
HAL Id: inria-00338987
https://inria.hal.science/inria-00338987

Submitted on 15 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal specification of the Fractal component model
in Alloy

Philippe Merle, Jean-Bernard Stefani

To cite this version:
Philippe Merle, Jean-Bernard Stefani. A formal specification of the Fractal component model in Alloy.
[Research Report] RR-6721, INRIA. 2008, pp.44. �inria-00338987�

https://inria.hal.science/inria-00338987
https://hal.archives-ouvertes.fr


appor t  




de  r ech er ch e


IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

6
7

2
1

--
F

R
+

E
N

G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A formal specification of the Fractal component

model in Alloy

Philippe Merle, Jean-Bernard Stefani

N° 6721

November 2008





Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

A formal specification of the Fractal component model

in Alloy

Philippe Merle, Jean-Bernard Stefani

Thème COM — Systèmes communicants
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Une spécification formelle du modèle de composants

Fractal en Alloy

Résumé : Ce rapport contient une spécification formelle du modèle Fractal dans le
langage de spécification Alloy. Le rapport couvre tous les éléments de la spécification
(informelle) de référence du modèle Fractal. Il fournit une spécification du modèle
Fractal réellement indépendante des langages de programmation et il résoud les ambi-
guités de la spécification de référence.

Mots-clés : Composants logiciels, modèle de composants, spécification formelle,
architecture logicielle, modèle de composants Fractal, langage de spécification Alloy.
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4 Merle & Stefani

1 Introduction

Motivation The Fractal component model [9] is a programming-language-indepen-
dent component model, which has been introduced for the construction of highy config-
urable software systems. The Fractal model combines ideas from three main sources:
software architecture, distributed configurable systems, and reflective systems. From
software architecture [24], Fractal inherits basic concepts for the modular construction
of software systems, encapsulated components, and explicit connections between them.
From reflective systems, Fractal inherits the idea that components can exhibit meta-
level activities and reify through controller interfaces part of their internal structure.
From configurable distributed systems, Fractal inherits explicit component connections
across multiple address spaces, and the ability to define meta-level activites for run-
time reconfiguration. The Fractal model has been used as a basis for the development of
several kinds of configurable middleware, and has been used successfully for building
automated, architecture-based, distributed systems management capabilities, including
deployment and (re)configuration management capabilities [2, 11, 13, 14], self-repair
capabilities [7, 25], overload management capabilities [8], and self-protection capabil-
ities [12].

The Fractal model is currently defined by an informal specification [10]. The spec-
ification only briefly mentions the general foundations that constitute the Fractal model
per se, and focuses mostly on default meta-level capabilities (or controllers, in Fractal
parlance). The specification has been successfully implemented in different languages
and environments, notably in Java and C, without giving rise to serious issues, which
is a testimony to its consistency. However, there are aspects of the specification that
remain decidedly insufficiently detailed or ambiguous. The present report attempts to
correct these deficiencies by developing a formal specification of the Fractal compo-
nent model which makes explicit the underlying general component model constituting
the foundation of Fractal; which clarifies a number of ambiguities in the informal Frac-
tal specification; and which identifies places where the informal Fractal specification
may be overconstraining.

Beyond ensuring the consistency of the Fractal model, a formal specification for
the Fractal model can serve several purposes:

• to provide a more abstract, programming-language-independent specification of
the Fractal model;

• to allow a formal verification of Fractal designs;

• to provide the basis of a formal architecture description language for Fractal;

• to allow a formal specification and verification of Fractal tools;

• to allow a rigorous comparison with other component models.

The latter is important because the Fractal specification aims to define a very gen-
eral component model (e.g., meta-level capabilities in Fractal are not fixed, nor is the
semantics of composition realized by composite components), from which more spe-
cialized component models can be derived and combined. A formal specification can

INRIA



Fractal in Alloy 5

thus help in assessing whether a component model constitutes a proper refinement or
specialization of the Fractal model.

Alloy The specification in this report is written in Alloy 4 [1, 15, 16], a lightweight
specification language based on first-order relational logic. Alloy is interesting because
of its simplicity and because of the straightforward usage of its analyzer, which acts
essentially as a model checker and counter-example generator, and which enables rapid
iterations between modelling and analysis when writing a specification (very much akin
to debugging a specification). For a detailed introduction and motivation of Alloy, we
refer the interested reader to the book [16]. An online tutorial for Alloy is also available
on the Alloy Analyzer Web site [1].

