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Abstract

This paper focuses on improving the stability as well as the approximation proper-
ties of Reduced Order Models (ROM) based on Proper Orthogonal Decomposition
(POD). The ROM is obtained by seeking a solution belonging to the POD sub-
space and that at the same time minimizes the Navier-Stokes residuals. We propose
a modi�ed ROM that directly incorporates the pressure term i n the model. The
ROM is then stabilized making use of a method based on the �ne scale equations.
An improvement of the POD solution subspace is performed thanks to an hybrid
method that couples direct numerical simulations and reduced order model simu-
lations. The methods proposed are tested on the two-dimensional con�ned square
cylinder wake ow in laminar regime.

Key words: Proper Orthogonal Decomposition, Reduced Order Model,
Stabilization, Functional subspace improvement

1 INTRODUCTION

1.1 Reduced Order Models based on Proper Orthogonal Decomposition

These last decades, the conception and the optimization of the aerodynam-
ics/aeroacoustics of ground vehicles and airplanes has been pursued by numer-
ical simulation. The applications mainly concern unsteadyturbulent ows that
develop at high Reynolds numbers. The numerical simulationof such ows,
as well as their control, requires massive computational resources. Indeed, af-
ter discretization of the governing equations,i.e. the Navier-Stokes equations
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in uid mechanics context, one must then solve a system of equations whose
complexity algebraically grows with the number of degrees of freedom of the
system to be solved. Now, and despite of the considerable progress made in the
numerical �eld (power of the computers, new and more e�cientalgorithms), it
is still very di�cult to solve such large problems for complex ows in real time,
that is, in �ne , a major stake for industrials. To overcome this di�culty, i t is
possible to determine a reduced order model of the ow dynamics keeping only
few adapted modes. The choice of these modes is not unique, and it strongly
depends on the characteristics of the ow that one wants to approximate, or
even might depend on some expected outputs (Goal-oriented models [1]). Sev-
eral methods are commonly used, among them Proper Orthogonal Decompo-
sition (POD) [2{4], balanced truncation [5{7], global eigenmodes [8], Galerkin
modes [9]etc. Due to the energetic optimality of its basis, the POD is chosen
in this study. By this technique it is possible to extract thedominant char-
acteristics (POD modes) of a given database, and the ROM is then obtained
thanks to a Galerkin projection of the governing equations onto these modes.
Although this method for reducing the order of a system can bevery e�cient
in some ow con�gurations, it also presents several drawbacks. Besides the
possible inherent lack of numerical stability of POD/Galerkin methods, even
for simple systems [10], the main shortcomings are the following:

� Since in most of the POD applications for incompressible ows the POD
ROM is built from a velocity database1 it is necessary to model the pressure
term. Usually, in many closed ows, the contribution of the pressure term
formally drops out due to fortunate choices of boundary conditions in the
POD ROM. However, for convectively unstable shear layers, as the mixing
layer or the wake ow, it was proved in [11] that neglecting the pressure
term may lead to large amplitude errors in the Galerkin model. Therefore,
to accurately model such ows, the pressure term [11,12] must be modeled.
To overcome this di�culty, a pressure extended Reduced Order Model is
introduced in x3, so that the pressure term can be directly approximated
using the pressure POD mode.

� Due to the energetic optimality of the POD basis functions, few modes
are su�cient to give a good representation of the kinetic energy of the
ow 2 . For model reduction purpose, we only keep these few modes that
are associated to the large eddies of the ow (as the vorticesof the Von
K�arm�an street that usually develop behind blu� bodies). B ut since the main
amount of viscous dissipation takes place in the small eddies represented by
basis functions that are not taken into account, the leadingROM is not
able to dissipate enough energy. It is then necessary to close the ROM
by modeling the interaction between the calculated modes and the non

1 In almost all experimental works the pressure �eld is unavailable.
2 This is true for 2-D periodic laminar ows, but thousands of POD modes could
be necessary to describe the uctuation energy of a fully developed turbulent ow.
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Fig. 1. Flow con�guration and vorticity snapshot at Re = 200.

resolved modes. This problem is similar to that of Large EddySimulation
(LES) [13] of turbulent ows. In this study, the ROM is closedusing Navier-
Stokes equations residuals and exploiting ideas similar toStreamline Upwind
Petrov-Galerkin (SUPG) and Variational Multiscale (VMS) methods [14].

