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Abstract

This paper focuses on improving the stability as well as the pproximation proper-

ties of Reduced Order Models (ROM) based on Proper OrthogonlaDecomposition

(POD). The ROM is obtained by seeking a solution belonging tothe POD sub-

space and that at the same time minimizes the Navier-Stokesasiduals. We propose
a modi ed ROM that directly incorporates the pressure term in the model. The

ROM is then stabilized making use of a method based on the ne cale equations.
An improvement of the POD solution subspace is performed thaks to an hybrid

method that couples direct numerical simulations and redued order model simu-
lations. The methods proposed are tested on the two-dimensenal con ned square
cylinder wake ow in laminar regime.

Key words: Proper Orthogonal Decomposition, Reduced Order Model,
Stabilization, Functional subspace improvement

1 INTRODUCTION

1.1 Reduced Order Models based on Proper Orthogonal Decosifon

These last decades, the conception and the optimization dig¢ aerodynam-
ics/aeroacoustics of ground vehicles and airplanes has beeirsued by numer-
ical simulation. The applications mainly concern unsteadiurbulent ows that
develop at high Reynolds numbers. The numerical simulatioaf such ows,
as well as their control, requires massive computationalgeurces. Indeed, af-
ter discretization of the governing equationsi.e. the Navier-Stokes equations
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in uid mechanics context, one must then solve a system of egtions whose
complexity algebraically grows with the number of degreed reedom of the
system to be solved. Now, and despite of the considerable gress made in the
numerical eld (power of the computers, new and more e cientalgorithms), it
is still very di cult to solve such large problems for complex ows in real time,
that is, in ne, a major stake for industrials. To overcome this di culty, it is
possible to determine a reduced order model of the ow dynaos keeping only
few adapted modes. The choice of these modes is not uniqued @nstrongly
depends on the characteristics of the ow that one wants to ggoximate, or
even might depend on some expected outputs (Goal-orienteddels [1]). Sev-
eral methods are commonly used, among them Proper Orthogdrizecompo-
sition (POD) [2{4], balanced truncation [5{7], global eigamodes [8], Galerkin
modes [9]etc. Due to the energetic optimality of its basis, the POD is chan
in this study. By this technique it is possible to extract thedominant char-
acteristics (POD modes) of a given database, and the ROM iséh obtained
thanks to a Galerkin projection of the governing equationsrdo these modes.
Although this method for reducing the order of a system can beery e cient
in some ow con gurations, it also presents several drawbées. Besides the
possible inherent lack of numerical stability of POD/Galekin methods, even
for simple systems [10], the main shortcomings are the fallmg:

Since in most of the POD applications for incompressible osvthe POD
ROM is built from a velocity database® it is necessary to model the pressure
term. Usually, in many closed ows, the contribution of the pessure term
formally drops out due to fortunate choices of boundary coritibns in the
POD ROM. However, for convectively unstable shear layerssahe mixing
layer or the wake ow, it was proved in [11] that neglecting tle pressure
term may lead to large amplitude errors in the Galerkin modelTherefore,
to accurately model such ows, the pressure term [11,12] ntuse modeled.
To overcome this di culty, a pressure extended Reduced OrdeModel is
introduced in x3, so that the pressure term can be directly approximated
using the pressure POD mode.

Due to the energetic optimality of the POD basis functions, dw modes
are sucient to give a good representation of the kinetic engy of the
ow 2. For model reduction purpose, we only keep these few modestth
are associated to the large eddies of the ow (as the vortices the Von
Karman street that usually develop behind blu bodies). B ut since the main
amount of viscous dissipation takes place in the small eddieepresented by
basis functions that are not taken into account, the leadindROM is not
able to dissipate enough energy. It is then necessary to dothe ROM
by modeling the interaction between the calculated modes dnthe non

1 In almost all experimental works the pressure eld is unavalable.
2 This is true for 2-D periodic laminar ows, but thousands of POD modes could
be necessary to describe the uctuation energy of a fully desloped turbulent ow.
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Fig. 1. Flow con guration and vorticity snapshot at Re = 200.