Presentation The report is written in a litterate programming style: the specifica-
tion is presented in its entirety, the (informal) commentary on the formal specification
being interspersed with excerpts of the Alloy code. All assertions (Alloy facts) and
theorems (Alloy assertions) have been checked with the Alloy analyzer, checking for
the existence of finite models in the first case, and for the absence of counter-examples
in models below a certain size in the second case. We do not introduce Alloy nor the
Fractal model. Hopefully, the commentary running along the Alloy code excerpts will
suffice.

Organization The report is organized as follows. Section 2 discusses related work.
Section 3 details the Alloy specification of the core Fractal concepts. Sections 4 to 8
detail the Alloy specification of the different elements of the Fractal model, including
the naming and (distributed) binding framework which is an integral part of Fractal
(Section 4), the optional component controllers (meta-level functions) defined in the
informal Fractal specification (Sections 5 and 6), the notion of component factory and
bootstrap conditions for a Fractal system (Section 7), and the optional type system
(Section 8). Section 9 shows that the overall specification is consistent, i.e., that there
exists a model for a component that combines all the features specified in Sections 3
to 8. Section 10 contrasts the formal specification presented in this report with the in-
formal one, highlighting areas (and motives) of divergence between the two. Section 11
concludes the report with a mention of future work.

2 Related work

There have been several approaches to the formalization of component-based soft-
ware and component models. Representative samples are provided by the two books
[19, 20]. The two bodies of work closest to ours are: the co-algebraic approach de-
veloped by Barbosa, Meng et al. [3, 4, 21, 22], and the formal specification in Alloy
of Microsoft COM component model developed by Jackson and Sullivan [17], follow-
ing work by Sullivan et al. on the formal specification of the COM model in Z [27].
Although the presentation we give is relational, the notion of component or kell we
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6 Merle & Stefani

develop in this report is essentially coalgebraic in nature since a kell can be under-
stood primarily as a set of transitions. Whereas Barbosa et al. develop a categorical
framework, we prefer to adopt a simpler set-based approach: while we lose the benefit
of dealing in the same way with multiple forms of behavior (e.g., probabilistic, time-
based, etc.) as in [3], the intuition is in our view better aided by a set-based presen-
tation, and it is easier to understand for it directly generalizes the well-known notion
of transition system. The COM specification presented in [17] focuses on the struc-
tural aspects of the COM model, and notably on the definition of its query interface
and aggregation mechanism. While the Component controller in the Fractal specifica-
tion provides much the same functionality as the query interface in COM, the Fractal
model does not exhibit the COM-specific difficulty arising in the interplay between
query interface and aggregation highlighted in [27], and possesses several forms of
meta-level behavior (so-called controllers and controller interfaces). Thus, our work
deals with a richer component model than the COM one, and deals in particular with
the specification of meta-level behavior that subsumes and extends that of the COM
model.

A recent work [26] presents a first-order relational logic formalization of the Frac-
tal component model. The consistency of a part of this specification is proven man-
ually while the consistency of our specification is checked by the Alloy Analyser.
Moreover, this work deals only with certain structural aspects of the Fractal specifi-
cation, while the present report covers the whole informal Fractal specification. Espe-
cially, AttributeController, ContentController, SuperController, NameController, GenericFactory,
Factory, and TypeFactory interfaces are not formally specified in [26].

3 Foundations

This first part of the specification captures the underlying core of the Fractal model:
a very general notion of component, called kell (a remote reference to the biological
cell). At this level of abstraction, the notion of kell first emphasizes two facts:

• A kell has entry points, called gates. The notion of gate is an abstract form of
the notion of interface in the Fractal specification. A gate constitutes a named
point of interaction between a kell and its environment. The set of gates of a kell
constitutes its sole means of interaction with its environment – i.e., a kell is a
unit of encapsulation.

• A kell may have subcomponents, called subkells. All transitions in a kell may act
on the set of subcomponents, and modify it in arbitrary ways. This flexibility is
key to allow different semantics for composition, and to support different kinds
of meta-level operations – i.e., operations operating on the internal structure and
behavior of components.

The first primitive sets in the Alloy specification of the core Fractal model are given
below 1.

1In Alloy, primitive sets are just sets of atoms – i.e., elements which have no internal structure (and are
not sets – atoms are sometimes called urelements in the logic litterature, e.g., as in [5]). Primitive sets are

INRIA



Fractal in Alloy 7

module fractal/foundations

sig Id {}
sig Val {}
sig Op extends Id {}

The above declarations introduce three primitive sets: Id, Val, and Op. They correspond
to the set of identifiers, base values, and operation names respectively. Identifiers are
just primitive forms of names or references. Base values represent values of some
(unspecified) data types, such as integers, booleans, strings, etc. At this level of ab-
straction, the exact forms base values can take is of no import, hence their specification
as just atoms 2.

