
HAL Id: inria-00336641
https://inria.hal.science/inria-00336641

Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling Attacker’s Knowledge for Cascade
Cryptographic Protocols

Nazim Benaissa

To cite this version:
Nazim Benaissa. Modelling Attacker’s Knowledge for Cascade Cryptographic Protocols. First Inter-
national Conference on Abstract State Machines, B and Z - ABZ 2008, Sep 2008, London, United
Kingdom. pp.251-264, �10.1007/978-3-540-87603-8_20�. �inria-00336641�

https://inria.hal.science/inria-00336641
https://hal.archives-ouvertes.fr

Modelling Attacker’s Knowledge

for Cascade Cryptographic Protocols

Nazim Benäıssa ⋆

Université Henri Poincaré Nancy 1
benaissa@loria.fr

LORIA
BP 239

54506 Vandœuvre-lès-Nancy
France

Abstract. We address the proof-based development of cryptographic
protocols satisfying security properties. Communication channels are sup-
posed to be unsafe. Analysing cryptographic protocols requires precise
modelling of the attacker’s knowledge. In this paper we use the event B
modelling language to model the knowledge of the attacker for a class
of cryptographic protocols called cascade protocols. The attacker’s be-
haviour conforms to the Dolev-Yao model. In the Dolev-Yao model, the
attacker has full control of the communication channel, and the crypto-
graphic primitives are supposed to be perfect.

key-words: cryptography, model for attacker, formal methods

1 Introduction

Proving properties such as secrecy or authentication on cryptographic protocols
is a crucial point. A protocol satisfies a secrecy property if it is able to prevent the
attacker from learning the content of a secret message intended for other users.
By authentication we mean that an attacker can not mislead other honest agents
about his identity. To be able to prove such properties on a protocol, we must
be able to model the knowledge of the attacker. One popular model of attacker’s
behaviour is the Dolev-Yao model [6]; this model is an informal description of
all possible behaviours of the attacker as described in section 2. In this paper
we present an event B [1, 2, 4] model of the attacker for a class of cryptographic
protocols called cascade protocols and we prove the secrecy property on it. Our
work is based on that of Dolev-Yao [6] where they gave a characterization of
secure cascade protocols, but proofs in their work were done by hand.

Proving properties on cryptographic protocols such as secrecy is known to
be undecidable. However research involving formal methods for the analysis of
security protocols has been carried out. Theorem provers or model checkers are

⋆ This work was supported by grant No. ANR-06-SETI-015-03 awarded by the Agence
Nationale de la Recherche.

usually used for proving. For model checking, one famous example is Lowe’s ap-
proach [7] using the process calculus CSP and the model checker FDR. Lowe
discovered the famous bug in Needham-Schroeder’s protocol. Model checking is
efficient for discovering an attack if there is one, but it can not guarantee that
a protocol is reliable. Many other works are based on theorem proving: Paul-
son [10] used an inductive approach to prove safety properties on protocols. He
defined protocols as sets of traces and used the theorem prover Isabelle [9]. Other
approaches, like Bolignano [3], combines theorem proving and model checking
taking general formal method based techniques as a framework.

We summarize the organisation of the paper: in section 2, we present the
Dolev-Yao attacker model. We then present the class of cascade protocols and
the characterisation of secure protocols with respect to the secrecy property. The
event B model of the attacker is given in section 3 of the paper.

2 The Dolev-Yao Model

In Dolev-Yao’s model, cryptographic primitives are assumed to be black boxes
satisfying given properties. The most important property is that the only way
to obtain the plaintext M from the cipher text K(M), where K is an encryption
key, is to know the reverse key of K. In the Dolev Yao model, the attacker has full
control of communication channels. He can intercept and remove any message
from the channel, split unencrypted messages and decrypt parts of the message
if he has the appropriate key. The attacker can also generate an infinite number
of messages. All agents can be involved in an unlimited number of protocol
instances, and interleaving of protocol instances have to be considered.