� Since POD basis functions are optimal to represent the main characteris-
tics included in the snapshot database of the ow con�guration used to
build them, the same basis functions area priori not optimal to e�ciently
represent the main characteristics of other ow con�gurations. Indeed, for
ow control purpose, it was demonstrated [15{17] that POD basis functions
built from a ow database generated with a given set of control parameters
is not able to represent the main features of a ow generated with another
set of control parameters. To overcome this problem, we propose to derive
methods allowing to adapt the POD basis functions at low numerical costs.
This is the central question ofx5.

1.2 Flow con�guration

In this study the con�ned square cylinder wake ow (�gure 1) is chosen as a
prototype of separated ow. This ow is interesting since itpresents detach-
ments of the boundary layer, wake and vortices interactionswith walls. The
Navier-Stokes equations, written in their dimensionless and conservative form,
write:

@u
@t

+ ( u � r )u = � r p +
1

Re
� u ; (1a)

r � u = 0; (1b)

whereRe = U1 L=� denotes the Reynolds number, withU1 = u(0; H=2) the
maximal inow velocity, L the lenght of the side of the square cylinder and�
the kinematic visosity. In what follows, we considerRe = 100 and Re = 200,
that is to say, the laminar regime. Otherwise, the same parameters as those
introduced in [12] are used in this study,i.e. the blockage ratio� = L=H is
equal to 0:125 and the domain 
 is (0; 4H ) � (0; H ). The same numerical
method as that described in [12] is used. A vorticity representation of a ow
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snapshot is presented in �gure 1 (dashed lines represent negative values). The
boundary layer detachment, the wake and the vortex interactions with top
and bottom walls are visible.

The paper is organized as follows. Section 2 presents the Proper Orthogonal
Decomposition (POD,x2.1) and the standard velocity POD/Galerkin Reduced
Order Model (POD ROM, x2.2) for incompressible ows. A pressure extended
reduced order model is introduced in section 3. Di�erent stabilization methods
of the POD ROM are presented in section 4. A residuals based stabilization
method (x4.1), and Streamline Upwind Petrov-Galerkin (SUPG) as wellas
the Variational Multiscale (VMS) methods (x4.2) are introduced. Section 5
presents methods to adapt the functional subspace when input system pa-
rameters change. A Krylov like method (x5.1) and an hybrid DNS/POD ROM
method (x5.2) are presented. Finally, section 6 is dedicated to conclusions.

2 Standard reduced order model based on proper orthogonal de -
composition

2.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) was �rst introduced in tur-
bulence by Lumley [18] in 1967 as an unbiased de�nition of thecoherent
structures widely known to exist in a turbulent ow. A comprehensive review
of the POD can be found in Refs [2{4]. The POD, also known as Karhunen-
Lo�eve decomposition, principal component analysis or empirical eigenfunc-
tions method, consists of looking for the deterministic function � (x ) that is
most similar in an average sense to the realizationsU (x ; t). For instance, the
realizations U (x ; t) can be velocity �elds, pressure �elds, temperature �elds,
etc. Since in this study the data are issued from numerical simulations, the
method to compute POD modes introduced by Sirovich [3] is adopted (see [4]
for justi�cations). In this case, the constrained optimization problem reduces
to the following Fredholm integral eigenvalue problem:

Z T

0
C(t; t 0)an (t0) dt0 = � nan (t) (2)

where the temporal correlation tensorC(t; t 0) is de�ned by:

C(t; t 0) =
1
T

(U (x ; t); U (x ; t0)) 
 : (3)
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The inner product (:; :)
 between two �elds U and V is computed as:

(U ; V )
 =
Z



U � V dx =

Z




ncX

i =1

Ui V i dx ;

whereUi represents thei th component of the vectorU with dimension nc.

The eigenvalues� n (n = 1; 2; : : : ) determined in (2) are all real and positive
and form a decreasing and convergent series. Each eigenvalue represents the
contribution of the corresponding mode� n to the information content of the
original data. Note that if U are the velocity �elds, the information content
reduces to the kinetic energy.

In Eq. (2), an are the time-dependent POD eigenfunctions of ordern. These
modes form an orthogonal set, satisfying the condition:

1
T

Z T

0
an (t)am (t) dt = � n � nm : (4)

The associated eigenvectors� n (also called empirical eigenfunctions) form a
complete orthogonal set and are normalized, so that they verify ( � n ; � m )
 =
� nm .

The spatial basis functions �in can then be calculated from the realizationsUi

and the coe�cients an with:

� i
n (x ) =

1
T � n

Z T

0
Ui (x ; t)an (t) dt: (5)

Since the POD eigenfunctions can be represented as linear combinations of the
realizations, they inherit all the properties of the original data. For instance,
the eigenfunctions are divergence free for incompressibleows. Moreover, the
eigenfunctions verify the boundary conditions of the numerical simulation used
to determine the ow realizations.

