N

HAL

open science

A TLA+ Proof System
Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, Stephan Merz

» To cite this version:

Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, Stephan Merz. A TLA+ Proof System. Knowl-
edge Exchange: Automated Provers and Proof Assistants (KEAPPA), 2008, Doha, Qatar. inria-

00338299

HAL Id: inria-00338299
https://inria.hal.science/inria-00338299
Submitted on 12 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00338299
https://hal.archives-ouvertes.fr

A TLA* Proof System

Kaustuv Chaudhuri Damien Doligez Leslie Lamport Stephan Merz
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Abstract

We describe an extension to the TLApecification language with constructs for writing proofs
and a proof environment, called the Proof Manager (PM), teckh those proofs. The language
and the PM support the incremental development and chedfihgerarchically structured proofs.
The PM translates a proof into a set of independent proo§abtins and calls upon a collection of
back-end provers to verify them. fdérent provers can be used to verifyfdirent obligations. The
currently supported back-ends are the tableau prover ZandfsabellETLA*, an axiomatisation of
TLAT in IsabellgPure. The proof obligations for a complete T24roof can also be used to certify
the theorem in IsabellELA*.

1 Introduction

TLA" is a language for specifying the behavior of concurrent asigibuted systems and asserting prop-
erties of those systemS11]. However, it provides no way fitevproofs of those properties. We have

designed an extended version of the language that alloviimgvgroofs, and we have begun implement-

ing a system centered around”eoof Manager(PM) that invokes existing automated and interactive
proof systems to check those proofs. For now, the new vesfidiLA* is called TLA? to distinguish

it from the current one. We describe here the TLproof constructs and the current state of the proof
system.

The primary goal of TLA? and the proof system is the mechanical verification of systepeci-
fications. The proof system must not only support the moddltamporal aspects of TLA needed to
reason about system properties, but must also supportaoycimathematical reasoning in the underlying
logic. Proofs in TLA? are natural deduction proofs written in a hierarchicalestjat we have found to
be good for ordinary mathematidd [9] and crucial for mangghe complexity of correctness proofs of
systemsl[IB].

The PM computes proof obligations that establish the ctwess of the proof and sends them to one
or more back-end provers to be verified. Currently, the tEwk-provers are Isabelld A", a faithful
axiomatization of TLA in Isabell¢Pure, and Zenori]2], a tableau prover for classical firseoldgic
with equality. The PM first sends a proof obligation to ZentihZenon succeeds, it produces an Isar
script that the PM sends to Isabelle to check. OtherwisePMeutputs an Isar script that uses one of
Isabelle’s automated tactics. In both cases, the obligatare certified by Isabell[ELA*. The system
architecture easily accommodates other back-end proifetfsese are proof-producing, then we can
use their proofs to certify the obligations in IsabglleA*, resulting in high confidence in the overall
correctness of the proof.

The TLA" proof constructs are described in Secfidn 2. Sedflon 3 itescthe proof obligations
generated by the PM, and Sectl[dn 4 describes how the PM uses 2ad Isabelle to verify them. The
conclusion summarizes what we have done and not yet donerifig bliscusses related work.

2 TLA™ and its Proof Language

21 TLA

The TLA" language is based on the Temporal Logic of Actions (TLA) [Hd]near-time temporal logic.
The rigid variables of TLA are calledonstantsand the flexible variables are called simpfigriables
TLA assumes an underlying ordinary (non-modal) logic fonstoucting expressions. Operators of that
logic are callecconstantoperators. Astate functioris an expression built from constant operators and
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TLA constants and variables. The elementary (non-tempéwaiulas of TLA areactions which are
formulas built with constant operators, constants, vémband expressions of the forfh, wheref is

a state function. (TLA also has anasLED operator that is used in expressing fairness, but we ignore i
for brevity.) An action is interpreted as a predicate ongafrstates that describes a set of possible state
transitions, where state functions refer to the startiagesand primed state functions refer to the ending
state. Because priming distributes over constant operatwl becaus€ is equal toc for any constant

¢, an action can be reduced to a formula built from constantatpes, constants, variables, and primed
variables.

TLA is practical for describing systems because all the derity of a specification is in the action
formulas. Temporal operators are essentially used onlggeraliveness properties, including fairness
of system actions. Most of the work in a TLA proof is in proviagtion formulas; temporal reasoning
occurs only in proving liveness properties and is limitegtopositional temporal logic and to applying
a handful of proof rules whose main premises are action ftasniBecause temporal reasoning is such
a small part of TLA proofs, we have deferred its implementati The PM now handles only action
formulas. We have enough experience mechanizing TLA's teadpeasoning]4] to be fairly confident
that it will not be hard to extend the PM to support it.

A formula built from constant operators, constants, vdeisaband primed variables is valit it
is a valid formula of the underlying logic when constantsiialsles, and primed variables are treated
as distinct variables of the logic—that is,vfandVv are considered to be two distinct variables of the
underlying logic, for any TLA variable. Since any action formula is reducible to such a formuldpact
reasoning is immediately reducible to reasoning in the tyideg logic. We therefore ignore variables
and priming here and consider only constant formulas.

2.2 TLA*

The TLA" language adds the following to the TLA logic:

e An underlying logic that is essentially ZFC set theory pllassical untyped first-order logic with
Hilbert's ¢ [L3]. The major diference between this underlying logic and traditional ZF@a
functions are defined axiomatically rather than being regmeed as sets of ordered pairs.

¢ A mechanism for defining operators, where a user-definedatgeis essentially a macro that is
expanded syntactically. (TL*Apermits recursive function definitions, but they are tratesl to
ordinary definitions using Hilbert’s.)

e Modules, where one module can import definitions and thesifieom other modules. A module
is parameterized by its declared variables and constantsjtanay be instantiated in another
module by substituting expressions for its parameters. cimebination of substitution and the
ENABLED Operator introduces some complications, but space limitafprevent us from discussing
them, so we largely ignore modules in this paper.

TLA* has been extensively documentédl [11]. Since we are corttemlg with reasoning about its
underlying logic, which is a very familiar one, we do not batho describe TLAIn any detail. All of
its nonstandard notation that appears in our examples laiarg.

2.3 The Proof Language

The major new feature of TLA s its proof language. (For reasons having nothing to do pithofs,
TLA™? also introduces recursive operator definitions, which vm@iig here for brevity.) We describe the
basic proof language, omitting a few constructs that canespects such as module instantiation that
we are not discussing. TIfAalso adds constructs for naming subexpressions of a defiratitheorem,
which is important in practice for writing proofs but is ootjonal to the concerns of this paper.

2
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The goal of the language is to make proofs easy to read ane ferisomeone with no knowledge of
how the proofs are being checked. This leads to a mostly idgitla language, built around the uses and
proofs of assertions rather than around the applicatiorraifpsearch tactics. It is therefore more akin
to Isabellglsar [T7] than to more operational interactive languages st Coq's Vernacular [16]. Nev-
ertheless, the proof language does include a few operatonatructs that can eliminate the repetition
of common idioms, albeit with some loss of perspicuity.