2.1 The Dolev-Yao Model for Cascade Protocols

Cascade protocols are a simple class of public protocols in which the agents in-
volved in the protocol can apply several layers of encryption or decryption of
messages. The encryption-decryption is made by using only public key opera-
tors. Dolev-Yao developed a model specifying the syntax of this class of protocols.

Let S be a set of symbols, we use S∗ to denote the set of all finite sequences
over S. Let E and D be respectively the set of encryptions and decryption keys
of all the agents. If X is an agent, then his encryption key Ex and decryption
key Dx are two functions mapping from {0, 1}∗ into {0, 1}∗. These functions
satisfy the basic properties of the public key protocols: ExDx = DxEx = id, the
identity function. Dx is known only by the agent himself while Ex is public and
available in a key server.

Here is a short description of the Dolev-Yao model for cascade protocols (see
[6] for detailed information). As shown in figure 1, a two party cascade protocol
in the Dolev-Yao model is specified by a series of finite strings:

– αi(X,Y) ∈ {Ex, Dx, Ey}
∗, 1 ≤ i ≤ t

– βi(X, Y) ∈ {Ey, Dy, Ex}
∗, 1 ≤ i ≤ t′ with t′ = t or t − 1

X Y

α
1
(X,Y)

α
2
(X,Y)

β
2
(X,Y)

β
1
(X,Y)

.

.

.

α
i
(X,Y)

β
i
(X,Y).

.

.

Fig. 1. A cascade protocol between two agents X,Y

When an agent X wishes to transmit a plaintext message M to another agent
Y, the exchanged message has the following form: Nk(X, Y)M , where 1 ≤ k ≤
t + t′ and:

– N1(X,Y) = α1(X, Y),
– N2j(X, Y) = βj(X, Y)N2j−1(X, Y), 1 ≤ j ≤ t′,
– N2i+1(X,Y) = αi+1(X,Y)N2i(X,Y), 1 ≤ i ≤ t − 1.

An attacker Z is supposed to be able to intercept any exchanged message
between two agents X and Y, a cipher message Nk(X,Y)M with (k = 1, 2....),
and will try to obtain the plaintext message M by applying different operators
from one of three following categories:

1. E ∪ {Dz}, E is known by all agents, and Dz is the attacker decryption key.
2. βi(X, Y) for all X 6= Y and i ≥ 1, even if the attacker does not know

βi(X, Y)’s value, he can start a transmission with any agent Y claiming
himself to be agent X. He can then send any message Msg to Y in the
(2i−1)st message and wait for Y ’s answer. He will then get βi(X, Y) applied
to his message Msg.

3. αi(X, Y) for all X 6= Y and i ≥ 2, in this case the attacker does not know
the value of αi(X, Y) but he may wait for X sending a message to Y , he can
intercept Y ’s reply and prevent it from reaching X. He can then send any
message to X claiming himself to be Y with his own message Msg and wait
for the reply from X with αi(A, B) applied to Msg.

As a result, the attacker will try to obtain the plaintext Message M from a
cipher message Nk(X, Y)M with (k = 1, 2....) by applying operators from these
three categories even if the he does not know the value of αi(X,Y) or βi(X, Y)
for two agents X and Y .

2.2 Secure Cascade Protocols in the Dolev-Yao Model

We give here two definitions from the Dolev-Yao model followed by the charac-
terization of secure cascade protocol:

Definition 1. Let π ∈ (E ∪D)∗ be a string and A be a user name. We say that

π has the balancing property with respect to A if the following statement holds:

if DA ∈ symb(π) then EA ∈ symb(π) 1

Definition 2. Let X,Y be two distinct user names. A two party cascade protocol

is a balanced cascade protocol if

1. for every i ≥ 2, αi(X, Y) has the balancing property with respect to X, and

2. for every j ≥ 1, βj(X, Y) has the balancing property with respect to Y .

