
HAL Id: inria-00336514
https://inria.hal.science/inria-00336514

Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delay Evaluation and Compensation in
Ethernet-Networked Control Systems

Boussad Addad, Saïd Amari

To cite this version:
Boussad Addad, Saïd Amari. Delay Evaluation and Compensation in Ethernet-Networked Control
Systems. 16th International Conference on Real-Time and Network Systems (RTNS 2008), Isabelle
Puaut, Oct 2008, Rennes, France. �inria-00336514�

https://inria.hal.science/inria-00336514
https://hal.archives-ouvertes.fr


Delay Evaluation and Compensation in Ethernet-Networked Control Systems 
 
 

Boussad Addad, Said Amari  
LURPA ENS Cachan, 61 av du Président Wilson, 94235 Cedex France 

{surname.name}@lurpa.ens-cachan.fr 
 

 
Abstract 

 
Research in networked control systems (NCS), deals 

with both communication networks and control. 
Usually, these two points of view are treated 
separately and rarely together in the same context. In 
this paper, an overall study of a networked control 
system is presented. First, a formal method to evaluate 
the response time of Ethernet-based automation 
architectures using a client server protocol is 
presented. It is based on a modeling by the use of 
timed event graphs and Max-plus algebra. An 
algorithm and analytical formulas to evaluate the 
response time are obtained. This approach is validated 
using measurements taken on a real platform. 
Thereafter, the results are used in the synthesis of a 
Smith predictor-based delay compensation strategy to 
improve the performance of the whole NCS.  
 
1. Introduction 
 

Nowadays automation architectures consist of many 
intelligent devices connected by a local or global 
communication network. Indeed, many benefits are 
achieved in developing networked control systems 
(NCSs). At the beginning, it was essentially to reduce 
the system wirings and to ease the information 
exchange between the different components of the 
system. Later, the trend was the use of the same 
network technology at all levels in the industrial 
organizations; management and automation. A solution 
that supports such vertical integration had to be able to 
provide high throughputs in upper level as well as 
small and accurate response time in field level. 
Ethernet solutions that were initially developed to 
office networks can be considered as a new generation 
of fieldbuses. Currently many automation producers 
and alliances developed their own industrial Ethernet 
standard [1].   Each solution with a specific protocol is 
best suited to a particular application. A client server 
protocol like Modbus TCP/IP, even not adequate for 

strict real time applications as motion control, is a 
simple and a reasonable solution for many purposes in 
industrial control systems. However, with such 
protocol, no global resource scheduling is available 
and different delays due to waiting for resource 
availability or synchronization are caused. So, the 
evaluation of its temporal performances like the 
response time is complex and the investigations that 
deal with this problem are rare. The existing methods 
are often based on simulation or experimental 
measurements [2]. Among them, we find exhaustive 
space exploration method based on stochastic or not 
model checking [3], [4]. It is not adequate for response 
time distribution calculus and the computing limits are 
quickly reached because of the state explosion 
problem. Another method uses high level colored Petri 
nets model and cases simulation with CPNTools [5], 
[6]. A worst case classical method is also possible by 
ignoring all dependencies in the system and 
considering only pessimistic situations [7]. In this 
paper, we present a novel method we developed to 
asses the response time either by the use of an easy 
implemented simulation algorithm or analytical 
formulas for a trivial calculus.  

The previous section is somewhat devoted to the 
networking community that deals with communication 
networks and protocols. Another community is that 
which is interested in networked control strategies. 
Approaching the control problem in NCS can be 
achieved in two main different ways. The control is 
synthesized by ignoring the delay whereas a network 
scheduling is performed so as to minimize this induced 
delay. The other one is to consider the priori induced 
delay and look for adequate control strategies to 
compensate its negative effect on the NCS. During the 
last years, this topic has been actively studied and 
many compensation strategies are proposed. Some 
recent works without being exhaustive, apply control 
theory like robust control [8], LMI based control [9], 
fuzzy logic control [10], and Smith predictor-based 
compensation control [11]. In these papers, it is usually 
assumed that information about the delay like upper 
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bound, mean, distribution or other features are known 
in advance. To our knowledge, the studies that 
consider both the control synthesis and the induced 
delay evaluation are rare. When it is the case as in [12] 
for instance, the application protocol due delays are 
ignored. It is better but not enough in NCS using client 
server protocol since the delays due to waiting for 
resources availability or synchronization are 
considerable and above all, time varying. They have to 
be taken into account. 