At any point in a TLA proof, there is a current obligation that is to be proved. ®dhigation
contains acontextof known facts, definitions, and declarations, angbal. The obligation claims that
the goal is logically entailed by the context. Some of thésfand definitions in the context are marked
(explicitly or implicitly) asusablefor reasoning, while the remaining facts and definitionshédelen

Proofs are structured hierarchically. The leaf (loweseleproof osvious asserts that the current
goal follows easily from the usable facts and definitionse Téaf proof

BY €1,...,E6n DEFS O1,...,0n

asserts that the current goal follows easily from the ustaals and definitions together with (i) the facts
& that must themselves follow easily from the context andtii@ known definitions 0b;. Whether a
goal follows easily from definitions and facts depends on vghoying to prove it. For each leaf proof,
the PM sends the correspondileaf obligationto the back-end provers, so in practice “follows easily”
means that a back-end prover can prove it. A non-leaf proaf $equence afteps each consisting
of a begin-step token and a proof construct. For some catstfincluding a simple assertion of a
proposition) the step takes a subproof, which may be omititk final step in the sequence simply
asserts the current goal, which is represented by the t@lterA begin-step token is eitherlavel token

of the form¢n) or alabel of the form{n)l, wheren is a level number that is the same for all steps of this
non-leaf proof, and is an arbitrary name. The hierarchical structure is dedficed the level numbers
of the begin-step tokens, a higher level number beginningbpreof.

Some steps make declarations or definitions or change thentwoal and do not require a proof.
Other steps make assertions that become the current goalsefoproofs. An omitted proof (or one
consisting of the tokenmrirtep) is considered to be a leaf proof that instructs the assettibe accepted
as true. Of course, the proof is then incomplete. From a &gioint of view, an omitted step is the
same as an additional assumption added to the theorem; fpmarctical point of view, it doesn’t have
to be lifted from its context and stated at the start. Omitphs are intended to be used only in the
intermediate stages of writing a proof.

Following a step that makes an assertion (and the step’d)puadil the end of the current proof
(after theqep step), the contexts contain that assertion in their setsofvk facts. The assertion is
marked usablefli the begin-step token is a level token; otherwise it can bermed to by its label in ay
proof or made usable with@ae step.

The hierarchical structure of proofs not only aids in regdime finished proof but is also quite useful
in incrementally writing proofs. The steps of a non-leafgdrare first written with all proofs but that
of the gep step omitted. After checking the proof of thep step, the proofs omitted for other steps
in this or earlier levels are written in any order. When wagtithe proof, one may discover facts that
are needed in the proofs of multiple steps. Such a fact isdleed to the proof as an earlier step, or
added at a higher level. It can also be removed from the priothiectheorem and proved separately as a
lemma. However, the hierarchical proof language encousréges relevant only for a particular proof to
be kept within the proof, making the proof’s structure eagesee and simplifying maintenance of the
proof. For correctness proofs of systems, the first few seokthe hierarchy are generally determined by
the structure of the formula to be proved—for example, tlepthat a formula implies a conjunction
usually consists of steps asserting that it implies eacjuoch

3
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As an example, we incrementally construct a hierarchicabfpof Cantor’s theorem, which states
that there is no surjective function from a set to its powersés written in TLA' as:

THEOREM ¥S : Vf € [S — susser S]: JA€ suBser S:Vxe S: f[x] #A

where function application is written using square bragketser S is the powerset 08, and 5 — T]
is the set of functions frorSto T.

The statement of the theorem is the current goal for its éoptlproof. A goal of the fornvv: e
is proved by introducing a generic constant and proving thenfila obtained by substituting it for the
bound identifier. We express this as follows, usingdfsme/prove construct of TLAZ:

THEOREM ¥S : Vf € [S — susser S]: JA€ suBser S:Vxe S: f[x] #A
(1)1. ASSUME NEW S,
NEw f €[S — susser S
pROVE JA € suBser S:¥xe S: f[x] £ A
(1)2. @ep BY (1)1

Although we could have used labels suchiB®neand(1)lastinstead of1)1 and(1)2, we have found
that proofs are easier to read when steps at the same leviabated with consecutive numbers. One
typically starts using consecutive step numbers and thes labels like(3)2a for inserting additional
steps. When the proof is finished, steps are renumbered adgivedy. (A planned user interface will
automate this renumbering.)

Step(1)1 asserts that for any consta@snd f with f € [S — susser S], the proposition to the right
of therrove is true. More precisely, the current context for the (as ywtnitten) proof of(1)1 contains
the declarations 06 and f and the usable fadt € [S — susser S], and theprove assertion is its goal.
Theqep step states that the original goal (the theorem) followmftbe assertion in stefi)1.

We tell the PM to check this (incomplete) proof, which it dbgshaving the back-end provers verify
the proof obligation for theep step. The verification succeeds, and we now continue byngritie
proof of (1)1. (Had the verification failed becaus®1 did not imply the current goal, we would have
caught the error before attempting to prdiel, which we expect to be harder to do.)

We optimistically start with the proofsvious, but it is too hard for the back-end to prove, and the
PM reports a timeout. Often this means that a necessary fatgfmition in the context is hidden and
we merely have to make it usable withuge step or asy proof. In this case we have no such hidden
assumptions, so we must refine the goal into simpler goalsamiton-leaf proof. We let this proof have
level 2 (we can use any level greater than 1). Since the geelf is existentially quantified, we must
supply a witness. In this case, the witness is the classioda set, which we call.

(1)1. ASSUME NEW S,
NEw f €[S — suBser S
PROVE JA € suBser S:¥xe S: f[x] £ A
(2)1.oerNe T £{z€ S:z¢ f[Z]}
(2)2.YxeS:f[X]#T
(2)3. QED BY (2)2

Because definitions made within a proof are usable by defiwtdefinition ofT is usable in the proofs
of (2)2 and(2)3. Once again, the proof of thep step is automatically verified, so all that remains is to
prove(2)2. (TheperINE Step requires no proof.)

The system acceptssvious as the proof 0k2)2 because the only fiiculty in the proof of(1)1 is
finding the witness. However, suppose we want to add anatliel of proof for the benefit of a human
reader. The universal quantification is proved as aboventogducing a fresh constant:

4
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(22.¥xeS:f[x]#T
(3)1. ASSUME NEW X € SPROVE f[X] # T
(3)2. Qep BY (3)1

Naturally, theqep step is verified. Although the system accepisious as the proof 0{3)1 (remember
that it could verify(2)2 by itself), we can provide more detail with yet another lefgroof. We write
this proof the way it would seem natural to a person—by breakiinto two cases:

(3)1. ASSUME NEW X € SPROVE f[X] # T
(4)l.case XeT
(D2.cAsE X¢ T
(4)3. QeD BY {(4)1, (4)2

The (omitted) proof of thease statement4)1 has as its goal[X] # T and has the additional usable fact
x € T in its context.

We continue refining the proof in this way, stopping withaemious or By proof when a goal is obvi-
ous enough for the back-end prover or for a human readerndameon who the proof is being written
for. A By statement can guide the prover or the human reader by liséhgjul obvious consequences of
known facts. For example, the proof @)1 might besy x ¢ f[x]. The proof is now finished: it contains
no omitted sub-proofs. For reference, the complete texti@proof is given in AppendixIB.

Our experience writing hand proofs makes us expect thatfpmiosystems could be ten or more
levels deep, with the first several levels dictated by thecsitire of the property to be proved. Our method
of numbering steps makes such proofs manageable, and wetaa@are of any good alternative.