And the main result of the Dolev-Yao model is the following theorem.

Theorem 1. Let X,Y be two distinct user names. A two-party cascade protocol

is secure if and only if

1. symb(α1(X, Y)) ∩ {Ex, Ey} 6= ∅, and

2. the protocol is balanced.

After presenting the Dolev-Yao attacker model and the cascade protocols,
we give in the next section an event B model of the attacker and prove on this
model that if a cascade protocol is balanced then the secrecy property holds on
this protocol.

3 Modelling the Attacker

First we give the static part of the model, the basic carrier sets are the following

- Msg: Set of all possible messages exchanged in the system.
- agent: Set of all agents including attackers.

We also define the set of encryption and decryption keys, respectively E and D.
Two total injective functions EA, DA associate keys to their owners. Obviously,
two different agents can not have the same encryption or decryption keys.

SETS

Msg

agent

AXIOMS

axm1 : D ⊆ Msg → Msg

axm2 : DA ∈ agent ֌ D

axm3 : E ⊆ Msg → Msg

axm4 : EA ∈ agent ֌ E

1 symb(π) is the set of symbols of π

The attacker is an agent among others, he has his own encryption and decryption
key:

axm5 : Z ∈ agent

axm6 : Dz ∈ D

axm7 : DA(Z) = Dz

axm8 : Ez ∈ E

axm9 : EA(Z) = Ez

Cryptographic primitive are supposed to be perfect and only the decryption
key of an agent can be used to decrypt a message encrypted with his encryption
key, this is modeled by the use of sequences and the reduction operation over
the sequences.

3.1 Key Sequences

In cascade protocols, agents may apply more than one key on a message they
received. A possible modelling of encryptions where several keys are applied is the
use of function composition. If X and Y are two agents, (DA(X);EA(Y))(Msg)
is an encryption with two keys DA(X) and EA(Y). The problem with using
function composition is that it has no memory, and it is therefore not possible
to write properties on the structure of an encryption with more than one key.
Thus, we use sequences to model an encryption where several layers of keys are
used. For example, if X and Y are two agents, [EA(X),DA(Y),EA(X)] is an
encryption sequence where EA(X) is first applied, and is followed by DA(Y)
and EA(X).

When an encryption key of an agent is immediately followed by a decryption
key of the same agent in a sequence, this sequence can be reduced to a shorter
sequence where both keys are removed. For example, if X and Y are two agents,
[EA(X),DA(X),EA(Y)] can be reduced to [EA(Y)]. Formally, we model the
reduction relation as the smallest relation that satisfies:

axm10 : reduction ∈ (N 7→ D ∪ E) ↔ (N 7→ D ∪ E)
axm11 : ∀seq1, seq2, i, j, k, A·

A ∈ agent∧
i .. j ⊆ N ∧ k ∈ i .. j ∧ k + 1 ∈ i .. j∧
seq1 ∈ i .. j → D ∪ E∧
seq1(k) = DA(A) ∧ seq1(k + 1) = EA(A)∧
seq2 ∈ i .. j − 2 → D ∪ E∧
seq2 = i .. j − 2 ⊳ (seq1 ⊳− {l 7→ m|l ∈ k .. j − 2 ∧ m = seq1(l + 2)})
⇒
seq1 7→ seq2 ∈ reduction

In the previous axiom, we considered the case of a decryption key followed by
an encryption key. We added a similar axiom for the case where an encryption
key is followed by a decryption key.