This paper tackles the gap that still exists between 
the different communities. Indeed, we firstly develop a 
formal method to assess the response time of the whole 
automation architecture before to move on to the 
synthesis of a compensation and control strategy using 
these results.  

The rest of this paper is organized as follows: first a 
brief recall about the timed event graphs (TEGs) and 
their modeling using the Max-Plus algebra is 
presented. Then in section 3, they are used for the 
modeling of the considered automation architecture. 
An algorithm and analytical formulas for direct 
calculus of the response times are obtained. In section 
4, we check their validity by comparing them with 
experimental measurements obtained on a patented 
laboratory platform [13]. After in section 5, the results 
are used to synthesize a Smith predictor-based 
compensation strategy so as to improve the NCS 
performances. Finally, a short conclusion and some 
prospects are given in the last section.  
 
2. Timed event graphs/Max-Plus algebra 
 
     An event graph is an ordinary Petri net where all 
the places have at most one upstream and one 
downstream transition. An event graph is timed if the 
transitions or the places are affected with delays. We 
note  the number of transitions with at least one 
place upstream and  the number of source 
transitions . The only place relying the transitions   

and  is noted   and its delay . In the modeling 

of our study (section 3), we assign simply a delay   
to a place .  

n

it

m
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ip

jt

iτ
ijp ijτ

To study the dynamic behaviour of a timed event 
graph, we associate to each transition the date of its 
firing for  time. It is noted   for a source 
transition and  for other transitions.  

thk ( )iu k
( )j kθ

Example: 
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Figure 1. Example of TEG. 

 
 The timed graph of the example leads to the equation: 

, that represents 

the date of  firing the transition  for the  time. It 
is a linear equation in the Max-Plus algebra. Indeed, a 
new algebraic structure emerged around two laws. The 
classical maximum noted indifferently  or “max”  
with a neutral element  and the classical 
addition noted   with a neutral element . More 
details about this algebra are available in [14]. So, the 
previous equation can be rewritten using these laws as: 

1 1 2( ) max(1 ( 1),3 ( 1))k u k u kθ = + − + −

1t

ε = −∞
⊗

thk

0e =

⊕

1 1 2( ) (1 ( 1)) (3 ( 1))k u k u kθ = ⊗ − ⊕ ⊗ −                  (1) 
In general, the behaviour of a TEG can be expressed 
by the following Max-Plus linear equation: 

0
( ) ( ( ) ( )),k A k B u kϕ ϕϕ

θ θ ϕ ϕ
≥

= ⊕ ⊗ − ⊕ ⊗ −

( )kθ ( )u k
n m

thk

               (2) 

where the vectors   and  components are the 
firing times of the  and  transitions of the system 
for the  time. The matrix Aϕ  with the element ,ijAϕ  
represents the delay  associated to the place  
(with the marking 

ijτ ijp
ϕ ) if it exists and the neutral 

element  else. Similarly for ε Bϕ , it corresponds to the 
delays of the places downstream of the source 
transitions.  
     In an analogous manner as in usual linear systems, 
this form can be brought to a state space representation 
by replacing all the places with markings 1ijϕ >  by 

ijϕ  other places with (  intermediate transitions. 
Hence, we obtain an extended system with a state 
vector 

1ijϕ − )

( )x k  with   components where  the 
number of added transitions.  