This example illustrates how the proof language suppoé$iérarchical, non-linear, and incremen-
tal development of proofs. The proof writer can work on thestaroblematic unproved steps first,
leaving the easier ones for later. Finding that a step cammptroved (for example, because it is invalid)
may require changing other steps, making proofs of thoser gtieps wastedt®rt. We intend to provide
an interface to the PM that will make it easy for the user tocat which proofs should be checked and
will avoid unnecessarily rechecking proofs.

The example also shows how already-proved facts are ggnaal made usable, but are invoked
explicitly in By proofs. Global definitions are also hidden by default anduber must explicitly make
them usable. This makes proofs easier to read by tellingethéer what facts and definitions are being
used to prove each step. It also helps constrain the seasad® $pr an automated back-end prover,
leading to more #icient verification. Facts and definitions can be switchedvbeeh usable and hidden
by use andumk steps, which have the same syntaxasAs noted above, omitting the label from a step’s
starting token (for example, writing#}) instead of(4)2) makes the fact it asserts usable. This might be
done for compactness at the lowest levels of a proof.

The example also indicates how the current proof obligadiavery step of the proof is clear, having
been written explicitly in a parent assertion. This cleanctire comes at the cost of introducing many
levels of proof, which can be inconvenient. One way of avaidhese extra levels is by using an assertion
of the formsurrices A, which asserts that provingproves the current goal, and makdethe new current
goal in subsequent steps. In our example proof, one levékiptoof of steg2)2 can be eliminated by
writing the proof as:

(2)2.YxeS:f[x]#T
(3)1. SUFFICES ASSUME NEW X € S PROVE f[X] # T
PROOF OBVIOUS
(3)2.cAasE XeT
(3)3.casE X¢ T
(3)4. QeDp BY (3)2, (3)3
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where the proofs of thease steps are the same as before. Jdeices statement changes the current goal
of the level-3 proof tof[X] # T after adding a declaration ofand the usable facte S to the context.
This way of proving a universally quantified formula idfstiently common that TLZ provides arake
construct that allows theurrices assertion3)1 and itsosvious proof to be writtentake xe€ S..

There is a similar constructyrrness f € S for proving an existentially quantified godix e S : g,
which changes the goal gpx := f]. For implicational goale = f, the construciiave e changes the goal
to f. No other constructs in the TI*Aproof language change the form of the current goal. We advise
that these constructs be used only at the lowest levels girtia, since the new goal they create must
be derived instead of being available textually in a paresedion. (As a check and an aid to the reader,
one can at any point insert a redundsuirices step that simply asserts the current goal.)

The final TLA proof construct igick X : e, which introduces a new symbgilthat satisfie®. The
goal of the proof of thigick step isdx: e, and it changes the context of subsequent steps by adding a
declaration ofx and the face. A more formal summary of the language appears in AppdnHix A.

The semantics of a TLA proof is independent of any back-end proverfi€ient provers will have
different notions of what “follows easily”, so amvious proof may be verified by one prover and not
another. In practice, many provers such as Isabelle musiréetet to use decision procedures or spe-
cial tactics to prove some assertions. For this purposeiapsandard modules will contain dummy
theorems for giving directives to the PM. Using such a theofeith ause step orsy proof) will cause
the PM not to use it as a fact, but instead to generate speapiatides for back-end provers. It could
even cause the PM to use dfdrent back-end prover. (If possible, the dummy theorem agsflert a
true fact that suggests the purpose of the directive.) Rtaite, using the theorefrithmeticmight be
interpreted as an instruction to use a decision proceduiatEgers. We hope that almost all uses of this
feature will leave the TLZ proof independent of the back-end provers. The proof willlrave to be
changed if the PM is reconfigured to replace one decisionepiwe with a dierent one.

3 Proof Obligations

The PM generates a separateof obligationfor each leaf proof and orchestrates the back-end provers
to verify these obligations. Each obligation is indeperiderd can be proved individually. If the system
cannot verify an obligation within a reasonable amount wifeti the PM reports a failure. The user
must then determine if it failed because it depends on hidadets or definitions, or if the goal is too
complex and needs to be refined with another level of proaflifig facts or definitions might also help

to constrain the search space of the back-end provers.)

When the back-end provers fail to find a proof, the user withkrwhich obligation failed—that is,
she will be told the obligation’s usable context and goal #wedleaf proof from which it was generated.
We do not yet know if this will be dficient in practice or if the PM will need to provide the userhwit
more information about why an obligation failed. For exagmphany SAT and SMT solvers produce
counterexamples for an unprovable formula that can prowvsgdul debugging information.

The PM will also mediate theertificationof the TLA" theorem in a formal axiomatization of TEA
in a trusted logical framework, which in the current desigisabelléTLA* (described in Section4.2).
Although the PM is designed generically and can supportrctimailar frameworks, for the rest of this
paper we will limit our attention to IsabellELA*. Assuming that Isabell€LA* is sound, once it has
certified a theorem we know that an error is possible onlyaf\ incorrectly translated the statement
of the theorem into IsabejlELA".

After certifying the proof obligations generated for thaflproofs, called théeaf obligations cer-
tification of the theorem itself is achieved in two steps.stithe PM generatessdructure lemmgand
its IsabellgTLA* proof) that states simply that the collection of leaf obligas implies the theorem.

6
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Then, the PM generates a proof of the theorem using the ghestified obligations and structure
lemma. If Isabelle accepts that proof, we are assured thdtdhslated version of the theorem is true in
IsabellgTLA*, regardless of any errors made by the PM.

Of course, we expect the PM to be correct. We now explain wisihauld be by describing how
it generates the leaf obligations from the proof of a theor@Remember that we are considering only
TLA*2 formulas with no temporal operators.) Formally, a theorenTlLA™ represents a closed proof
obligation in the TLA? meta-logic of the form(I" - €), whereI is a contextcontaining all the dec-
larations, definitions, facts (previous assumptions ooithims) and the assumptions introduced in the
theorem using amssume clause (if present), anglis a TLA" formula that is theyoal of the theorem.

A closed obligation(I" I €) is true if e is entailed byl" in the formal semantics of TLALT]. It is
said to beprovableif we have a proof ok from I' in Isabell¢gTLA*. Because we assume IsabglleA*
to be sound, we consider any provable obligation to be truglain is a sentence of the form: (I' I €),
wherern is a TLA™ proof. This claim represents the verification task thas a proof of the proof
obligation(I" - €). The PM generates the leaf obligations of a claim by recelgitraversing its proof,
using its structure to refine the obligation of the claim. BRaron-leaf proof, each proof step modifies
the context or the goal of its obligation to produce an obiggafor its following step, and the finakp
step proves the final form of the obligation. More preciselyery step definesteansformation written
o.7:([ e — (Ar ), which states that thiaput obligation(I" I €) is refinedto the obligationA I f)
by the stepr.7. A step is said to beneaningfulif the input obligation matches the form of the step. (An
example of a meaningless claim is one that involveska step whose input obligation does not have a
universally quantified goal.) A claim is meaningful if evestep in it is meaningful.