To guaranty that reductions are made only between the encryption and de-
cryption key of the same agent, the injectivity of the functions DA and EA is
not sufficient and it is necessary to be sure that an encryption key of an agent
is not used as a decryption key of another agent.

axm12 : ran(EA) ∩ ran(DA) = ∅

We emphasize that since we use the reduction relation, it is not necessary to
have the following property on agents keys:

axm13 : ∀A·A ∈ agent ⇒ (DA(A); EA(A)) = id(Msg)

It may be possible to apply several reductions iteratively over a sequence. Thus,
the reduction relation needs to be applied iteratively. We use a relation Rep

similar to the one used by Cansell and Méry in [5]. Rep behaves like a repeat-until
loop, it captures the idea of repeating a relation on a set as long as it is possible to
apply the relation. A pair (seq1 , seq2) is in Rep if either seq1 /∈ dom(reduction)
and seq1 = seq2 or seq1 ∈ dom(reduction) and there is a path over reduction
leading to seq2 /∈ dom(reduction). Formally, Rep is the smallest relation that
satisfies:

axm14 : NotDOMAIN = id(N 7→ D ∪ E) \ id(dom(reduction))
axm15 : Rep ∈ (N 7→ D ∪ E) ↔ (N 7→ D ∪ E)
axm16 : Rep = NotDOMAIN ∪ (reduction; Rep)

When no more reductions are possible, we say that the sequence is in the normal

form. Formally, the normal form is modeled as follows:

axm17 : Norm ∈ ((N 7→ D ∪ E) → (N 7→ D ∪ E))
axm18 : Norm ⊆ Rep

If the normal form of a sequence seq equals the empty set, it means that the
composition of all encryption and decryption keys contained in the sequence
equals the identity function and we can obtain the plain text M from seqM .

seq Ai and seq Bj are two sets containing sequences of encryption or de-
cryption keys. If X and Y are two agents involved in a protocol run, seq Ai
contains all sequences of keys applied in each step of the protocol by agent X,
seq Bj contains those applied by Y. Each sequence contained in one of these
sets matches with an αi(X, Y) or βj(X, Y) defined in the Dolev-Yao model.

axm19 : seq Ai ⊆ N 7→ D ∪ E

axm20 : seq Bj ⊆ N 7→ D ∪ E

axm21 : ∀seq ·seq ∈ (seq Ai ∪ seq Bj)
⇒
(

∃X, Y ·X ∈ agent ∧ Y ∈ agent ∧
X 6= Y ∧
ran(seq) ⊆ {DA(X), EA(X), EA(Y)}

)

The protocol has to be balanced (see definition 2), thus for each sequence
from the sets seq Ai and seq Bj the following axioms holds:

axm22 : ∀X, seq ·X ∈ agent ∧ seq ∈ seq Ai ∧
DA(X) ∈ ran(seq) ⇒ EA(X) ∈ ran(seq)

axm23 : ∀Y, seq ·Y ∈ agent ∧ seq ∈ seq Bj ∧
DA(Y) ∈ ran(seq) ⇒ EA(Y) ∈ ran(seq)

We emphasize the particular case of the first step of the protocol that is not
concerned by the previous axiom22. We define a set seq A1 containing the se-
quences corresponding to the first step of the protocol. It is not mandatory for
sequences from this set to satisfy the balancing property, but they should at least
contain one encryption key as stated in the Dolev-Yao characterization of secure
protocols (see theorem 1):

axm24 : seq A1 ⊆ N 7→ D ∪ E

axm25 : ∀seq ·seq ∈ seq A1
⇒
(

∃X, Y ·X ∈ agent ∧ Y ∈ agent ∧
X 6= Y ∧
ran(seq) ⊆ {DA(X), EA(X), EA(Y)} ∧
ran(seq) ∩ {EA(X), EA(Y)} 6= ∅

)

3.2 Variables

We use a variable seq Atk to model the structure of the messages that the at-
tacker can obtain through applying his own keys or applying different sequences
from the sets seq Ai and seq Bj. We also use a variable size containing the size
of the sequence seq Atk and a variable a1 that memorizes the size of the sequence
from the set seq A1 used in the first step of the current protocol instance.