The set of POD modesf � ngNP OD
n=1 is complete in the sense that any realization

U (x ; t) contained in the original data set, can be expanded with arbitrary
accuracy (in function ofNP OD � 1) in the eigenfunctions as

U (x ; t) ' cU [1;��� ;N P OD ](x ; t) =
NP ODX

n=1

an (t)� n (x ): (6)

For later convenience, the estimationcU [1;��� ;N P OD ] of U is introduced, where the
brackets contain the indices of all employed modes. Hereafter, we consider that
the ensemble used to determine the POD modes consists ofNs ow realizations
(called time snapshots)U (x ; t i ), x 2 
, taken at t i 2 [0; T] ; i = 1; � � � ; Nt .
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The energetic optimality of the POD basis functions suggests that only a very
small number of POD modes may be necessary to describe e�ciently any ow
realizations of the input data i.e. Nr � Ns. In practice, Nr is usually deter-
mined as the smallest integerM such that the Relative Information Content,
RIC (M ) =

P M
i =1 � i =

P N s
i =1 � i , is greater than a prede�ned percentage of energy,

� . So that NP OD = Nr , and the approximation (6) becomes

U (x ; t) ' cU [1;��� ;N r ](x ; t) =
N rX

n=1

an (t)� n (x ): (7)

2.2 Classical reduced order model and drawbacks

To derive a classical reduced order model only the velocity �elds are used, so
that U (x ; t) � u (x ; t). Thus, decomposition (7) becomes:

u (x ; t) '
N rX

n=1

an (t)� n (x ); (8)

where � n denote the velocity POD basis functions. A low dimensional dy-
namical system is obtained via a Galerkin projection of the Navier-Stokes
equations (1). The Galerkin projection formally writes:

 

� i ;
@u
@t

+ ( u � r )u

!




= � (� i ; r p) 
 +
�

� i ;
1

Re
� u

�



: (9)

Note that since the pressure term (� i ; r p) 
 can not be evaluated using the
standard velocity POD formulation, it is usually neglected(see discussion be-
low). After some algebraic manipulations using decomposition (8), the reduced
order model writes (see [19] for more details):

dai (t)
dt

= A i +
N rX

j =1

Bij aj (t) +
N rX

j =1

N rX

k=1

Cijk aj (t)ak(t) i = 1; � � � ; Nr : (10a)

with initial conditions

ai (0) = ( u (x ; 0); � i (x )) 
 i = 1; � � � ; Nr : (10b)

It is well known that when equations (10) are integrated in time a gradual
drifting from the full-state solution to another erroneousstate may arise after
several vortex shedding periods, precluding a correct description of the long-
term dynamics [20]. Even worse, in some cases, the short-term dynamics of
the POD ROM may not be su�ciently accurate to be used as a surrogate
model of the original high-�delity model. Essentially, three sources of numer-
ical errors can be identi�ed. As it was already mentioned, the POD/Galerkin
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method can �rst present a lack of inherent numerical stability even for very
simple problems [10]. Secondly, the pressure term is often neglected in the
POD ROM. It is possible to model this term, but to avoid this modelisa-
tion, a pressure extended Reduced Order Model is introducedin x3. The third
source of instability is the truncation involved in the POD-Galerkin approach.
Indeed, since only the most energetic POD modes are kept, thePOD ROM
is not su�ciently dissipative to prevent erroneous time ampli�cations of its
solution. This problem is similar to that of Large Eddy Simulation where the
energy transfers between the resolved scales and the subgrid scales have to be
modelled [13]. For instance, 4 modes are su�cient to restoremore than 99%
of the kinetic energy of the circular cylinder wake ow (2D, laminar regime),
but the solution of the such reduced order model does not converge towards
the numerical solution of the Navier-Stokes equations [21]. It is thus necessary
to stabilize the POD ROM. In this study, thanks to the pressure extended re-
duced order model, the POD ROM can be stabilized using the Navier-Stokes
operator residuals evaluated with the POD ow �elds reconstructions (x4).

3 A pressure extended Reduced Order Model

It is demonstrated that the contribution of the pressure term vanishes in many
closed ows. However, Noack [11] proved that neglecting thepressure term for
convectively unstable shear layers (as the mixing layer or the wake ow) can
lead to large amplitude errors in the Galerkin model. A solution is to model this
pressure term [11,12]. One aim of this study is to invoke the least modelisation
as possible. The purpose of this section is thus to derive a pressure extended
Reduced Order Model,i.e. a ROM that allows to build both the velocity
and the pressure �elds. The pressure term can thus be easily calculated using
p = ep (see decomposition (11b)). Another key issue is that, knowing the
pressure �eld, it is possible to evaluate the Navier-Stokesresiduals3 . Indeed,
the Navier-Stokes residuals will be used to both stabilize (x4) the ROM and
to improve (x5) the POD subspace.