The recursive generation of leaf obligations for meanihgfaims and transformations is specified
using inference rules, with the interpretation that thé d¢ddigations generated for the claim or transfor-
mation at the conclusion of a rule is the union of those geedrhy the claims and transformations in
the premises of the rule. For example, the following rulepigli?d to generate the leaf obligations for a
claimz: (I - €) whenr is a sequence of steps, fom > 1.

c1.71: (e — (Ar f) 02.T2 =+ on.Tn (A )
01.71 02.72 ++ on.Tn. ([ IF€)

The leaf obligations of the claim in the conclusion are thienmf those of the claim and transformation
in the premises. As an example of leaf obligations geneiayeal transformation, here is a rule for the
stepo. T whereo is the begin-step level tokgimy andr is the propositiorp with proof .

n:(L,[-€] - p)
(ny. prroor 7 (C'IF€) — ([, pI-€)

The rule concludes that the refinement in this step is totidthe context of the obligation, assuming
that the sub-proof is able to establish it. The leaf obligations generated y/tthnsformation are the
same as those of the claim in the premise of the rule. The@mahegated and added to the context
as a hidden fact (the square brackets indicate hiding). Weusa—e in a sy proof or use statement,
and doing so can simplify subproofs. (Because we are usasgicial logic, it is sound to adee to the
known facts in this way.) The full set of such rules for eveopstruct in the TLA? proof language is
given in appendikA.

A claim is said to becompleteit its proof contains no omitted subproofs. Starting fronoaplete
meaningful claim, the PM first generates its leaf obligagi@mdfilters the hidden assumptions from
their contexts. (Filtration amounts to deleting hiddertidand replacing hidden operator definitions with
declarations.) The PM then asks the back-end provers to foufgof the filtered obligations, which are
used to certify the obligations in Isabgllé A*. The PM next writes an Isar proof of the obligation of the

7
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complete meaningful claim that uses its certified filtereaf bligations. The following meta-theorem
(proved in AppendiX’AH) ensures that the PM can do this floc@hplete meaningful claims.

Theorem 1 (Structural Soundness Theorem)If = : (I' I €) is a complete meaningful claim and every
leaf obligation it generates is provable after filtering dih assumptions , th€h - €) is provable.

IsabellgTLA* then uses this proof to certify the obligation of the claimor the assumptions that the
IsabellgTLA* axiomatization is faithful to the semantics of Tt?4and that the embedding of TEAINto
IsabellgTLA* is sound, it follows that the obligation is true.

4 \erifying Proof Obligations

Once the PM generates the leaf obligations, it must send thdhe back-end provers. The one non-
obvious part of doing this is deciding whether definition®dd be expanded by the PM or by the
prover. This is discussed in Sectionl4.1. We then describsttte of our two current back-end provers,
Isabell¢TLA* and Zenon.

4.1 Expanding Definitions

Expansion of usable definitions cannot be left entirely ®olibck-end prover. The PM itself must do it
for two reasons:

e It must check that the current goal has the right form fom@e, witNess, Or HAVE Step to be
meaningful, and this can require expanding definitions.

e The encoding of TLA in the back-end prover’s logic would be unsound if a modalrajoe like
prime () were encoded as a non-modal operator. Hence, encodingnéidaflike O(x) 2 X’ as an
ordinary definition in the prover’s logic would be unsoundl iAstances of such operators must
be removed by expanding their definitions before a leaf alilig is sent to the back-end prover.
Such operator definitions seldom occur in actual Tispecifications, but the PM must be able to
deal with them.

Another reason for the PM to handle definition expansion @ the Isabell@LA* object logic does
not provide a direct encoding of definitions made within fsooWe plan to reduce the amount of
trusted code in the PM by lambda-lifting all usable defimf@ut of each leaf obligation and introducing
explicit operator definitions using Isabelle’s meta eqydk). These definitions will be expanded before
interacting with Isabelle.

4.2 |sabellgTLA*

The core of TLA? is being encoded as a new object logic Isalf€léA* in the proof assistant Is-
abelle [T4]. One of Isabelle’s distinctive features thamikir proof assistants such as Caqgl[16] or
HOL [I7, [8] lack is genericity with respect toftierent logics. The base system Isab@liee provides
the trusted kernel and a framework in which the syntax andfpudes of object logics can be defined.
We have chosen to encode Ti2Aas a separate object logic rather than add it on top of oneeoéxh
isting logics (such as ZF or HOL). This simplifies the tratisia and makes it easier to interpret the
error messages when Isabelle fails to prove obligationgrakgly typed logic such as HOL would have
been unsuitable for representing T2Awhich is untyped. IsabellF might seem like a natural choice,
but differences between the way it and TLdefine functions and tuples would have made the encod-
ing awkward and would have prevented us from reusing exgidtieories. Fortunately, the genericity
of Isabelle helped us not only to define the new logic, but &sostantiate the main automated proof
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methods, including rewriting, resolution- and tableauvprs, and case-based and inductive reasoning.
Adding support for more specialized reasoning tools sughrasf-producing SAT solver$]5] or SMT
solvers such as haRVey [3] will be similarly helped by exigtgeneric interfaces.

The current encoding supports only a core subset of*TLiAcluding propositional and first-order
logic, elementary set theory, functions, and the constmaif natural numbers. Support for arithmetic,
strings, tuples, sequences, and records is now being addpdort for the modal part of TL*A (vari-
ables, priming, and temporal logic) will be added later. &téveless, the existing fragment can already
be used to test the interaction of the PM with Isabelle andrdblack-end provers. As explained above,
IsabellgTLA* is used both as a back-end prover and to check proof scripthiped by other back-end
provers such as Zenon. If it turns out to be necessary, weenélble the user to invoke one of Isabelle’s
automated proof methods (suchagto or blast) by using a dummy theorem, as explained at the end
of SectiorTZB. If the method succeeds, one again obtainsatelle theorem. Of course, IsabAlleA*
can also be used independently of the PM, which is helpfulnndebugging tactics.

4.3 Zenon

Zenon [2] is a tableau prover for classical first-order logith equality that was initially designed to
output formal proofs checkable by Cag[16]. Zenon outputefs in an automatically-checkable format
and it is easily extensible with new inference rules. Ondotlesign goals is predictability in solving
simple problems, rather than high performance in solvingpesdard problems. These characteristics
make it well-suited to our needs.

We have extended Zenon to output Isar proof scripts for & A" theorems, and the PM uses
Zenon as a back-end prover, shipping the proofs it produckssbelle to certify the obligation. We have
also extended Zenon with direct support for the TLgic, including definitions and rules about sets
and functions. Adding support in the form of rules (insteddxdoms) is necessary because some rules
are not expressible as first-order axioms, notably the abesit the set constructs:

eesS Hx:=¢€| subsetOf JyeS:e=d[x:=Y]

ec{xeS: P} ecid:xeS) setOfAll

Even for the rules that are expressible as first-order axiaading them as rules makes the proof search
procedure much moreffecient in practice. The most important example is extendilgnavhen set
extensionality and function extensionality are added &nas, they apply to every equality deduced by
the system, and pollute the search space with large numberglevant formulas. By adding them as
rules instead, we can use heuristics to apply them only iascagere they have some chance of being
useful.