resolved modes. This problem is similar to that of Large Eddgimulation
(LES) [13] of turbulent ows. In this study, the ROM is closedusing Navier-
Stokes equations residuals and exploiting ideas similar &reamline Upwind
Petrov-Galerkin (SUPG) and Variational Multiscale (VMS) methods [14].
Since POD basis functions are optimal to represent the mairharacteris-
tics included in the snapshot database of the ow con guratin used to
build them, the same basis functions ara priori not optimal to e ciently
represent the main characteristics of other ow con guratons. Indeed, for
ow control purpose, it was demonstrated [15{17] that POD bais functions
built from a ow database generated with a given set of contigparameters
is not able to represent the main features of a ow generateditiv another
set of control parameters. To overcome this problem, we prope to derive
methods allowing to adapt the POD basis functions at low numgal costs.
This is the central question ofx5.

1.2 Flow con guration

In this study the con ned square cylinder wake ow (gure 1) is chosen as a
prototype of separated ow. This ow is interesting since itpresents detach-
ments of the boundary layer, wake and vortices interactionwith walls. The
Navier-Stokes equations, written in their dimensionlessnd conservative form,
write:

—+(u r)u= r pt+ — u; (1a)
r u=0; (1b)

whereRe = U; L= denotes the Reynolds number, withJ; = u(0; H=2) the
maximal in ow velocity, L the lenght of the side of the square cylinder and
the kinematic visosity. In what follows, we consideRe = 100 and Re = 200,
that is to say, the laminar regime. Otherwise, the same paragters as those
introduced in [12] are used in this studyj.e. the blockage ratio = L=H is
equal to 0125 and the domain is (0; 4H) (0; H). The same numerical
method as that described in [12] is used. A vorticity represtation of a ow



snapshot is presented in gure 1 (dashed lines represent a¢ige values). The
boundary layer detachment, the wake and the vortex interagins with top
and bottom walls are visible.

The paper is organized as follows. Section 2 presents the peo Orthogonal
Decomposition (POD,x2.1) and the standard velocity POD/Galerkin Reduced
Order Model (POD ROM, x2.2) for incompressible ows. A pressure extended
reduced order model is introduced in section 3. Di erent stailization methods
of the POD ROM are presented in section 4. A residuals basedbilization
method (x4.1), and Streamline Upwind Petrov-Galerkin (SUPG) as welas
the Variational Multiscale (VMS) methods (x4.2) are introduced. Section 5
presents methods to adapt the functional subspace when irtpgystem pa-
rameters change. A Krylov like method X5.1) and an hybrid DNS/POD ROM
method (X5.2) are presented. Finally, section 6 is dedicated to consions.

2 Standard reduced order model based on proper orthogonal de -
composition

2.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) was rst introdwed in tur-

bulence by Lumley [18] in 1967 as an unbiased de nition of theoherent
structures widely known to exist in a turbulent ow. A comprehensive review
of the POD can be found in Refs [2{4]. The POD, also known as Klannen-
Leeve decomposition, principal component analysis or enmral eigenfunc-
tions method, consists of looking for the deterministic fuction (x) that is

most similar in an average sense to the realizatiot$(x ; t). For instance, the
realizations U (x;t) can be velocity elds, pressure elds, temperature elds,
etc. Since in this study the data are issued from numericalrsulations, the
method to compute POD modes introduced by Sirovich [3] is agted (see [4]
for justi cations). In this case, the constrained optimizaion problem reduces
to the following Fredholm integral eigenvalue problem:

Zy
. C(t;t9an(t9dt’= jan(t) 2)

where the temporal correlation tensoC(t;t9 is de ned by:

C(t)= T (UOGDUKY) - ®



The inner product (:;:) between two eldsU andV is computed as:
Za Z xe
(U;V) = U Vdx= U'v'dx;
i=1

whereU' represents thei™™ component of the vectorU with dimension n..

The eigenvalues , (n =1;2;:::) determined in (2) are all real and positive
and form a decreasing and convergent series. Each eigeneatapresents the
contribution of the corresponding mode ,, to the information content of the
original data. Note that if U are the velocity elds, the information content
reduces to the kinetic energy.