( ')n n+ 'n

The new system is now described by the equation:       

0 1
ˆ ˆ ˆ( ) ( ) ( 1) ( ),x k A x k A x k B u k= ⊗ ⊕ ⊗ − ⊕ ⊗             (3) 

can be rewritten in an explicit form:  
( ) ( 1) ( ),x k A x k B u k= ⊗ − ⊕ ⊗

0 1
ˆ ˆ

                                 (4) 

where A A A∗= ⊗ 0
ˆ ˆB A∗= ⊗ ,  and B 0

ˆ i

i 0
ˆA A∗

∈
= ⊕

!
 is the 

Kleene star of 0Â .  
     The last formulations (3) and (4) permit to point out 
that the dynamic behaviour of a timed event graph is 
determinist, depending only on the source transitions 
and the initial conditions [15]. 
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3. Modeling and response time evaluation 
 

In this study, the automation architecture works 
according to Modbus TCP/IP client server protocol. 
The communication module of the PLC 
(programmable logic controller) is the client and the 
remote input output modules (RIOMs) are the servers. 
The considered PLC comprises two modules, the CPU 
(central processing unit) that executes the user 
program and the Ethernet board (ETHb) that sends 
requests (combined requests: read and write data) to 
the RIOMs. They operate cyclically but are not 
synchronized. The CPU accomplishes periodically the 
tasks: reading inputs, execution of user program and 
update of the outputs with respect of the cycle period. 
Regardless of the CPU, the ETHb sends requests to 
RIOMs and waits for the returned answers. Once all 
answers arrived, it waits the end of cycle time to begin 
a new scanning. In this study, no frames loss or time-
out have to be taken into account. 

 
   

NET   
PLC 

RIOM D r 

1 2 3 4 5 

S D 

 
Figure 2. Automation architecture 

 
Whatever is the used protocol in the automation 

architecture, a major criterion of real time 
performances evaluation is the response time . It is 
the delay between the occurrence of an event on the 
plant and the occurrence of the reaction event issued 
from the controller, on the controlled plant (Figure 2). 
Two cases are to be considered in control 
architectures. It may be, for instance, the reaction delay 
to the detection of danger. In this case the evaluation 
of the maximal bound of the reaction time is of top 
priority. However, if the automation system concerns 
cyclical control, it is distribution rather than bounds of 
the response time that is more important to assess.  

rD

In our work, we consider the general case 
regardless of the consequences of the occurring events. 
 
3.1. Architecture modeling with TEGs 
 

According to the previous description of the 
architecture, we got to the model of Figure 3. It 
comprises two independent TEGs: one at the left that 
models the CPU and the other at the right for the rest 

of the system. This model is very abstract and 
represents only the application layer protocol. It is over 
TCP/IP and all what is linked to these protocols can be 
simply represented by abstract processing steps. We 
are looking for time performances and only these 
phases due delays interest us. They can be obtained 
experimentally and sometimes from the components 
vendors. So, the details about these delays are out of 
our study and they are supposed known beforehand. 

In Figure 3, we assigned simply a delay   to a 
place . So, the places , and  with delays 

  and  of the CPU, model respectively the 
phases of waiting, user program execution during 

 (reading and writing included), CPU busy and 
finally CPU idle.  So, we easily note the periodical 
operating of the CPU with cycle period  noted 

. Similarly,  is the scanning period  of 
the ETHb and a token in the place  means it is busy 
during at least this period. The requests are sent from 
the ETHb in an invariant order as shown on Figure 3. 
The RIOMs are affected with indexes according to the 
order of their scanning. We associate the index i to the 
RIOM receiving the  request from the ETHb. 
Particularly,  and 
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15τ SCN

15p
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i

 are the indexes assigned to 
respectively the event source (S) and destination (D) of 
its consequence. On Figure 2 for example,  and 

. The model comprises scanned RIOMs and 

therefore 1 . So, the sending of the  request 
starts by firing the transition  (except for the first 

where it is ) and finishes by firing ,  or  
being the required time to send a frame. A token in 

 means that all the requests are sent and the ETHb 
is waiting for the answers. The places  and  
model the network (a store and forward switch in our 
study) delays imposed to the  sent request and the 
corresponding returned answer. The separation of 
these places is made possible since the links are full 
duplex and colliding is not possible. Once this answer 
arrives to the input buffer of the ETHb in , it is put 
in a FIFO queue for a time . According to the 
FIFO policy, once its turn arrives, it is processed and 
copied into the shared memory with the CPU in a time 
equal to T  (practically negligible). The places 

, and  represent the  scanned 

RIOM. It stays waiting in  until the i  request 
arrives to its input buffer . By firing , the 
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processing starts and goes on for a time  equal to 
. At the end, it puts the answer in its output 

buffer . On Figure 3, only the first RIOM is 
represented since all the RIOMs are modeled similarly.  