Adding support for arithmetic, strings, tuples, sequenaed records will be done in parallel with the
corresponding work on Isabefld.A*, to ensure that Zenon will produce proof scripts that IdepELA*
will be able to check. Temporal logic will be added later. iaplan to interface Zenon with Isabelle,
so it can be called by a special Isabelle tactic the same weey tdols are. This will simplify the PM by
giving it a uniform interface to the back-end provers. Ithalso allow using Zenon as an Isabelle tactic
independently of TLA

5 Conclusions and Future Work
We have presented a hierarchically structured proof laggfiar TLA". It has several important features

that help in managing the complexity of proofs. The hierer@hstructure means that changes made
at any level of a proof are contained inside that level, witielps construct and maintain proofs. Leaf
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proofs can be omitted and the resulting incomplete prooflmaichecked. This allows fligrent parts

of the proof to be written separately, in a non-linear fashibhe more traditional linear proof style, in
which steps that have not yet been proved can be used onlyli€itly added as hypotheses, encourages
proofs that use many separate lemmas. Such proofs lack tieeert structure of a single hierarchical
proof.

The proof language lets the user freely and repeatedly naate &nd definitions usable or hidden.
Explicitly stating what is being used to prove each step radéhke proof easier for a human to understand.
It also aids a back-end prover by limiting its search for aopto ones that use only necessary facts.

There are other declarative proof languages that are sitoilBLA*2. Isar [17] is one such language,
but it has significant dierences that encourage dfeient style of proof development. For example, it
provides araccumulatorfacility to avoid explicit references to proof steps. Ttedine for short proofs,
but in our experience does not work well for long proofs that igpical of algorithm verification that
TLA™? targets. Moreover, because Isabelle is designed for oiteeause, the fects of the Isar proof
commands are not always easily predictable, and this eagesra linear rather than hierarchical proof
development style. The Focal Proof Langudde [1] is esdnéiasubset of the TLA proof language.
Our experience with hierarchical proofs in Focal providdditional confidence in the attractiveness of
our approach. We know of no declarative proof language thatds flexible a method of using and
hiding facts and definitions as that of TtA

The PM transforms a proof into a collection of proof obligat to be verified by a back-end prover.
Its current version handles proofs of theorems in the nowpteral fragment of TLA that do not involve
module instantiation (importing of modules with substiin). Even with this limitation, the system
can be useful for many engineering applications. We areetbe¥ concentrating on making the PM
and its back-end provers handle this fragment of Te#ectively before extending them to the complete
language. The major work that remains to be done on this igrtptete the Zenon and Isabelle inference
rules for reasoning about the built-in constant operatérs§LA*. There are also a few non-temporal
aspects of the TL& language that the PM does not yet handle, such as subexprassining. We
also expect to extend the PM to support additional back-eadeps, including decision procedures for
arithmetic and for propositional temporal logic.

We do not anticipate that any major changes will be neededed't A* proof language. We do
expect some minor tuning as we get more experience usingitekample, we are not sure whether
local definitions should be usable by default. A graphicarusterface is being planned for the TLA
tools, including the PM. It will support the non-linear déeyament of proofs that the language and the
proof system allow.
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A Detalls of the PM

We shall now give a somewhat more formal specification of tkleaRd prove the key Structural Sound-
ness Theorerl 1. We begin with a quick summary of the abstyatés of TLA? proofs, ignoring the
stylistic aspects of their concrete representation. ($2Efpr a more detailed presentation of the proof
language.)

Definition 2 (TLA™2 Proof Language). TLA™ proofs non-leaf proofsproof stepsaindbegin-stegokens
have the following syntax, where n ranges over natural numthever labels, e over expressiodsover
lists of expressions, o over operator definitiodspver sets of operator namqé,over lists of binders
(i.e., constructs of the form x andexe used to build quantified expressions), andver expressions or
ASSUME . . .PROVE forms.

(Proofs) n
(Non-leaf proofs) II

oBvioUus | oMITTED | BY ® pEFS ¥ | II
0. QED PROOF T

ot II

(Proof steps) T Use O pers ¥ | HIDE @ DEFS ¥ | DEFINE O
HAVE € | TAKEE | WITNESS @

N
@ PROOF 71 | SUFFICES @@ PROOF 7T | PICKﬁ . €PROOF 7T

ny | (ml

(Begin-step tokensyr-

11


http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html
http://research.microsoft.com/users/lamport/tla/tla2-guide.pdf
http://www.mizar.org
http://coq.inria.fr/V8.1pl3/refman/index.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf

A TLA* Proof System Chaudhuri, Doligez, Lamport, and Merz

A proof that is not a non-leaf proof is calledieaf proof The level numbers of a non-leaf proof must all
be the same, and those in the subproof of a step (that i% ithe proor 7, etc.) must be strictly greater
than that of the step itself.

A.1 The Meta-Language

The PM uses proofs in the TIAproof language (Definitiofl2) to manipulate constructs i theta-
language of TLA2. This meta-language naturally has no representation in*T ltgelf; we define its
syntax formally as follows.

Definition 3 (Meta-Language). The TLA? meta-language consists obligations assumptionsind de-
finableswith the following syntax, where e ranges over Te&xpressions, x and o over Tt2Adentifiers,
and X over lists of TL& identifiers.

(Obligations) ¢ (hy,...,hh - €) (n>0)
(Assumptions) h == NxewXx | 026 | ¢ | [0£6] | [4]
(Definables) 6 == ¢ | LAMBDA X: €

The expression after in an obligation is called itgoal An assumption written inside square brackets
[]is said to benidden otherwise it isusable For any assumption h, we write(read: hmade usableto
stand for h with its brackets removed if it is a hidden assimnpiand to stand for h if it is not hidden. A
list of assumptions is called @ntext with the empty context written asve letI’, A andQ range over
contexts, witl", A standing for the context that is the concatenatiol aind A. The context is T" with

all its hidden assumptions made usable. The obligagiere) is written simply as e. The assumptions
NEW X, 0= ¢ and [0 £ §] bind the identifiers x and o respectively. We write K if X is bound inI" and

x ¢ I'if x is not bound in". The context’, h is considered syntactically well-formefih does not bind
an identifier already bound if.

An obligation is a statement that its goal follows from thewmptions in its context. TLA already de-
fines such a statement usiRgumMmE . . .prOVE, but the contexts in such statements have no hidden assump-
tions or definitions. (To simplify the presentation, we gitie semantics of a slightly enhanced proof
language where proof steps are allowed to mention obligatiostead of just TL& ASSUME .. .PROVE
statements.) We define an embedding of obligations intcellsAbLA* propositions, which we take as
the ultimate primitives of the TL& meta-logic.

Definition 4. The Isabell@ LA embedding-)s; Of obligations, contexts and definables is as follows:

(Disa =
(T €)sa = (f)lsae (CNEW X)jsa = (Disa A X.
(LAMBDA X: €),g, = AX € ([L0=0)isa = (Misa A 0.(0= (O)isd) =

(T, ¢)Isa = (F)Isa ((¢)Isa) ==

For example (New P, [(New X I P(X))] F VX : P(X)isa= A P. (A X P(X)) = V¥x: P(x). Note that usable
and hidden assumptions are treated identically for thegiitity of an obligation.

The embedding of ordinary TLAexpressions is the identity because IsalpELA™ contains TLA?
expressions as part of its object syntax. Thus, we do not teetvast the embedding of ordinary TEA
expressions, just that of the obligation language. In fracsome aspects of TAexpressions, such
as the indentation-sensitive conjunction and disjunclists, are sent by the PM to Isabelle using an
indentation-insensitive encoding.While IsabglleA* can implicitly generalize over the free identifiers
in a lemma, we shall be explicit about binding and considéigations provable only if they are closed.
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Definition 5 (Well-Formed Obligations). The obligation(I" - €) is said to bewell-formediffit is closed
and(T" I €),s, is a well-typed proposition of Isabelld A .