VARIABLES

seq Atk

size

a1

INVARIANTS

inv1 : size ∈ N1

inv2 : a1 ∈ N1

inv3 : seq Atk ∈ 1 .. size → D ∪ E

We emphasize that the variable seq Atk does not contain the plain text message
M , but only the sequence of public key operators that may be applied by the
attacker. Thus, in order to prove that the protocol satisfies the secrecy property,
we must prove that the normal form of the sequence seq Atk is never equal to the
empty set. If the normal form of a sequence equals the empty set, it means that
the composition of all encryption and decryption keys contained in the sequence
equals the identity function and the attacker can obtain the plaintext M .

thm2 : Norm(seq Atk) 6= ∅

3.3 Events

The attacker can intercept any message exchanged between two agents. When
a honest agent initiates a transaction with another agent, he first applies to the
plain text message M a sequence from the set seq A1 (first step of the protocol).
The two agents apply then alternately sequences from seq Ai and seq Bj. Mes-
sages exchanged between agents have the form ”(seq Ai∪ seq Bj)∗ seq A1 M”,
M is the plaintext message. After intercepting the cipher message ”(seq Ai ∪
seq Bj)∗ seq A1 M”, the attacker applies different sequences from the set seq Ai ∪
seq Bj ∪ E ∪ {Dz}. Accordingly, there is no need to model explicit message
interception by the attacker, it is enough to initialize the variable seq Atk with
a sequence from the set seq A1 and add events that model the concatenation of
seq Atk with all possible sequences:

- Initialization of seq Atk with a sequence from seq A1.
- Event Attack seq Ai: concatenation of seq Atk with a sequence from seq Ai.
- Event Attack seq Bj: concatenation of seq Atk with a sequence from seq Bj.
- Event Attack E: concatenation of seq Atk with a sequence from E.
- Event Attack Dz: concatenation of seq Atk with Dz.

These concatenations are done by some honest agent before the message is in-
tercepted or by the attacker himself after intercepting the cipher message.

In order to write the appropriate events, we need to have tools that let us
manipulate sequences such as concatenation or subsequences. In our model we
use a modified form of the relation match introduced by Jean Raymond Abrial
in the Earley algorithm model. We modified this relation to adapt it to our case
study:

axm26 : match ∈ (N 7→ D ∪ E) ↔ (N 7→ D ∪ E)
axm27 : ∅ 7→ ∅ ∈ match

Unlike the equality, two sequences seq1 ∈ i..j → D ∪E and seq2 : k ..l → D ∪ E

may match if the order of the keys in the two sequences is the same even if their
respective domains i..j and k..l are different (see example in figure 2).

axm28 : ∀i, j, k, l, n1, n2, s1, s2·
i ∈ 1 .. j + 1 ∧
j ∈ 0 .. n1 − 1∧
k ∈ 1 .. l + 1∧
l ∈ 0 .. n2 − 1∧
s1 ∈ 1 .. n1 → D ∪ E∧
s2 ∈ 1 .. n2 → D ∪ E∧
i .. j ⊳ s1 7→ k .. l ⊳ s2 ∈ match∧
s1(j + 1) = s2(l + 1)
⇒
i .. j + 1 ⊳ s1 7→ k .. l + 1 ⊳ s2 ∈ match

k l

seq1

...

...
i j

...

seq2

...

Dx Dx Dz Ex

Dx Dx Dz Ex

s1

s2

Fig. 2. The match relation

We also add a fixed point axiom saying that match is the smallest relation
satisfying the axiom 28. Using match is convenient to express relations between
sequences. For instance, to express the fact that a sequence seq1 is a subsequence
of seq2 , it suffices to say that there are some i, j such that seq1 7→ i .. j ⊳ seq2 ∈
match. To express the fact that a sequence seq ∈ i..j → D ∪ E is the result of
the concatenation of two sequences seq1 and seq2 , it suffices to say that there is
some k such that seq1 7→ i ..k⊳seq ∈ match and seq2 7→ k+1 ..j⊳seq ∈ match.

Events have been added to the model to express all the attacker’s options.
The following event shows the case of a sequence randomly chosen from the set
seq Ai. This sequence is concatenated with the attacker sequence seq Atk, the
variable size is also increased.