In Eq. (2), a, are the time-dependent POD eigenfunctions of order. These
modes form an orthogonal set, satisfying the condition:
Zt

> a®andt= o @
0

The associated eigenvectors , (also called empirical eigenfunctions) form a
complete orthogonal set and are normalized, so thatthey vér( ,; m) =

nm -

The spatial basis functions ! can then be calculated from the realizationg)!
and the coe cients a, with:
z

1 41
. U'(x; than(t) dt: (5)

L

n(x) =

Since the POD eigenfunctions can be represented as lineamtxnations of the
realizations, they inherit all the properties of the origimal data. For instance,
the eigenfunctions are divergence free for incompressikbas. Moreover, the
eigenfunctions verify the boundary conditions of the numeral simulation used
to determine the ow realizations.

The set of POD moded ,gh?e® is complete in the sense that any realization
U (x;t) contained in the original data set, can be expanded with aitvary
accuracy (in function ofNpop 1) in the eigenfunctions as

Nxop
U(x;t)" B MNrool(x;t) = an(t) n(x): (6)

n=1

For later convenience, the estimatiof ' Neoo 1 of U is introduced, where the
brackets contain the indices of all employed modes. Hereaft we consider that
the ensemble used to determine the POD modes consistdNgf ow realizations
(called time snapshots)U (x;tj), x 2 ,takenat t; 2 [0;T];i=1; ;N



The energetic optimality of the POD basis functions suggesthat only a very

small number of POD modes may be necessary to describe e cignany ow

realizations of the input datai.e. N, Ns. In practice, N, is usually deter-

mined as ths smallegt integeM such that the Relative Information Content,

RIC(M) = i= N3 ,is greater than a prede ned percentage of energy,
. So that NPOD = N,, and the approximation (6) becomes

Uty e Nkt = x an(t) n(x): (7)

n=1

2.2 Classical reduced order model and drawbacks

To derive a classical reduced order model only the velocitelds are used, so
that U (x;t) u(x;t). Thus, decomposition (7) becomes:

W
u(x;t)' an(t) n(x); (8)

n=1

where , denote the velocity POD basis functions. A low dimensionalyd
namical system is obtained via a Galerkin projection of the &Vier-Stokes
equations (1). The Galerkin projection formally writes:

@ !

i;@t+(ur)u = (uprp + u (9)

i R_e
Note that since the pressure term (;; r p) can not be evaluated using the
standard velocity POD formulation, it is usually neglectedsee discussion be-
low). After some algebraic manipulations using decomposit (8), the reduced
order model writes (see [19] for more details):

day(t K e R |
ad'f) At Biam+ Gk a(Dac(t) i=1; ;N (10a)
i=1 j=1k=1

with initial conditions
a(0)=(u(x;0) i(x)) i=1; ;N (10b)

It is well known that when equations (10) are integrated in tine a gradual
drifting from the full-state solution to another erroneousstate may arise after
several vortex shedding periods, precluding a correct degtion of the long-
term dynamics [20]. Even worse, in some cases, the shortreedynamics of
the POD ROM may not be su ciently accurate to be used as a surrgate
model of the original high- delity model. Essentially, three sources of numer-
ical errors can be identi ed. As it was already mentioned, t POD/Galerkin



method can rst present a lack of inherent numerical stabity even for very
simple problems [10]. Secondly, the pressure term is ofteegtected in the
POD ROM. It is possible to model this term, but to avoid this malelisa-
tion, a pressure extended Reduced Order Model is introduce@dx3. The third
source of instability is the truncation involved in the POD-Galerkin approach.
Indeed, since only the most energetic POD modes are kept, tROD ROM
is not su ciently dissipative to prevent erroneous time ampi cations of its
solution. This problem is similar to that of Large Eddy Simuation where the
energy transfers between the resolved scales and the suthggales have to be
modelled [13]. For instance, 4 modes are su cient to restormore than 99%
of the kinetic energy of the circular cylinder wake ow (®, laminar regime),
but the solution of the such reduced order model does not carge towards
the numerical solution of the Navier-Stokes equations [21} is thus necessary
to stabilize the POD ROM. In this study, thanks to the pressue extended re-
duced order model, the POD ROM can be stabilized using the Niav-Stokes
operator residuals evaluated with the POD ow elds reconstuctions (x4).