10iτ

or

/I OiT

11ip

SCNT

The grey arrows represent the source (data coming 
from the sensor) and output (data toward the actuator). 
They are not considered at this stage since the system 
is not constrained and data are available at the output 
of the sensor as long as it is functional. Another reason 
is that at every scanning cycle, an event is generated at 
the input and we are interested in its corresponding 
response time. In this way, we are sure to consider all 
the possible situations in the system and therefore the 
calculated bounds are formal as we will see later. 

To solve the problem of conflicts due to sharing the 
switch and the ETHb, we introduce variable delays 
that a frame suffers according to its arrival to these 
shared resources. This is made possible since all the 
responses come back before the considered scanning 
period  elapses. The blue places  represent the 
switch delays affecting the sent requests and the 
yellow places  the delays affecting the returned 
responses. Finally, the green places  represent the 
delays in the FIFO queue of responses sharing the 
input buffer of the ETHb. So, this solution is initially 
graphical with TEGs and subsequently analytical to 
calculate the variable delays of the colored places. For 
this purpose, we introduce the function  to 

define the order of arrival of the frames to a shared 
resource. So,  gives the order of the sent 

request relative to the  RIOM at the  scanning 
cycle and  the order of arrival of the 
corresponding response. In this paper, we define the 
FIFO policy in the switch. Thus, at the   scanning 
cycle, the variable delays are given by:  
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+

Where ,  if ( , ) 1x yor i l − j x f≡  

and  if ' 1= 0j x b≡ SWfT

71( )τ

,  and  are the intrinsic 
switch delays imposed respectively to a sent request 
and a returned response. The system (5) is initialized 
by considering the first frames to arrive to the switch 
and the ETHb i.e.  and 

SWT

SWfl T=

b

13 ( )j CPYl T=τ

4 )τ

 

where . mi

1 2

(

k k
k k
k k

n( )b bi
j i

1

2

3

( 1) )
( )

)

τ
τ
τ

= − ⊗
= ⊗
= ⊗

=

By applying the method of the section 2 to the 
model of the architecture with the initial conditions on 
Figure 3, we got to the Max-Plus equations:  

     (6) 
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Figure 3. TEGs model of the Automation architecture. 
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The systems (6) and (7) can be written in a similar 
form as (4) but with time-variant matrix. As we can 
note, they are assigned different indexes (k and l). 
Indeed they are not synchronized, exactly like the CPU 
and the ETHb. It is the main difficulty of this study. 
 
3.2. Principle of the proposed method 
 

First we solve (6) and (7) to find the dates of firing 
the transitions as functions of the indexes k and l. 
However, the systems are time-variant and their 
resolution is not obvious. We bypass it by regarding 
only the beginning of the two modules cycles .i.e. the 
transitions  and  whose dates are trivially 
obtained under the previous assumptions. The other 
transition dates are deduced accordingly. So, the 
resolution of the Max-Plus equations systems leads to: 

1θ 4θ
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                                    (8)          

Let us put  the time between the 
beginning of scanning and the reception of the 
response from the event source. Then, we obtain the 
equations:  
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       (9) 

The loop is used to avoid repeating the same calculus 
for the N RIOMs. The variable delays involved in each 

step are given by the calculus in (5).   
    The second step of our method is the fusion of the 
two systems (8) and (9). So, we have to consider the 
important events that link the CPU and the ETHb. In 
the model, the transition  models only the fact that a 
new cycle will not begin while all the responses are not 
received. So, an important event to be considered is the 
end of copy of the response frame coming from the 
event source (S) to the shared memory with the CPU. 
For this purpose, we introduce a virtual transition  
that represents this important event i.e. 

. 