The general notions of interface and component in the core Fractal model are given
below. They are called, respectively, gate and kell.

sig Gate {
gid: Id

}

sig Kell {
gates: set Gate,
sc: set Kell,
kid: Id

}

fact GatesInKellHaveUniqueIds {
all c:Kell | all i,j:c.gates | i.gid = j.gid implies i = j

}

A gate – i.e., an element of the set Gate – is an entry point to communicate with a
kell. The declaration above stipulates that a gate has an identifier 3. A kell – i.e., an
element of the set Kell – is defined as having an identifier, given by the feature kid, a set
of gates, given by the feature gates, and a set of sub kells, given by the feature sc. The
fact that a kell has an identifier is necessary (e.g., for management purposes) to mani-
fest a notion of identity that persists throughout state changes. The Alloy fact named
GatesInKellHaveUniqueIds expresses an invariant on kells4, namely that gates belonging
to a kell have distinct identifiers.

called signatures in Alloy, hence the keyword sig for introducing them. Note also the module declaration: in
Alloy, specifications can be broken down into modules, which can then be imported for use in other modules
using a declaration of the form: open moduleX as X, where X is some local name used, in the current
module, as an abbreviation for the imported module.

2Keyword extends in Alloy indicates that a primitive set is declared as a subset of another one (and that
it will form, with other subsets similarly declared, a partition of the set it extends).

3In Alloy, a declaration of the form gid:Id can be read as declaring a feature, or instance variable, of the
class Gate; formally, it declares a binary relation gid : Gate → Id between the set of gates, Gate, and the
set of identifiers, Id.

4This invariant takes the form of a simple first-order logical formula, where the keyword all denotes
the universal quantifier ∀, where a declaration such as c:Kell denotes an arbitrary element c of the set Kell
(likewise, i:c.gates denotes an arbitrary element i of the set of gates of the kell c – the dot notation c.gates
is the standard notation for accessing a feature, or attribute, of an instance of a class). In a more classical
logical notation, the GatesInKellHaveUniqueIds formula would read:

∀c ∈ Kell, ∀i, j ∈ gates(c), gid(i) = gid(j) =⇒ i = j

RR n° 6721



8 Merle & Stefani

These elements provide the basic structure of a kell but do not explain how it be-
haves. This is captured by the definition of the set TKell below, a subset of Kell5, which
endows kells with transitions. Transitions are defined below as 4-tuples that comprise a
set of initial kells (feature tsc), a set of input signals (feature sin), a set of output signals

(feature sout), and a set of residual kells (feature res). Intuitively, the initial set of kells
of a transition corresponds to subkells of the kell to which the transition belongs (the
set of subkells on which the transition acts). The set of residual kells are the kells pro-
duced by the transition. The kell to which the transition belongs may or may not belong
to the residual of the transition. This allows us to model component factories, as in the
Fractal specification, i.e., component that can create other components, or operations
that delete or transform the target component. Effectively, this means that a kell can be
seen as some sort of generalized Mealy machine (a labelled transition system, whose
labels denote input and output signals handled during a transition).

sig TKell in Kell {
transitions: set Transition

}

sig Transition {
tsc: set Kell,
sin: set Signal,
sout: set Signal,
res: set Kell

}

fact TransMayNotHaveDifferentSubComps { all c:TKell | all t:c.transitions | t.tsc = c.sc }

The invariant TransMayNotHaveDifferentSubComps ensures that the initial kells associated
with each transition of a given kell c are indeed the subkells of c.

Signals are defined below as records of arguments (feature args), with a target gate
(feature target), i.e., the gate at which a signal is received (if it is an input signal) or
emitted (if it is an output signal), and an operation name (feature op). In object-oriented
terms, a signal looks very much like a reified method invocation.

sig Signal {
target: Gate,
operation: Op,
args: Id −> set Arg

}

sig Arg in Id + Val + Gate + Kell {}

fact SignalsTargetGates { all c: TKell | c.transitions.(sin + sout).target in c.gates }

Signal arguments belong to the set Arg defined above as the union of four sets: iden-
tifiers, values, gates and kells. This means in particular that signal may carry gates
(much as in the π-calculus messages may carry channel names 6), and kells. The latter
capability is not explicitly reflected in the Fractal specification, but is required to model

5In Alloy, in denotes the subset relation, or the set membership relation, + denotes set union, & denotes
set intersection, − denotes set difference, # denotes set cardinality.

