaces the stability of
the system if it is over a critical value. The delay is not
removable but many solutions are proposed to
compensate its negative effect. The Smith predictor is
one of the most well known thanks to its simplicity and
effectiveness [11]. By the use of the developed results
of delays calculus, a Smith predictor is synthesized so

as to improve the performance of a classical PI
controller in presence of the induced varying delay in
the architecture.

5.1. Problem description

In NCS, the network induced delays are often taken
into account but those due to the communication
protocol and non synchronization, are ignored. By the
use of our early results of this study, all delays are
considered. Thus, the NCS can be represented by the
control loop on Figure 6.

()C s f se τ−

b se τ−

y
()G s

ref

Figure 6. Structure of the NCS.

where is the transfer function of controlled plant
and of the controller. In this paper, in order to
ease understanding, it is synthesized in continuous
time and subsequently discretized for implementation
(zero order holder is added). re and are
respectively the reference input and the output of the
plant.

()G s
()C s

f y

fτ

bτ

r fτ τ= +

 is the delay from the controller to the plant

and from the plant to the controller. Thus, their
sum is the response time calculated earlier i.e.

. So, the transfer function of the NCS is: bD

() ()()
1 () ()

f

r

s

D s
G s e C sF s

G s C s e

τ−

−
⋅ ⋅=

+ ⋅ ⋅
 (24)

From (24), it is clear that the presence of the delay in
the denominator will degrade the stability of the NCS.

5.2. Compensation strategy: Smith predictor

The smith predictor can be described as in Figure 7:

()oC s f se τ−
y

()G s
ref

Smith predictor controller
(1) ()mD se G s−− ⋅

b se τ−
Figure 7. NCS with Smith predictor.

where is a controller of the plant. is the
estimated response time of the architecture. So, the
transfer function of the whole system is:

()oC s mD

146

() ()
()

1 () () (1

f

mr

s
o

)D sD s
o

C s e G s
F s

C s G s e e

τ−

−−
⋅ ⋅=

+ ⋅ ⋅ + −
 (25)

If then: mD D= r

() ()
()

1 () ()

f s
o

o

C s e G s
F s

C s G s

τ−⋅ ⋅=
+ ⋅

 (26)

We see that the controller is to be synthesized
as if there is no delay. It is the big interest of the Smith
predictor. However, in NCSs it is difficult to assess the
response time exactly. So, to get a satisfactory
performance, we should have: . Else, the
stability of the system is menaced (positive poles).
This is possible by setting great enough but not
too. Else, the effect of the controller will be very slow
and the performances deteriorated. The maximal bound
of response time is a compromise between stability and
performance. Thus, it is to be well estimated. We are
going to see this by an application on concrete system.

()oC s

mD

mD D> r

5.3. Application and analysis

The goal being to show only the interest of our
earlier results concerning the response time evaluation
of networked automation architectures, we chose a first
order linear system and a classical PI controller given:

1 1()
1 5 3

zG s
Ts z

+= →
+ −

,
1 5 3() 0.3

1
i

o
T s zC s K
s z

+ −= →
−

Where the parameters are set to the values:
60K = , ms, ms. 20iT T= = 10sampling SCNT T= =

The result of simulation of the system under the
previous PI controller without any delay is shown on
Figure 7. As we see, the behaviour of the system is
very satisfactory. This will be our reference
performance when we will consider the varying
induced delays.

0 50 100 150 200 250 300
-0.2

0

0.2

0.4

0.6

0.8

1

time (x10 ms)

 y(t)
ref

Figure 7. NCS performance: without delay.

However, in NCS, there is always an induced delay.

So, we use the practical results of the section 4 by
considering an NCS with a jitter of 15%. We obtained
the NCS delays on Figure 8. We represented results of

only a period of 3s to see clearly and distinguish the
performances of the NCS under different conditions.

0 50 100 150 200 250 300
0

5

10

15

20

25

event

R
es

po
ns

e
tim

e
(m

s)

Figure 8. Architecture induced delays.

On Figure 8, it is clear that the changes of the

response time are sometimes very abrupt and therefore
an online delay estimator would not give perfect
results. So, we use an offline estimator (formula of
in (21)) giving the response time without considering
the jitter. To do this, we consider a sensor that updates
its outputs cyclically with the same frequency as
scanning but with a lag of : .

rD

0τ−0τ 7() ()
Se Np lθ θ=

So, the formula of (21) becomes:
8 7() ()

D Sm N ND l q lθ θ= + − + 0τ (27)
In the particular case of the previous practical
considered system (Figure 4), this is written:

/ 5 0m SCN EM I O fD T T T d τ≈ + + + + (28)

The numerical application leads to: ms. 13mD ≈
The simulation of the NCS with a Smith predictor
delay set to ms is shown on Figure 9: 13mD =

0 50 100 150 200 250 300
-0.2

0

0.2

0.4

0.6

0.8

1

time (x10 ms)
Figure 9. NCS performance: offline delay

estimation.