11t

13S S

Sθ

10 5 14( ) max( ( ) ( ), ( ) )S N N Nl l l lθ θ τ θ= +

Thus, in the previous solutions, only the equations that 
represent the following events interest us: 
- Beginning of a new CPU cycle ( ). 1θ
- End of processing in CPU and output update ( ). 2θ
- Beginning of a new scanning cycle ( ). 4θ
- Reception of the answer in the shared memory ( ). Sθ
Indeed, they are the events that link the CPU and the 
ETHb. When the answer coming from the event source 
arrives ( ), it is taken into account (with already 
arrived responses) at the next beginning of the CPU 
cycle ( ). They are read and used in calculus in the 
CPU. Once the processing finishes, the results are 
written in a shared memory with the ETHb ( ). 
Finally, they are encapsulated in frames and sent in 
order to the corresponding RIOMs at the next 
beginning of the scanning cycle ( ).   

Sθ
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                               (10) 

                              (11)   

At the scanning cycle, the answer is received at 
time  and to be taken into account, it has to wait 

for   (but immediate next one with respect to 
) beginning of the CPU cycle. The condition to 

check is:  where 

“ ” is the converse function which gives the 
index that minimizes the positive term: . 

1
( )

( ( ) ( ))S
l

i lθ θ

1( ( ) ( ))Si lθ θ−
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Hence, we introduce a new variable  that represents 

this event:   
1̂θ

CLCT+1 2 1
ˆ ( ) ( ) ( ) .l m mθ θ θ= =

2̂θ

2 4( ) ( )l nθ θ=

4 1

4 1
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( )e pθ

ˆ ( ) ( )r f el pθ θ= −

( )e pθ p

thl

7
ˆ( ) ( ) ( )

S

As soon as the results of calculus are obtained, they 
are written in a shared memory with the ETHb. At the 
next beginning of scanning cycle, the  one, the 
results are encapsulated in the requests frames and sent 
in order to the RIOMs. In similar way, we add another 
new variable  that represents this important event 

with:  and verifying the condition: 

. So, the date of arrival 

of the event consequence to the controlled process, 
noted , is therefore . Finally, for the  

event generated at a time  and taken into account 

at the  scanning cycle, the associated response time 
of the architecture is given by:  

thn

ˆ

n A
!

ˆ
fθ

thl

thp

( )D l                                          (12) 
This formula enables to have the distribution of the 

response time if a model of generating the events is 
given i.e.  as a function of  or l .  

This delay is minimal if the data coming from the 
sensor are used in processing in the RIOM (S) 
immediately after they are generated. So the minimal 
delay relative to the  scanning cycle is:  

MIND l f N fl l dθ θ= − + ,                          (13) 

fd  being the delay due to data filtering in the sensor.  
On the contrary, this delay is maximal if the data 

arrived immediately after the beginning of the RIOM 
processing relative to the previous scanning cycle. So, 
it is given by: 

7
ˆ( ) ( ) ( 1)

SMAXD l f N fl lθ θ= − − + d                      (14) 
These delays are always valid and it is the case if the 
frequency of update of the sensor output is smaller 
than the frequency of scanning. Else, some events may 
be erased and not used in any processing. This case is 
not useful to be considered since it is not really 
necessary to the response time evaluation.  

To sum up, the proposed method is achieved by 
following the steps: modeling the architecture using 
TEGs, writing the corresponding Max-Plus equations, 
resolution of these equations and finally the 
introduction of the secondary variables to their fusion. 
Hence, we obtained an algorithm to evaluate the 
response time of the architecture relative to any 
occurring event. It is fast and easily implemented using 
any programming language. The features of the system 
are introduced as parameters with constant or variable 

values and even stochastic. So, it is flexible for use for 
different configurations of the architecture with 
realistic time characteristics considerations. 
Simulations of this algorithm are used to check the 
validity of the formulas obtained next. 
 
3.3. Analytical calculus of response time 
 

The previous algorithm is enough to calculate the 
bounds of the response time and its distribution. 
However, it is preferable to have formal analytic 
formulas giving directly these results, and above all, 
eases the analysis of the influence of the architecture 
parameters on its performances. It is the object of this 
section. We use the results (10), (11) and the principle 
of the previous algorithm.  

Let us put: ( ) ,r l CPU l CPUT l T Tα γ= ⋅ + ⋅
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              (15)  
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where  and lα lγ  are respectively the entire part and 
fractional part of the division result of  by .  ( )rT l CPUT
Let us put also: CLC CPUT Tβ= ⋅  ( 1β < ) and 

SCN CPU CT r T PU CPUT Tρ ε+ ⋅= ⋅ = ⋅  where ρ  and  
are respectively the entire and fractional part of  . 