EVENT sendAi

ANY

seq Ax

ax

WHERE

grd1 : seq Ax ∈ seq Ai

grd2 : ax ∈ N1

grd3 : seq Ax ∈ 1 .. ax → D ∪ E

THEN

act1 : size := size + ax

act2 : seq Atk : | seq Atk′ ∈ 1 .. size + ax → D ∪ E∧
seq Ax 7→ 1 .. ax ⊳ seq Atk′ ∈ match∧
seq Atk 7→ ax + 1 .. ax + size ⊳ seq Atk′ ∈ match

END

Similar events are added to express all the other possibilities of the Dolev-Yao
model. Since the attacker sequence is initialized with a sequence from the set
seq A1, it will have two parts (as shown in figure 3). A part 1..size−a1⊳seq Atk
that matches with a sequence from (seq Ai ∪ seq Bj ∪ E ∪ {Dz})

∗, and a
part (size−a1)+1 .. size⊳ seq Atk that matches with a sequence from seq A1.
It’s important to distinguish these two parts since, unlike sequences from the set
seq Ai ∪ seq Bj, sequences from the set seq A1 do not satisfy the balancing

property.

... ...
1 size-a1

(size-a1)+1..size seq_Atk

(matches with a sequence from seq_A1)

1..size-a1 seq_Atk

size

Fig. 3. The two parts of the attacker sequence

3.4 Invariant and Proofs

Proofs of the B model are inspired from the proofs given by Dolev and Yao in
their model, but proofs of their models were done by hand and parts of their
proofs were stated without being formally proved. Before introducing the main
invariant of our model we first give definitions of some important properties
over sequences that are necessary to state the invariant. A Norm(A)(seq) is the

normal form with respect to one agent A of a sequence seq, it is obtained by
removing all possible subsequences [EA(A),DA(A)] or [DA(A),EA(A)].

axm29 : A Norm ∈ agent → ((N 7→ D ∪ E) → (N 7→ D ∪ E))

For example,

A Norm(X)([DA(Y),EA(Y),EA(X),DA(X)]) = [DA(Y),EA(Y)]

We modeled A Norm similarly to Norm using a reduction relation where only
keys from the appropriate agent are reduced.

In order to prove that the normal form of the attacker sequence never equals
the empty set, we need to prove first that the sequence Norm(1 .. size − a1 ⊳

seq Atk) has the balancing property with respect to all agents except the attacker
himself. We recall that it is not mandatory to have the balancing property for
sequences from the set seq A1, this is why this property does not hold for the
whole attacker sequence.

thm3 : ∀A·A ∈ agent ∧ A 6= Z∧
DA(A) ∈ ran(Norm(1 .. size − a1 ⊳ seq Atk))
⇒
EA(A) ∈ ran(Norm(1 .. size − a1 ⊳ seq Atk))

But unfortunately this property is not an inductive invariant but only a theorem.
As a counter example, let us consider the case where Norm(1 .. size − a1 ⊳

seq Atk) equals:

[DA(A),DA(Z),EA(A),EA(Z),DA(X),EA(Y),DA(A),DA(Y),EA(X)]

This sequence satisfies the balancing property. If the previous event sendAi

is triggered with the local variable seq Ax = [DA(A),EA(Z),EA(A)] (this se-
quence satisfies the axioms 19 and 21), the new value of Norm(1 .. size −
a1⊳seq Atk) will be: [EA(Z),DA(X),EA(Y),DA(A),DA(Y),EA(X)]. The new
value does not satisfy the balancing property anymore. Thus we introduce a new
property called A Balanced property of a sequence with respect to an agent A:

axm30 : A Balanced ∈ agent → P(N 7→ D ∪ E)
axm31 : ∀A, seq, i, j ·seq ∈ i .. j → D ∪ E∧

i .. j ⊆ N ∧ j ≥ i∧
(seq(i) ∈ D \ {DA(A)}∧
seq(j) ∈ D \ {DA(A)}∧
ran((A Norm(A))(i + 1 .. j − 1 ⊳ seq)) ∩ D ⊆ {DA(A)}∧
DA(A) ∈ ran((A Norm(A))(i + 1 .. j − 1 ⊳ seq))⇒