3.1 Construction of the pressure extended POD ROM

As it was mentioned inx2.2, reduced order modeling is based on the restriction
of the weak form of the Navier-Stokes equations to the subspaceSP OD

N r
spanned

by the �rst Nr spatial eigenfunctions� i . Here, we develop a global basis for
both the velocity and pressure �elds (see [22] for justi�cation and numerical

3 Only the velocity �eld is necessary to evaluate the residuals of the Navier-Stokes
operator written in its vorticity formulation.
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demonstration). The exact ow �elds u and p are then approximated by:

eu(x ; t) =
N rX

i =1

ai (t)� i (x ) (11a)

ep(x ; t) =
N rX

i =1

ai (t) i (x ): (11b)

The velocity and the pressure basis functions,� i and  i respectively, are
determined usingU (x ; t) = ( eu(x ; t); ep(x ; t))T to calculate the temporal cor-
relation tensor (3). The basis functions� i and  i are determined as� (x ; t) =
(� (x ; t);  (x ; t))T , � (x ; t) being obtained from (5).

The substitution of equations (11) in the Navier-Stokes momentum equa-
tions (1a) leads to:

N rX

j =1

daj

dt
� j +

0

@
N rX

j =1

aj � j � r

1

A
N rX

k=1

ak � k = �
N rX

j =1

aj r  j +
1

Re

N rX

j =1

aj � � j ; (12)

that is:

N rX

j =1

� j
daj

dt
+

N rX

j =1

N rX

k=1

(� j � r ) � k aj ak = �
N rX

j =1

r  j aj +
1

Re

N rX

j =1

� � j aj : (13)

A Galerkin projection of the momentum equations (13) yields:
0

@� i ;
N rX

j =1

� j
daj

dt
+

N rX

j =1

N rX

k=1

(� j � r ) � k aj ak +
N rX

j =1

r  j aj �
1

Re

N rX

j =1

� � j aj

1

A




= 0:

(14)
The Reduced Order Model is then:

N rX

j =1

L (m)
ij

daj

dt
=

N rX

j =1

B (m)
ij aj +

N rX

j =1

N rX

k=1

C(m)
ijk aj ak ; (15)

where the coe�cients4 Lm
ij , B m

ij and Cm
ijk are given by:

L (m)
ij = + ( � i ; � j )
 ; (16a)

B (m)
ij = �

�

� i ;
1

Re
� � j � r  j

�



; (16b)

C(m)
ijk = � (� i ; (� j � r ) � k)
 : (16c)

Here the superscriptm stands for momentum equations.

4 In a general way, we have (� i ; � j )
 = � ij , but not ( � i ; � j )
 = � ij . So,L (m)
ij 6= � ij .
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In this reduced order model we used global basis functions built by POD, but
this methodology could be transposed to other modal decompositions such as
decomposition onto stability modes [8]. Moreover it could be interesting to
use non divergence free modes, as Navier-Stokes residuals modes. Such modes
can be used to stabilize (x4) and to improve (x5) the POD ROM. Hence,
if model (15) is built using non divergence free modes, it does not satisfy
the continuity equation (mass conservation). It is thus necessary to add a
constraint in the reduced order model.

A modi�ed ROM that satis�es both momentum and continuity equations can
be obtained starting from the weak form of the Navier Stokes equations:

 

w i ;
@u
@t

+ r � (u 
 u ) + r p �
1

Re
� u

!




+ ( qi ; r � u )
 = 0; (17)

where w i and qi belong to appropriate functional spaces. The velocity and
pressure �elds are expanded onto the POD basis functionsf � i g

N r
i =1 and f  i g

N r
i =1

using equations (11a) and (11b), respectively.

One approach is then to use a Galerkin projection wherew i = � i and qi =  i

as done before (equation (14)). Another approach is to usew i = � i and
qi = � (r � � i )T . This choice would correspond to the minimization of the
continuity residuals,

P N r
j =1 aj r � � j , in a least squares sense, so that in limit

of large � we have:
N rX

j =1

B c
ij aj = 0;

whereB (c)
ij = ( r � � i )T r � � j and the superscriptc stands for continuity equa-

tion. Numerically, this second approach gives better results, and the modi�ed
ROM that we use is thus:

N rX

j =1

L (m)
ij

daj

dt
=

N rX

j =1

�
B (m)

ij + �B (c)
ij

�
aj +

N rX

j =1

N rX

k=1

C(m)
ijk aj ak (18)

where the weight� has to be �xed. In this study, we chose� = 10� 2.