ε
r

At the  scanning cycle, we have: thl
S Cr( ) ( 1) ( )PU l ll l T Tθ α CPUγ= − + + ⋅⋅ ⋅                   (16) 

Let us take i  where:  ∈!
( 1) ( 1)li l iγ ε≤ + ⋅ − < +  (*) 

For 1 ( 1) 1lk l iρ α− = − ⋅ + + +
( ) 1 ( ( 1))S lk l i lγ ε= + + − + ⋅ −% &' (

 we get: 
            (17) 1( ) Tθ θ ⋅ CPU

Since in (*) ( 1) ( 1)li l iγ ε≤ + ⋅ − < +

( ( 1))S l l Tβ γ ε+ − + ⋅ − ⋅% &' (

, then: 

.     (18) 1̂( ) ( ) 1l l iθ θ= + + CPU
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We have also: 
4 ( ) ( 1) CPUn n r Tθ = − ⋅ ⋅

4 ( ) CPUn l r Tθ = ⋅ ⋅
 and for  then: 

 i.e. 
1n l= +

4 1̂( ) ( ) 1 ( 1)l Cn k r i l Tθ θ β α ε% &= + − + + + − ⋅ − ⋅% &' (' ( .   (19) 

From (*), we deduce: 1 ( 1) 1l li lγ ε γ< + − ⋅ − ≤ +  
Let us put:  with:  , 1 ( 1l i l i lα εΓ = + + − ⋅ −

l l

)

, 1l l l iα γ α γ+ < Γ ≤ +

,,
min ( )

+  and note the bounds: 

MIN l ii l∈ ∈
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! !
 and ,,
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! !
. 

So, (19) becomes: .   

Thus, on condition Cd: 
4 1 ,

ˆ( ) ( ) ( )l i CPUn k r Tθ θ β% &= + − + Γ ⋅' (
( )MAXr β> + Γ

4 1)lθ + 8
ˆ ( ) ( 1)

Df Nl lθ θ= +

, we can  write: 

 and , 
which implies: 

2 4
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Finally:  
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where:  
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 being the processing time of the RIOM 

(D) at the  scanning cycle.  )thl q
In practice the condition Cd is often respected and the 
results (21) are valid since the scanning period is by far 
longer than the period of the CPU ( ). SCN CPUT T"
But if the condition Cd  is not respected, the calculus of 
delays will depend on . So, the conditions of 
bounds calculus are global (absolute) and the delay 
condition relative to the   generated event is local.  

,l iΓ

thp
Thus, on the following global and local conditions: 
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the generalized response times are: 
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 (22)  

We point out that the optimal case (where the maximal 
bound is minimal) is obtained if ( ) or the 
condition Cd: MAXr β> + Γ  is satisfied. In analysis, 
two cases can be considered: 

• ( 0  )

)

r ε∈ =!
In this case  and to satisfy (*), we have 
to take simply  and therefore the optimality 
condition becomes Cd1: 

, 1l i l iαΓ = + +
0i =

r ( 1lβ α> + + . 

• ( 0  )r ε+∈ ≠#
Let us put 1 2n nε = . Then it is enough to take 

 and  to obtain . This 
implies 

2( 1)l − = n 1i n=
1

, 1l i lαΓ = +

MAXΓ ≥ lα+  and since the optimality 
condition is: Cd2: ( )MAXr β> + Γ , then we can deduce 
that the condition Cd2  is more restrictive than Cd1. 

It is an important result which suggests to fix the 
period of scanning as a multiple of the period of the 

CPU (of course minimize  first), in order to 
minimize the maximal bound of the response time. 