Definition 6 (Provability). The obligation(I" I €) is said to beprovableiff it is well-formed andI - €),55
is certified by the Isabelle kernel to follow from the axiorhthe IsabellgrLA" object logic.

We trust Isabell@LA* to be sound with respect to the semantics of T, And therefore provability to
imply truth. Formally, we work under the followingust axiom.

Axiom 7 (Trust). If ¢ is provable, then it is true.

We state a number of useful facts about obligations (whiehalitheorems in IsabeffELA*), omitting
their trivial proofs. The last one (F4cil13) is true becausATis based on classical logic.

Fact 8 (Definition). If (I',New O, A I+ €) is provable, therI',0 = 6, A I+ €) is provable if it is well-formed.
Fact 9 (Weakening). If (I', A I+ €) is provable, thedI",h, A I+ €) is provable if it is well-formed.
Fact 10 (Expansion).If (I',0 = §,A I €) is provable, thel’,0 = §,A[0 := ] I €[0 := §]) is provable.

Fact 11 (Strengthening).If (I',New0,A I+ €) or (I',0= 6,A I €) is provable and o is not free i\ I €),
then(I', A I €) is provable.

Fact 12 (Cut). If (T, A I €) is provable andT, (A + €),Q  f) is provable, thedl",Q I f) is provable.
Fact 13. If (I',—e, A I €) is provable, ther{l", A I+ €) is provable.

The use/uipE pers steps change the visibility of definitions in a context (Digifom [[4 below). Note that
changing the visibility of a definition does ndtect the provability of an obligation because the Isabelle
embedding (Definitiofl4) makes all hidden definitions usable

Definition 14. If T is a context and a set of operator names, then:

1. I' with ¥ made usablewrittenI" using ¥, is constructed fronr by replacing all assumptions of the
form[o £ 6] in T with 0= 6 for every oe V.

2. T" with ¥ made hiddenwritten I aiping W, is constructed front™ by replacing all assumptions of
the form o ¢ in I" with [0 = §] for every oe V.

A sequence of binde;t%in the TLA"™ expressionyﬁ: eor Hﬁ: ecan be reflected as assumptions.

Definition 15 (Binding Reflection). Ifﬁ is a list of binders with each element of the form x @re;, then
thereflectionof 5 as assumptions, writtef3||, is given inductively as follows.

HEE 18 x|| = || B[] new x 13 xe e = || ]| newx xe €

A.2 Interpreting Proofs
Let us recall some definitions from sectidn 3.

Definition 16 (Claims and Transformations). A claimis a judgement of the form: (I' - €) wherern
is a TLA? proof. Atransformationis a judgement of the formr.7: (I' - €) — (A I+ f) whereo is a
begin-step token anda proof step. A claim (respectively, transformation) isdst becompleteif its
proof (respectively, proof step) does not contain any aetwe of the leaf proobmiTTep.

The PM generates leaf obligations for a claim using two milytuacursive proceduresheckingand
transformation specified below using the formalism opamitive derivation
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Definition 17. A primitive derivationis a derivation constructed using inferences of the form

D Dn
E

(n>=0)

where E is either a claim or a transformation, add, ..., D, are primitive derivations or obligations.
An obligation at the leaf of a primitive derivation is calledeaf obligation

Definition 18 (Checking and Transformation). The primitive derivations of a claim or transformation
are constructed using the followirgipeckingand transformatiorrules.
1. Checkingrules

TCre)
———— % OBVIOUS —————————— OMITTED
osvious : ([ IF €) omittep : (I I- €)

(0y. use ® pEFs ¥ : (C'I-€) — (A f) (A f)
BY ® pers ¥ ([ I- €) BY

7. (CIe ot (Tre)— (Arf) IT: (A f)
ED NON-QED
0. Qep PROOF 7 : (I' I €) ot II: (e
2. Transformation
0. UsE®: (Fusing W IF €) — (A1 f) USE DEFS
0. USE O pErs ¥ (T'-e) — (A )
o.HDE @ (C'ke) — (A f) <
o. 1k @ pers ¥ X ([ - €) — (AnminG WP - ) HIDE DEF
o¢ll
o.DEFINE0=6: (T Ire) — (I, [0= 6] - e) perNe (0¢T)
S
o.use*: (Cire)— (C'I-e) vsEo o.umE*. ([C'-e) — (T e) HIPEO
o use®:(Cre)— (Arf)  (ATolep) .
0. UsE ®,(Tg &) : (Ci-€) — (A, (T - ) I T) !
o. ok @ : (Lo, [¢],T11F€) — (A f) HIDE
o. HDE @, ¢ : (T, ¢, T11F€) — (A T) !
ss
o. TaKE*. ([ €) — (T I- €) ThicEo o. witNess*: (- €) — (I - €) WITRESS0
0. TAKE 3 (F,IjEWU Fe[x:=u]) — (Ar f) TAKEL
o. TAREU,B: (TFYx:e) — (A f)
CrSCT) . TAKEE: (C,Nnewu,ue THex:=u]) — (A )
TAKEQ

o-.TAKEueT,E:(I“u—VxeS:e)—>(An— f)

o. witNess Q : (CI- €fx:=w]) — (A f)
o. witNess W,Q : (- dx:e) — (A f)

WITNESS1
CrTCS) CrweT) o. witNess Q : (C,we T Fg[x:=w]) — (A f)
o. WitNEss WE T,Q: (T Axe S:e) — (A f)

(T,erQ)
o.uawveg:(Cre= f)— ([,gr f)

WITNESS2

HAVE

. (L,[-€],Ar )
ny. (A f) proorr: (C'-e) — ([,(A K f)Ire)

ASSERT{
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([l = (AR f),[-€],Ar f)
(Myl. (A f) prooFr: (T'F€) — (T,{MyI = (A f),[{n)I] - €)

ASSERT?2

o. (gire) proorr: (C'Fe)— (A f)
0. cASE gPROOF T (T'-€) — (A )

7. (C,(Arf)ire)
(ny. surrices (A I ) proorF r: (I' - €) — (I',[-€],A I+ )

SUFFICES 1

(@l = (A f),[KnyI] - e)
(nyl. surrices (A IF f) proor7r: (T €) — (I,(n)l = (A f),[—€], A f)

n:(Tw3B:p)
o pick B2 prroor 7 : (T Ik €) —> (1",||ﬁ”,pn— e)

SUFFICES?

PICK

The inference rules in the above definition are determmighe conclusion of each rule uniquely de-
termines the premises. However, the rules are partial; Xam@le, there is no rule that concludes a
transformation of the forrr. ake x€ S: (' BAC) — (A I+ ).

Definition 19. A claim or a transformation is said to beeaningfulif it has a primitive derivation.

Definition 20 (Generating Leaf Obligations). A meaningful claim or transformation is said¢generate
the leaf obligations of its primitive derivation.

In the rest of this appendix we limit our attention to comeleteaningful claims and transformations.

A.3 Correctness

If the leaf obligations generated by a complete meanindaihcare provable, then the obligation in the
claim itself ought to be provable. In this section we provie theorem by analysis of the checking and
transformation rules.