EA(A) ∈ ran((A Norm(A))(i + 1 .. j − 1 ⊳ seq)))
⇒
seq ∈ A Balanced(A)

Intuitively, for an agent A, a sequence is A Balanced(A) means that if the first
and last symbols of this sequence are decryption keys and if the A Norm(A) of
this sequence contains only A decryption key in its range it should also contain
A encryption key.
The main invariant of our model states that each subsequence of the sequence
Dz (1 .. size−a1⊳ seq Atk) Dz has the A Balanced property with respect to all
agents except the attacker.

inv4 : ∀seq, i, j, k, l, A, seq Atk Dz ·
A ∈ agent ∧ A 6= Z∧
seq ∈ i .. j → D ∪ E∧
seq Atk Dz ∈ 1 .. size − a1 + 2 → D ∪ E

seq Atk Dz(1) = Dz

seq Atk Dz(size − a1 + 2) = Dz

1.. .. size−a1⊳ seq Atk 7→ 2 .. size−a1+1⊳ seq Atk Dz ∈ match

seq 7→ k .. l ⊳ seq Atk Dz ∈ match

⇒
seq ∈ A Balanced(A)

Let us consider the case of the event sendAi shown before. In this event, we
concatenate a sequence from the set seq Ai to the sequence seq Atk to obtain
seq Atk′ . We have then to prove that any subsequence seq of Dz (1 .. size −
a1 ⊳ seq Atk) Dz (there are some k, l such that seq 7→ k .. l ⊳ (Dz (1 .. size −
a1 ⊳ seq Atk′) Dz) ∈ match) is A Balanced (see figure 4).

... ...

...

k l1 ax+1

seq_Ax 1..size-a1 seq_Atk

seq

Dz Dz

Fig. 4. A Balanced property has to be proved on seq

To achieve the proof, all possible cases of k..l values have to be considered
(especially the values of k and l compared to the value of ax + 1), this is made
easier by the use of the match relation. For each case it is necessary to prove that
the concatenation of a sequence that has the balancing property with respect to
an agent A with a sequence that has the A Balanced property with respect to A
results on a sequence that has the A Balanced property with respect to A, since
this has to be done with all events of the model, it was interesting to prove the
following theorem:

thm4 : ∀seq, i, j, k, n, A·
A ∈ agent ∧ seq ∈ 1 .. n → D ∪ E∧
i .. j ⊆ 1 .. n ∧ k ∈ i .. j∧
A Norm(A)(i .. k ⊳ seq) = i .. k ⊳ seq∧
(DA(A) ∈ ran(i .. k ⊳ seq) ⇒ EA(A) ∈ ran(i .. k ⊳ seq))∧
(DA(A) ∈ ran(A Norm(A)(k + 1 .. j ⊳ seq))⇒

EA(A) ∈ ran(A Norm(A)(k + 1 .. j ⊳ seq)))
⇒
(DA(A) ∈ ran(A Norm(A)(i .. j ⊳ seq))⇒

EA(A) ∈ ran(A Norm(A)(i .. j ⊳ seq)))

The last step of our modelling is to prove theorem 2, that states that seq Atk
never equals the empty set, from the theorem 3 that states that the sequence
Norm(1 .. size − a1 ⊳ seq Atk) has the balancing property with respect to all
agents other than the attacker. To prove this result, we do a proof by case on
the structure of seq = size − a1 + 1 .. size ⊳ seq Atk (the part of the attacker
sequence that matches with the first step of the protocol). According to axiom
23, there are two agents X,Y such that ran(seq) ⊆ {DA(X),EA(X),EA(Y)}
and ran(seq) ∩ {EA(X),EA(Y)} 6= ∅. We give here a sketch of the proof:
By contradiction, suppose that the normal form of seq Atk equals the empty
set, two case are possible:

1. EA(Y) ∈ ran(seq): since DA(Y) /∈ ran(seq), the only way to obtain the
empty set in the normal form of the whole sequence seq Atk is that the re-
minder part Norm(1 ..size−a1⊳seq Atk) contains DA(Y) but not EA(Y).
This is impossible because of the balancing property of this part of the at-
tacker sequence.