CPUT

On the other hand, for a given architecture without 
acyclic traffic and RIOMs with constant processing 
times (or slightly varying which is case in practice), 

 is practically invariant and we have to calculate it 
only once. Thus, the formulae of (22) become: 
∆

1

2

( )
( 1) ( )

MIN SCN D S EM

MAX SCN D S EM

D q T N N T
D q T N N T

= ⋅ + − ⋅ + ∆!
# = + ⋅ + − ⋅ + ∆$

                (23) 

The results (22) and (23) are very interesting and to 
minimize the response time, we should assign a great 
index to the source and small one to the destination: 
the order of scanning the RIOMs is important. 
However, we have to keep in mind that the condition 
of calculus of the delays depends on  or  (see 
(15)) and we should decrease . So, the optimal case 
is got by increasing  while  remains equal to 1. 

( )rT l lα
SN

2qSN
 
4. Validation 
 

To check the validity of the model and the results 
developed previously, we consider the configuration of 
Figure 4. We compare the results obtained using 
simulation of the algorithm and the developed 
formulas with measurements taken on a laboratory 
platform [13]. 
We are interested in the delay between an event 
generated on the input of the RIOM R4 and its 
consequence on the output of the RIOM R5. The 
histograms of Figure 5 represent a series of 10,000 
experimental measurements and simulations of the 
algorithm for this configuration.  
 

 

S D 

PLC 

R1 R2 R3 R5 R4

SW1 SW2 

R6 
 

Figure 4. Application architecture. 
 
The CPU period is set up to 5 ms and scanning to 

10 ms.  However, in practice the architecture presents 
a jitter of 15% with a maximum value of 10.74 ms and 
a minimum of 9.24 ms. These bounds of time are used 
in the formulas (21) to calculate the bounds of 
response time. The jitter is also considered in the 
algorithm by imposing a random distribution of 
scanning cycles with a mean of 10 ms. We obtained 
the results of Figure 5 and Table 1.  
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Figure 5. Histograms of measured (blue) and 

simulated delays (red). 
 

Table 1. Results of delays calculus. 
 

Response delays in ms 2r = , 0.22lγ ≈ , ,0α =
0.6β = , ,  1 1q = q2 1= Min Max Mean 

Measures 10.65 21.25 16.40 
Simulation 10.31 22.49 16.12 
Formulas 10.31 22.49 / 

 
 

Classical 5.91 32.44 / 
 
As expected, the results of simulation of the 

algorithm and the formulas are exactly the same in all 
cases. Indeed, they are based on the same principle.  

In all cases, we can conclude about the validity of 
the formulas because the maximal delay is greater than 
the measured one and smaller than the obtained using 
the classical method (worst case method). On the other 
hand, the minimum delay calculated using the formulas 
or the algorithm is valid compared to the results of the 
other methods. The gaps of delays, with respect to 
measurements bounds, are in all cases smaller than 
3.27% for analytical formulas or simulations. This gap 
is only about 1.73% in the calculus of the mean of 
responses times. A random event generator is used in 
simulation to obtain realistic distribution of delays (to 
offset effects of the jitter). Consequently, the shapes of 
the measurements and simulations histograms are very 
similar (Figure 5).  
 
5. Application: Smith predictor synthesis 
 

In the study, the plant and the control strategy are 
ignored so far. However, the final aim is the 
performance evaluation of the whole NCS. Whatever 
is the controlled plant, the main feature of the NCSs is 
the introduction of a delay that menaces the stability of 
the system if it is over a critical value. The delay is not 
removable but many solutions are proposed to 
compensate its negative effect. The Smith predictor is 
one of the most well known thanks to its simplicity and 
effectiveness [11]. By the use of the developed results 
of delays calculus, a Smith predictor is synthesized so 

as to improve the performance of a classical PI 
controller in presence of the induced varying delay in 
the architecture. 

 
5.1. Problem description 

In NCS, the network induced delays are often taken 
into account but those due to the communication 
protocol and non synchronization, are ignored. By the 
use of our early results of this study, all delays are 
considered. Thus, the NCS can be represented by the 
control loop on Figure 6. 

 
( )C s f se τ−  

b se τ−  

y
( )G s  

ref

 
 

Figure 6. Structure of the NCS. 
 

where  is the transfer function of controlled plant 
and  of the controller. In this paper, in order to 
ease understanding, it is synthesized in continuous 
time and subsequently discretized for implementation 
(zero order holder is added). re  and  are 
respectively the reference input and the output of the 
plant. 