Definition 21 (Provability of Claims and Transformation).

1. The claimr: (' I €) is provableiff it is complete and meaningful and the leaf obligations itayen
ates are all provable.

2. The transformationr.7: (I' + €) — (A + f) is provableiff it is complete and meaningful and the
leaf obligations it generates are all provable.

Theorem 22 (Correctness).

(1) If7: (I~ €) is provable, therI" I €) is provable.
2) fo.t: (T re)— (A f)is provable andA I f) is provable, ther{I" I €) is provable.

Proof. Let D be the primitive derivation for the claim in (1) and Btbe the primitive derivation for the trans-
formation in (2). The proof will be by lexicographic induati on the structures ab and&, with a provable

transformation allowed to justify a provable claim.
(LHY1. If 7: (T €) is provable, thedl" I €) is provable.
TCre)

(2)1. Caserisosvious,i.e, D=————— ___ OBVIOUS. Obvious
osvious : ([ IF €)

(2)2. Caser is omrtteD is impossible because: (I' - €) is complete.
(2)3. CaserisBy ® pers P, i.e.,

&o
_(0). use @ pEFs ¥ (T'I-€) — (A - ) (A f) oy

D BY ® pErs ¥ : ([ I €)
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(3)1. (A f)is provable By Definition[Z1.
(3)2. Qed By (3)1, i.h. (inductive hypothesis) fao.
Do
(2)4. Caser iS 0. QED PROOF 7g, i.€., D = mo: (k€ QED. Byi.h. for Dg.
0. Qep PROOF 71 & ([ IF €)
(2)5. Caseriso.7 I1, i.e,
&o Do
_or:(Tre)— (Arf) Im: (A f)
D= ot I:(Te) AON-QED.

(1. (A f)is provable Byi.h. for Dyg.

(3)3. Qed By (3)1, i.h. for&p.
(2)6. Qed By ()1, ...,(2)5.

D2, Ifo.t:(Cre)— (A f)is provable andA I f) is provable, thedI I €) is provable.
(2)1. Caserisuse @ pers ¥, i.e.,
&Eo
0. UsE @ (T'usng P I-€) — (A - )
o use ®pErs ¥ (T'I-€) — (A - )

USE DEFS.

(3)1. (Tusing V¥ I €) is provable Byi.h. for &o.
(3)2. Qed By (3)1, Definition[14.
(2)2. Caser isHE O pErs VP, i.e.,

&o
: o.HDE D (C'Fe) — (A f)
" . umE © pers ¥ (C - €) — (Auming W - f)

(3)1. (A f)is provable By provability of (Auming W I f) and DefinitiorTH.
(3)2. Qed By (3)1, i.h. for&p.

(2)3. Caser isperNE 02 6 witho¢T, i.e.,

HIDE DEFS.

T . DEFINEOZ 4 Cre)— (T,[Jo£6]re) PEFINE.
(3)1. ois not free ine By o¢ I" and closedness ¢F I+ €).
(3)2. Qed By (3)1, strengthening (FaEiL1).
(2)4. Caserisusesi.e, &= o e 9 S (Tro USEQ. Obvious
(2)5. Caser iSHIDE" i.e., & = o (Cr e = Tr o HIDEQ. Obvious
(2)6. Caserisuse @,¢, i.e,
&o _
o.Uss®:(C'ire)— (Ag - ) (Ao,To I+ €p)
= USEq
0. UsE O,(Ig k&) : (CI-€) — (Ag, (T'p - €) I+ )
(3)1. (Ag,To I &) is provable By Definition[Z].
(3)2. (Ao,Tg I+ €p) is provable By (3)1, Definition[3.
(3)3. (Ag I+ f) is provable By provability of (Ao, (I'o I ) I f), (3)2, cut (FacEIR).
(3)4. Qed By (3)3, i.h. for&g

(2)7. Caser isHDE @, ¢, i.e.,

Eo
_o.umE @ (To,[¢].T11-€) — (A )
. HDED,¢: (To,¢,T1F€) — (A f)

HIDE] .
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(2)8.

(2)0.

(2)10.

(2)11.

(2)12.

(2)13.

(2)14.

(3)1. (T'o,[#].T1 1+ €) is provable By provability of (A I+ f), i.h. for &p.
(3)2. Qed BW3)1, (Fo.[¢].T1 I+ €),5a = (To, 9,11 I+ €),5, (Definition[d).
Caser isTakE, i.e., & = TAKEQ. Obvious

0. TAKE*. ([ IF€) — (T I- €)

Caser is wiTNEss s, i.e., & = WITNESSQ. Obvious
o. witNess*: (T €) — (T I- €)

Caser is Take U3, i.e.,

o
. TAKEE: (C,newu - g[x:=U]) — (A f)

= S TAKE].
o. TAKEU,B: (TFVYXx:e) — (A f)
(3)1. (I,Newu - g[x:=U]) is provable Byi.h. for &o.
(3)2. Qed By (3)1 and predicate logic.
Caseriso. TaAkeUET, i.e,
&Eo
(CrSCT) o mkef: ([CNewuueT Fe[x:=U]) — (A f) .
= = 2.
0. TAKEUET,B:(CIrVYxeS:e)— (A f)

1. ([,newu,Ue T - gx:=U]) is provable Byi.h on&p.
(3)2. (T,Newu,ue SrueT)is provable

(H1. (T,Newu ik S CT)is provable By Definition[Z1, weakening (FaEl 9).

(42. Qed By (4)1, Definition ofc.
(3)3. (I,Newu,u€ S e[ x:=u]) is provable By(3)1, (3)2, cut (FacEIR).
(3)4. Qed By (3)3 and predicate logic.
Caser is wiTnEss W, Q, i.e.,

&o
_ O WITNESS Q:(Crex:=w])— (Ar f) WITNESS].
o. witNess W,Q : (T dx:e) — (A f)
(3)1. (' g[x:=w]) is provable Byi.h. for &o.
(3)2. Qed By (3)1.
Caser is witness W e T,Q and:
o
8:(1" FTCS) CrweT) o. witNess Q  (TLwe T - ex:=w]) — (A f) WITNESS .
o. WitNEss WE T,Q: (T Axe S:e) — (A f)

(3)1. (T,we T egx:=w]) is provable Byi.h. for &o.
(3)2. (' +weT)is provable By Definition[Z1.
(3)3. (I'I- e[x:=wj]) is provable By (3)1, (3)2, cut (FacEIR).
(3)4. (T'+weS)is provable

H1. I,weTrweS)is provable By Definition[Z1, Definition ofc.

(4)2. Qed By(4)1, (3)2, cut (FacEIR).
(3)5. Qed By (3)3,(3)4, and predicate logic.
T ISHAVE g, i.e,

3 (T,er Q)
Tomweg (Fe=sf)—@Lgrf) VE

(3)1. (I,e, g f)is provable By weakening (Fadi]9).
(3)2. (I',e g) is provable By Definition[Z1.
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(2)15.

(2)16.

(D17.

(2)18.

(219.

(2)20.

(3)3. (T',el f)is provable By (3)1,(3)2, cut (FacEIR).
(4. (C'+e= f)is provable By (3)3.
o.tis{n). (Q I g) proOF 7, i.e,,

Do
m:(I,[-€],Q 1 Qg)

Sz(n). Qi g) proor 7 (T'FeE) — ([,(Q Q) IF€) A

SSERT1.