3 A pressure extended Reduced Order Model

It is demonstrated that the contribution of the pressure tem vanishes in many
closed ows. However, Noack [11] proved that neglecting thgressure term for
convectively unstable shear layers (as the mixing layer oh¢ wake ow) can
lead to large amplitude errors in the Galerkin model. A solubn is to model this
pressure term [11,12]. One aim of this study is to invoke thedst modelisation
as possible. The purpose of this section is thus to derive aggsure extended
Reduced Order Model,i.e. a ROM that allows to build both the velocity
and the pressure elds. The pressure term can thus be easilglculated using
p = p (see decomposition (11b)). Another key issue is that, knomg the
pressure eld, it is possible to evaluate the Navier-Stoke®siduals® . Indeed,
the Navier-Stokes residuals will be used to both stabilizex4) the ROM and
to improve (x5) the POD subspace.

3.1 Construction of the pressure extended POD ROM

As it was mentioned inx2.2, reduced order modeling is based on the restriction
of the weak form of the Navier-Stokes equations to the subspeS{ °° spanned
by the rst N, spatial eigenfunctions ;. Here, we develop a global basis for
both the velocity and pressure elds (see [22] for justi cabn and numerical

3 Only the velocity eld is necessary to evaluate the residua$ of the Navier-Stokes
operator written in its vorticity formulation.



demonstration). The exact ow elds u and p are then approximated by:

W
e(x; )= a() i(x) (11a)

i=1

R
p(x; )= a(t) i(x): (11b)
i=1
The velocity and the pressure basis functions,; and ; respectively, are
determined usingU (x; t) = (@(x; t); p(x; t))T to calculate the temporal cor-
relation tensor (3). The basis functions ; and ; are determined as (x; t) =
( (x;t); (x;t)7, (x;t)being obtained from (5).

The substitution of equations (11) in the Navier-Stokes mosntum equa-
tions (1a) leads to:

0 1

X day X X X 1 X

= i+t@ a ;r Ay = ar j+ o= & ; (12
o dt k=1 j=1 ' Rej, J

that is:

%r da1 %r %r %r 1 %r

ot (j1r) vga= roja+ o g (13)
i=1 't j=1 k=1 : j=1 J Rei=1 J

A Galerkin projection of the momentum equations (13) yields

0 1
X da; X X R 1 X
| j=1 b odt j=1 k=1 : j=1 J Re;_; J
(14)
The Reduced Order Model is then:
%r d . %r %r %r
LM =T BN+ Caa (15)
i=1 j=1 j=1 k=1
where the coe cients® L', B and Cf}, are given by:
LM =+( & ) ; (16a)
1
Bigm) = i R_e j r j X (16b)
Cigrkn) = (oCjr)w: (16c)
Here the superscriptm stands for momentum equations.
4 In a general way, we have ( ;; i) = j.,butnot( i; j) = ij.So,Li(jm)S ij -



In this reduced order model we used global basis functionsiliiy POD, but
this methodology could be transposed to other modal decomgitions such as
decomposition onto stability modes [8]. Moreover it could dé interesting to
use non divergence free modes, as Navier-Stokes residuadsi@s. Such modes
can be used to stabilize ¥4) and to improve (x5) the POD ROM. Hence,
if model (15) is built using non divergence free modes, it deenot satisfy
the continuity equation (mass conservation). It is thus neessary to add a
constraint in the reduced order model.

A modi ed ROM that satis es both momentum and continuity equations can
be obtained starting from the weak form of the Navier Stokesgeations:
|

@ 1
Wi;@t-l-r (u w+rp Re u +(g;r u) =0; a7)
where w; and g belong to appropriate functional spaces. The velocity and
pressure elds are expanded onto the POD basis functiofis jgly; andf g,
using equations (11a) and (11b), respectively.

One approach is then to use a Galerkin projection whemg; = ; andqg =
as done before (equation (14)). Another approach is to usg; = ; and
g = (r 7. Th'g choice would correspond to the minimization of the
continuity residuals, % ar i, In a least squares sense, so that in limit
of large we have:

j=1
WhereBiﬁc) =(r i)"r ; and the superscriptc stands for continuity equa-
tion. Numerically, this second approach gives better reds| and the modi ed
ROM that we use is thus:
R da; X R R
U= B+ B 4+ Claa (18)
j=1 j=1 j=1 k=1

where the weight has to be xed. In this study, we chose =10 2.