( )G s
( )C s

f y

fτ

bτ

r fτ τ= +

 is the delay from the controller to the plant 

and   from the plant to the controller. Thus, their 
sum is the response time calculated earlier i.e. 

. So, the transfer function of the NCS is: bD

( ) ( )( )
1 ( ) ( )

f

r

s

D s
G s e C sF s

G s C s e

τ−

−
⋅ ⋅=

+ ⋅ ⋅
                               (24) 

From (24), it is clear that the presence of the delay in 
the denominator will degrade the stability of the NCS. 

 
5.2. Compensation strategy: Smith predictor 

The smith predictor can be described as in Figure 7: 
 
 

( )oC s  f se τ−  
y

( )G s
ref

Smith predictor controller  
(1 ) ( )mD se G s−− ⋅  

b se τ−   
Figure 7. NCS with Smith predictor. 

 
where  is a controller of the plant.  is the 
estimated response time of the architecture. So, the 
transfer function of the whole system is: 

( )oC s mD
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If  then:  mD D= r
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                                  (26) 

We see that the controller  is to be synthesized 
as if there is no delay. It is the big interest of the Smith 
predictor. However, in NCSs it is difficult to assess the 
response time exactly. So, to get a satisfactory 
performance, we should have: . Else, the 
stability of the system is menaced (positive poles). 
This is possible by setting  great enough but not 
too. Else, the effect of the controller will be very slow 
and the performances deteriorated. The maximal bound 
of response time is a compromise between stability and 
performance. Thus, it is to be well estimated. We are 
going to see this by an application on concrete system. 

( )oC s

mD

mD D> r

 
5.3. Application and analysis 
 

The goal being to show only the interest of our 
earlier results concerning the response time evaluation 
of networked automation architectures, we chose a first 
order linear system and a classical PI controller given: 

1 1( )
1 5 3

zG s
Ts z

+= →
+ −

, 
1 5 3( ) 0.3

1
i

o
T s zC s K
s z

+ −= →
−

 

Where the parameters are set to the values:  
60K = , ms, ms. 20iT T= = 10sampling SCNT T= =

The result of simulation of the system under the 
previous PI controller without any delay is shown on 
Figure 7. As we see, the behaviour of the system is 
very satisfactory. This will be our reference 
performance when we will consider the varying 
induced delays.  
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Figure 7. NCS performance: without delay. 

 
However, in NCS, there is always an induced delay. 

So, we use the practical results of the section 4 by 
considering an NCS with a jitter of 15%. We obtained 
the NCS delays on Figure 8. We represented results of 

only a period of 3s to see clearly and distinguish the 
performances of the NCS under different conditions.  
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Figure 8. Architecture induced delays. 

 
On Figure 8, it is clear that the changes of the 

response time are sometimes very abrupt and therefore 
an online delay estimator would not give perfect 
results. So, we use an offline estimator (formula of  
in (21)) giving the response time without considering 
the jitter. To do this, we consider a sensor that updates 
its outputs cyclically with the same frequency as 
scanning but with a lag of : .                                 

rD

0τ−0τ 7( ) ( )
Se Np lθ θ=

So, the formula of (21) becomes: 
8 7( ) ( )

D Sm N ND l q lθ θ= + − + 0τ                           (27) 
In the particular case of the previous practical 
considered system (Figure 4), this is written: 

/ 5 0m SCN EM I O fD T T T d τ≈ + + + +                     (28) 

The numerical application leads to:  ms.  13mD ≈
The simulation of the NCS with a Smith predictor 
delay set to ms is shown on Figure 9: 13mD =
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Figure 9. NCS performance: offline delay 

estimation. 
 

The results may be not satisfactory since we note 
some overruns of until 20%, not always acceptable in 
practice. We can notice that they occur exactly when 
the response time is greater than 13 ms (see Figure 8). 
They are very striking between the times 300 ms and 
1s and this corresponds to reaching the high response 
times on Figure 8. Indeed, the stability margin of the 
NCS is reduced when the delay is underestimated. 

To avoid this risk of instability, we should use the 
maximal bound of time we calculated before by the use 
of the formulas. In Table 1, ms.    
The simulation result is shown on Figure 10.a: 

22.49m MAXD D= =
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