(1. (T,[—-€],(Q I g) I €)is provable By weakening (Fadfl9).
(3)2. (I,[—-€],Q 1 g) is provable Byi.h. for Dg.
(3)3. (I',[—€] I+ €) is provable By (3)1, (3)2, cut (FacEIR).
(3)4. Qed By (3)3, Fac{IB.
Caseo.tis(n)l. (Q I g) ProOF 7, i.€,,

Do
7 (Ol = (QrQg),[-€],Qr Q)

E= T @r g rroorn CTre) — T2 @Qrg.[(MIFe

L. (T,(nyl = (Q 1+ g),[—€],[(ny]] I €) is provable
By provability of (T, (n)| £ (Q r @), [{n)1]  €), weakening (Fa¢il9).

SSERT?.

(32. (I,myl = (Qq),[-€],[(Q I g)] - e) is provable By (3)1, expansion (Fa€f10).
(3)3. (IL,{Myl = (Q I+ g),[—€],Q I g) is provable Byi.h. for Dg.
3. (I,<nyl = (Q I+ g),[—€] I €) is provable By (3)2, (3)3, cut (FacEIR).
(3)5. (I',[—€] I €) is provable By (3)4, strengthening (FaEflL1).
(3)6. Qed By (3)5, Fac{IB.
7 IS CASE { PROOF T, I.€.,

&o
e (gi-¢€) proor 7 (C'HE) — (A f)

0. cASE g PROOF 71 : (T €) — (A I+ f) '

Byi.h. for &o.

7is{n). surrices (Q IF g) PROOF 7, i.€.,

Do
7. (T, (Qrg) e

&= {ny. surrices (A I- f) proor 7 : ([ IF€) — (I',[-€],Q IF g) SUFFICESL.
(3)1. (I,[—€],(Q Q) - €) is provable By i.h. for Dy, weakening (Fadil9).
(3)2. (I',[—€] I €) is provable By provability of (T',[-€],Q I g), (3)1, cut (FacEIR).
(3)3. Qed By (3)2, Fac{IB.
o.7is{nyl. surrices (Q IF g) PROOF 7, i.€,,

Do
&2 7 ([l £ (Qrg),[Knyl] - e)
~ (1. surrices (Q I @) proor 7 : (T IF € — ([, (nyl 2 (Q - g),[~€],Q I g)

31, (<Nl = (Q g),[—€],[{ny]] + €) is provable Byi.h. for Dy, weakening (Fadil9).
32. (I,nyl = (Qwrq),[—€],[(Qr )] +e) is provable By (3)1, expansion (Fa€f10).
(3. ([L,(Nyl = (- g),[—€] + €) is provable

By (3)2, provability of(I',<n)| £ (Q I g),[—€],Q I g), cut (FacCIR).

SUFFICES?.

(3)4. (I',[-€] I €) is provable By (3)3, strengthening (FaEfll1).
(3)5. Qed By (3)4, Fac(IB.
Caseris PICKﬁ: P PROOF 7, i.€.,
Do
T (F - Elﬁ : p)

= 5 — PICK.
o.Pick B pProOF 7w (T IF €) — (F,H,B”, p I e)
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(1. (38 p €) is provable By provability of (T, || 3], p - €), predicate logic.
(3)2. (I'+34: p) is provable Byi.h. for D.
(3)3. Qed By (3)1, (3)2, cut (Fac[IR).
(2)21. Qed By(2)1,...,{2)20
1y3. Qed By (1)1, (1)2.
O

A.4 Constrained Search

The correctness theoreilil22) establishes an implicatam the leaf obligations generated by a com-
plete meaningful claim to the obligation of the claim. It isvays true, regardless of the provability of

any individual leaf obligation. While changing the visibil of assumptions in an obligation does not

change its provability, a back-end prover may fail to pravié important assumptions are hidden. As

already mentioned in Secti@h 3, the PM removes these hidsmgptions before sending a leaf obli-

gation to a back-end prover. Therefore, in order to estaltie Structural Soundness Theordin (1), we
must prove a property about the result of this removal.

Definition 23 (Filtration). Thefiltered form of any obligationg, written (¢);, is obtained by deleting
all assumptions of the forfgo] and replacing all assumptions of the fofm= §] with New 0 anywhere
insideg.

For example(New X, [y = X] IF X =Y); = (New X, NEWY I X =Y). We thus see that filtration can render a
true obligation false; however, if the filtered form of anightion is true, then so is the obligation.

Lemma 24 (Verification Lemma). If (¢); is provable, them is provable.

Proof Sketch.By induction on the structure of the obligatignwith each case a straightforward conse-
guence of factEl8 arld 9. i

Definition 25 (Verifiability). The obligationg is said to beverifiableif (¢); is provable.
We now prove the Structural Soundness Theofdm (1).

Theorem 1. If 7 : ¢ is a complete meaningful claim and every leaf obligatiorgeiterates is verifiable,
theng is true.

Proof.
(1)1. For every leaf obligatiog generated by : ¢, it must be thatg is provable.
(2)1. Takegg as a leaf obligation generated hy ¢.

(2)2. (¢o); is provable By assumption and Definitido P5.
(2)3. Qed By (2)2, Verification Lemm&324.
(1)2. ¢ is provable By (1)1, Correctness Theordml22.
(1)3. Qed By (1)2, Trust AxiomT.
m|
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B A TLA™ Proof of Cantor’'s Theorem

The following is the complete TL% proof of Cantor’s theorem referenced in Secfiog 2.3.

THEOREM ¥S : Vf € [S — susser S]: JA€ suBser S:Vxe S: f[x] #A
(1)1. ASSUME NEW S,
New f €[S — susser S
PROVE JA € suBseTr S:¥xe S: f[x] # A
(2)1. perNe T £ {z€ S z¢ f[Z]}
(2)2. YxeS: f[x]#T
(3)1. ASSUME NEw X € S PrROVE f[X] # T
(4)Y1. case X€ T oBvIOUS
(4)2. case X ¢ T oBvIOUS
(4)3. QED BY (4)1,(4)2
(3)2. QeDp BY (3)1
(2)3. QED BY (2)2
(1)2. @ep BY (1)1

As an example, the leaf obligation generated (see Appéndxfar the proof of(4)1 is:

( (1Yl 2 (NewS,New f, f € [S — suser S] - JA e suser S: ¥Yxe S: f[X] # A),
NEW S,
New f, f €[S — susser S],
T£{zeS:z¢ (7},
[-(FAesusser S:¥xeS: f[X] #A)],
(2)22Yxe S f[x] #T,
[-(VxeS: f[x] #T)],
(L2 (Newx,xe S f[x] #T),
NEW X, X€ S,
[=(f[] # )],
HLE(xeTr f[X] #T),
xeT

FfX]#T )

Filtering its obligation (see Definitidn"R3) and expanditigdafinitions gives:

(NEWS,
New f, f €[S — susser S,
NEW X, X€ S,
xe{zeS:z¢ f[Z}r f[X] #{zeS:z¢ f[z]}).

In Isabell¢TLAY, this is the following lemma:

lemma A S.
A f. fe[S— susseT S] =

(/\x. [ xesS;
xef{zeS:z¢ f[Z} | = f[X] #{zeS:z¢ f[z]})
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