The results may be not satisfactory since we note
some overruns of until 20%, not always acceptable in
practice. We can notice that they occur exactly when
the response time is greater than 13 ms (see Figure 8).
They are very striking between the times 300 ms and
1s and this corresponds to reaching the high response
times on Figure 8. Indeed, the stability margin of the
NCS is reduced when the delay is underestimated.

To avoid this risk of instability, we should use the
maximal bound of time we calculated before by the use
of the formulas. In Table 1, ms.
The simulation result is shown on Figure 10.a:

22.49m MAXD D= =

147

7. References

0 50 100 150 200 250 300
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (x10 ms)

(a)

0 50 100 150 200 250 300
-0.2

0

0.2

0.4

0.6

0.8

1

time (x10 ms)

(b)

[1] P. Neumann, ”Communication in industrial automation-
what is going on?”, Control Engineering Practice,
doi:10.1016/j.conengprac.2006.10.004, 2006.
[2] B. Denis, S. Ruel, J.-M. Faure, and G. Marsal,
“Measuring the impact of vertical integration on response
times in Ethernet fieldbuses”, In Proc. of 12th IEEE Int.
Conf. on Emerging Technologies and Factory Automation,
Patras, Greece, 2007.
 [3] J. Greifeneder, G. Frey, “Optimizing Quality of Control
in Networked Automation Systems using Probabilistic
Models”, In Proc. of 11th IEEE Int. Conf. on ETFA, Prague,
Czech Republic, 2006.
[4] D. Witsch, B. Vogel-Heuser, J.-M Faure, and G. Poulard-
Marsal, “Performance analysis of industrial Ethernet
networks by means of timed model-checking,” In Proc. of
12th IFAC Symposium on Information Control Problems in
Manufacturing, pp. 101–106, 2006.

Figure 9. NCS performance: (a) maximal delay
estimated using formulas, (b) maximal delay
estimated using worst case method.

[5] D.A. Zaitsev, “Switched LAN simulation by colored Petri
nets”, Mathematics and Computers in Simulation, Vol.65,
pp. 245–249, 2004.

The results are very satisfactory even the system is

slightly slowed than in the case without any delay. In
contrary to previous simulation, the behaviour is better
when the response time is great. Indeed, the delay is
close to the maximal bound and therefore the term of
the denominator of the transfer function in (25) is
small. Its effect is weakened. However, this maximal
bound is to be assessed with enough accuracy. The
simulation of the NCS by considering the maximal
response time calculated using the classical worst case
method is presented on Figure 10.b. We note that the
NCS is stable but the performance is very degraded
with undesirable oscillations and slow reaction time.
Hence, we see the importance of a good evaluation of
the response time of the architecture.

[6] G. Marsal et al, “ Evaluation of response time in
Ethernet-based automation systems”, In Proc. of 11th IEEE
Int. Conf. on ETFA, Prague, 2006
[7] K. C. Lee, S. Lee, “Performance evaluation of switched
Ethernet for real-time industrial communications”, Computer
standards & interfaces, Vol.24, pp. 411–423, 2002.
[8] F. Göktas, “Distributed control of systems over
communication networks”, Ph.D. dissertation, University of
Pennsylvania, 2000.
[9] S. Li, Z. Wang, Y. Sun, “Delay-dependent controller
design for networked control systems with long time delays:
an iterative LMI method”, In Proc. of the 5th WCICA, Vol.
2, pp. 1338 – 1342, 2004.
[10] Y.-C. Cao, W.-D. Zhang, “Modified fuzzy PID control
for networked control systems with random delays”, In Proc.
of world academy of science engineering and technology,
Vol.12, pp. 313-316, 2006.

6. Conclusion

[11] P.-H. Bauer, M. Schitiu, C. Lorand, and K. Premaratne,
“Total Delay Compensation in LAN Control Systems and
Implications for Scheduling”, In Proc. of the American
Control Conference, pp. 4300-4305, 2001.

In this work, we presented an overall study of a NCS
taking into account all the induced delays in the
architecture. Many important results about the
architecture performance evaluation are presented.
Indeed, by the use of the developed formulas, it is easy
to choose the adequate configuration of the
components of the NCS to fulfill the desired
requirements. Thereafter, on a concrete plant model,
we showed how such results can be used to synthesize
a compensation strategy to improve the NCS
performances. The Smith predictor was only used for
illustration but any advanced strategy can be adopted.

[12] J. P. Georges et al, “Control compensation based on
upper bound delay in networked control systems”, In 17th
International Symposium on Mathematical Theory of
Networks and Systems, Kyoto, July, 2006.
[13] B. Denis, O. De-Smet, J.-J. Lesage, J.-M. Roussel,
”Process of performance analysis of systems as finite state
automata”, FR. Patent 01 110 933, 2001.
[14] F. Baccelli, G. Cohen, G.-J. Olsder, and J.-P. Quadrat,
Synchronization and Linearity: An algebra for Discrete
Event Systems, Wiley, 1992.
[15] F. Baccelli, G. Cohen and B. Gaujal, “Recursive
equations and basic properties of timed Petri nets”, Discrete
Event Dynamic Systems: Theory and Applications, l (4),
1992.

A study of more complex architectures considering
acyclic traffic and its influence on the NCS
performances is prospected.

148