Since we use the ow- eld decompositions (11) the mean ow isolved by
the reduced order model. The mean ow is thetJ (x; t) = a;(t) 1(x). Itis
well known that a small drift of the rst temporal coe cient a; can occur.
The ow rate is thus modi ed. In order to keep the ow rate as castant,
another constraint must be enforced in the reduced order mel(18). For the

2D con ned ow, the conservation of ow rate writes:
Z
uds = c; (19
S
where S is a cross section of the channel anglis a constant. For instanceS
could be the in ow or out ow height H of the channel, or, at the abscissa of



the cylinder with height L, S = H L (see gure 1). Numerically, the ow
rate has to be constant over each slic§ S (x),1 | Ny where Ny
is the number of discretisation points in thex-direction (a cartesian mesh is
used).

Denoting =( Y; v)T and using (11a), condition (19) is approximated by:

. Z
3 (t) . ds=c; (20)

i=1 !

The constant is initially evaluated by projection of a givensnapshot onto the
basis functions . Numerically, in this study we havec 1. The ow rate
conservation writes:

X da £
_aJ Ju ds=0
i=1 dt s -
Denoting by f; the vector with componentsfj' = 5 s, the ow rate
conservation over the whole domain writes:
Xr da;
_ajfj =0

These additional constraints are now taken into account byrngarging the pro-
jection space with f;. In the limit of large we have in a least square sense:

%r d .
wherelL| = f.'f;. The superscriptr stands for ow rate conservation. Then,
the reduced order model writes:

day _ X X Xr

LW+ L = BU+ B g+ Claac (2a)

j=1 o j=1 k=1

with initial conditions
g(0)=(U(x;0) i(x)) i=1; ;N (21b)

where the weight has to be xed. In this study, we chose = 102. This
reduced order model satis es the momentum equations, the rouity equa-
tion as well as the conservation of the ow rate, even for nonigergence free
modes.

5 If one uses only POD modes, we can takefN, = 1 since the ow rate is only
given by the mean ow. However, using other modes that do not especta priori
the ow rate conservation (as the residual modes),N, 6 1.
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Fig. 2. Eigenvalues spectrum.

3.2 Numerical results of the pressure extended POD ROM

The reduced order model (21) is tested on a 2D con ned squargliader
wake ow in laminar regime (Re = 200). In this section the POD basis is
built following the POD snapshot method introduced by Siroich [3]. Here,
80 snapshots uniformly distributed over one vortex sheddinperiod are used
to compute the discrete form of the temporal tensor (3). Thearesponding
eigenvalues spectrum is presented in Figure 2. This speatius degenerate
presenting pairs of identical eigenvalues for the uctuatig modes (the mean
ow is indexed by 1). The POD basis functions are obtained via projection of
the temporal tensor eigenvectors on the whole set of snaptshdSome of them
are presented in gure 3 in terms of iso-vorticity (notedr » ;, for velocity
modes ;) and isobars (for pressure modes;). The evolution of the RIC
introduced in x2.1 is presented in Figure 4. Only the rst 5 modes are su cien
to represent more than 98% of the total kinetic energy. Howeyv, another 5-
modes reduced order basis containing approximatively thamme percentage of
energy could be derived using modes 6 and 7 instead of 4 andriiided, even
if these two pairs of modes are very di erent (see for instaecthe topological
di erences between s and 7 in Fig. 3), they have approximatively the same
energetic contribution as one can see in Figure 5 where thallnidual Enegetic
Contribution (IEC) is presented. Thus, a judicious choice fothe POD modes
is not so evident in this case. Instead of using the RIC crita&im, one can
decide to keep all the uctuating modes presenting an energgontribution
greater than a given threshold (see Fig. 5). Here, all the med with an energy
contribution greater than 10 2 are kept. This corresponds to 10 uctuating
modes plus the mean ow modei.e. N, = 11 modes.

After having computed once the operators of the reduced ondemodel (21)
using theseN, = 11 modes, a long time ow prediction over more than 1000
vortex shedding periods is performed. Figure 6 presents tbhemporal evolu-
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