2. The other case is done in a similar way.

Proving these invariants and theorems requires intensive use of operators over
sequences. The axiom defining the relation match given before is not convenient
in our case, that’s why we introduced several theorems over this relation such
as identity, reflexivity and transitivity properties to make proofs easier. Here
follows an example of one of these theorems:

thm5 : ∀seq1, seq2, k, i1, i2, j1, j2·
seq1 ∈ i1 .. j1 → D ∪ E∧
seq2 ∈ i2 .. j2 → D ∪ E∧
k ∈ 0 .. j1 − i1∧
seq1 6= ∅ ∧ seq2 6= ∅∧
seq1 7→ seq2 ∈ match

⇒
seq1(i1 + k) = seq2(i2 + k)

To prove this theorem we used induction over the size of the sequence. These
theorems are not specific to this model, thus they can be reused later in similar

protocol models. We used the Rodin platform [8] for modelling and proving our
attacker model. 10 theorems were proved interactively on the match relation.
25 proofs generated by the prover for the invariants of the model, 13 were done
automatically. Interactive proofs were not difficult except proofs of the main
invariant 4 of the model that were long because of the high number of the cases
that had to be considered.

4 Conclusion

We have written in this paper a B model of the attacker for a class of cryp-
tographic protocols. Events of our model take into account all the options the
attacker can perform in the Dolev-Yao model. Unlike the original Dolev-Yao’s
model for cascade protocols, proofs were mechanized. Accordingly, all constraints
on the attacker’s model have to be stated explicitly, and some of the constraints
were added later during the proving process. Proofs of our model were made
easier by the use of the match relation and by the theorems we have proved over
this relation. These theorems can be reused in future developments. The next
step will be modelling attackers for more complex classes of protocols and to
study how attacker models can be integrated into the complete protocol model.

Acknowledgements Thanks are due to Jean Raymond Abrial for his advice
on modelling cryptographic protocols. We also thank Dominique Cansell and
Dominique Méry for their help and suggestions.

References

1. J.-R. Abrial. The B book - Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. Dines Bjørner and Martin C. Henson, editors. Logics of Specification Languages.
EATCS Textbook in Computer Science. Springer, 2007.

3. Dominique Bolignano. Integrating proof-based and model-checking techniques for
the formal verification of cryptographic protocols. In CAV, pages 77–87, 1998.

4. Dominique Cansell and Dominique Méry. The event-B Modelling Method: Concepts
and Case Studies, pages 33–140. Springer, 2007. See [2].

5. Dominique Cansell and Dominique Méry. Incremental parametric development of
greedy algorithms. Electr. Notes Theor. Comput. Sci., 185:47–62, 2007.

6. D. Dolev and A. Yao. On the security of public key protocols. Information Theory,
IEEE Transactions on, 29(2):198–208, Mar 1983.

7. Gavin Lowe. Breaking and fixing the needham-schroeder public-key protocol using
fdr. In TACAS, pages 147–166, 1996.

8. Christophe Metayer, Jean-Raymond Abrial, and Laurent Voisin. Event-B language.
RODIN Project Deliverable D7, May 2005.

9. Lawrence C. Paulson. Isabelle - A Generic Theorem Prover (with a contribution
by T. Nipkow), volume 828 of Lecture Notes in Computer Science. Springer, 1994.

10. Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85–128, 1998.