Since we use the ow-�eld decompositions (11) the mean ow issolved by
the reduced order model. The mean ow is thenU (x ; t) = a1(t)� 1(x ). It is
well known that a small drift of the �rst temporal coe�cient a1 can occur.
The ow rate is thus modi�ed. In order to keep the ow rate as constant,
another constraint must be enforced in the reduced order model (18). For the
2D con�ned ow, the conservation of ow rate writes:

Z

S
u ds = c; (19)

whereS is a cross section of the channel andc is a constant. For instanceS
could be the inow or outow height H of the channel, or, at the abscissa of
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the cylinder with height L, S = H � L (see �gure 1). Numerically, the ow
rate has to be constant over each sliceSl � S (x l ), 1 � l � NX where NX

is the number of discretisation points in thex-direction (a cartesian mesh is
used).

Denoting � = ( � u; � v)T and using (11a), condition (19) is approximated by5 :

N rX

i =1

aj (t)
Z

Sl

� u
j ds = c; (20)

The constant is initially evaluated by projection of a givensnapshot onto the
basis functions� . Numerically, in this study we havec � 1. The ow rate
conservation writes:

N rX

j =1

daj

dt

Z

Sl

� u
j ds = 0:

Denoting by f j the vector with components f l
j =

R
Sl

� u
j ds, the ow rate

conservation over the whole domain 
 writes:

N rX

j =1

daj

dt
f j = 0:

These additional constraints are now taken into account by enlarging the pro-
jection space with� f i . In the limit of large � we have in a least square sense:

N rX

j =1

L r
ij

daj

dt
= 0;

whereL r
ij = f T

i f j . The superscriptr stands for ow rate conservation. Then,
the reduced order model writes:

N rX

j =1

�
L (m)

ij + �L (r )
ij

� daj

dt
=

N rX

j =1

�
B (m)

ij + �B (c)
ij

�
aj +

N rX

j =1

N rX

k=1

C(m)
ijk aj ak (21a)

with initial conditions

ai (0) = ( U (x ; 0); � i (x )) 
 i = 1; � � � ; Nr ; (21b)

where the weight � has to be �xed. In this study, we chose� = 102. This
reduced order model satis�es the momentum equations, the continuity equa-
tion as well as the conservation of the ow rate, even for non divergence free
modes.

5 If one uses only POD modes, we can takenN r = 1 since the ow rate is only
given by the mean ow. However, using other modes that do not respecta priori
the ow rate conservation (as the residual modes),N r 6= 1.
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Fig. 2. Eigenvalues spectrum.

3.2 Numerical results of the pressure extended POD ROM

The reduced order model (21) is tested on a 2D con�ned square cylinder
wake ow in laminar regime (Re = 200). In this section the POD basis� is
built following the POD snapshot method introduced by Sirovich [3]. Here,
80 snapshots uniformly distributed over one vortex shedding period are used
to compute the discrete form of the temporal tensor (3). The corresponding
eigenvalues spectrum is presented in Figure 2. This spectrum is degenerate
presenting pairs of identical eigenvalues for the uctuating modes (the mean
ow is indexed by 1). The POD basis functions are obtained viaa projection of
the temporal tensor eigenvectors on the whole set of snapshots. Some of them
are presented in �gure 3 in terms of iso-vorticity (notedr ^ � i , for velocity
modes� i ) and isobars (for pressure modes i ). The evolution of the RIC
introduced in x2.1 is presented in Figure 4. Only the �rst 5 modes are su�cient
to represent more than 98% of the total kinetic energy. However, another 5-
modes reduced order basis containing approximatively the same percentage of
energy could be derived using modes 6 and 7 instead of 4 and 5. Indeed, even
if these two pairs of modes are very di�erent (see for instance the topological
di�erences between� 5 and � 7 in Fig. 3), they have approximatively the same
energetic contribution as one can see in Figure 5 where the Individual Enegetic
Contribution (IEC) is presented. Thus, a judicious choice of the POD modes
is not so evident in this case. Instead of using the RIC criterium, one can
decide to keep all the uctuating modes presenting an energycontribution
greater than a given threshold (see Fig. 5). Here, all the modes with an energy
contribution greater than 10� 2 are kept. This corresponds to 10 uctuating
modes plus the mean ow mode,i.e. Nr = 11 modes.

After having computed once the operators of the reduced order model (21)
using theseNr = 11 modes, a long time ow prediction over more than 1000
vortex shedding periods is performed. Figure 6 presents thetemporal evolu-
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