6Note that in the π-calculus, channels, i.e., communication capabilities, are just names. Strictly speaking
we could have avoided to include gates as possible arguments to signal, by just relying on identifiers. How-
ever, we have been careful in the specification to ensure that gates remain immutable, in contrast to kells

INRIA



Fractal in Alloy 9

mobile agents and strong mobility, as well as deployment, checkpointing and reconfig-
uration capabilities7. The fact SignalsTargetGates expresses the invariant that all target
gates in signals appearing in transitions of a kell c are gates of c.

Discussion

This completes the specification of the core Fractal model. As can be seen the core
is very small, and it merely asserts that components are higher-order Mealy machines,
that can be hierarchically organized. This core model allows a number of seemingly
unusual, or unexpected, features:

• We allow kells to have no gates, and thus only internal behavior. As a result, the
following assertion 8 is not valid:

assert AllKellsHaveGates { all c:TKell | some c.gates }

In contrast, the following assertion is valid:

assert NoGateImpliesInternalActions {
all c:TKell | (no c.gates) implies (no c.transitions.(sin + sout) )

}

It asserts that if a kell has no gate, then its transitions are merely internal as they
involve no exchange of signals with the environment.

• We allow component structures with sharing – i.e., a kell may be a subkell of two
different kells. Thus, the following assertion to the contrary is invalid:

assert SharingIsImpossible {
all c1,c2:Kell | no cs:Kell {

cs in c1.sc & c2.sc and (not c1 = c2) and (not c1 in c2.sc) and
(not c2 in c1.sc)

}
}

Component sharing is an original feature of the Fractal model, which as been
found useful to model situations with resource sharing – i.e., where components
at different places in a component hierarchy need access to the same resource,
such as a software library, or an operating system service.

(i.e., no operation will transform a gate into another with the same identifier). Having a gate identifier or a
gate itself as an argument are thus strictly equivalent, but allowing gates as signal arguments simplifies the
specification.

7Alternatively, one could model this through marshalling and unmarshalling operations, allowing to trans-
form a kell into a value, and vice versa. The above specification of arguments makes this higher-order
character of signals and of the kell model explicit.

8An assertion in Alloy is written exactly like a fact, except for the use of the assert keyword to declare it.
An invalid assertion is detected by the Alloy Analyzer when it generates a finite model that contradicts it (a
counterexample). The Alloy keyword some denotes the existential qualifier. Thus, some c:Kell | P where
P is some predicate, asserts the existence of some kell c verifying P. By extension, some s, where s is a
set, asserts that s is not empty – i.e., that there is some element in s.

RR n° 6721



10 Merle & Stefani

• We allow component structures that are not well-founded – i.e., where a kell may
appear as a subkell of itself, or as a subkell of some of its subkells, etc. Thus, the
following assertion to the contrary is invalid9:

assert ContainmentIsWellFounded {
all c:Kell | (not c in c.*sc)

}

This may seem counterintuitive, however this is not really different from allow-
ing recursive procedure calls, and we therefore do not enforce it at the level of
abstraction of the core model. The Fractal specification explicitly disallows this
(ContainmentIsWellFounded would be written as an invariant – an Alloy fact), but
this feature could be interesting to model recursive component structures. This
is one occurrence where the present formal specification relaxes the constraints
from the informal Fractal specification.

• We allow components to have a varying number of interfaces during their life-
time – i.e., kells to have a varying number of gates in the course of their execu-
tion. Thus, the following assertion to the contrary is invalid:

assert NumberOfGatesInKellDoesNotVary {
all c:TKell | all t:c.transitions | all cr:TKell {

(cr in t.res and cr.kid = c.kid) implies (cr.gates = c.gates)
}

}

• In contrast to most other component models (see e.g., [18] for a discussion of
recent ones), we do not need to introduce a notion of connector or binding to
mediate the communication, or reify the communication paths, between compo-
nents. Sharing, containment (i.e., the kell-subkells relationship) and the fact that
each component or kell institutes its own composition semantics suffice to make
explicit communication channels in a component structure, and to define their
semantics.

The specification of kells as Mealy machines has however one major drawback as
an Alloy specification. Because transitions make explicit the state changes that a kell
may go through, specifying state changes in the present specification amounts to re-
quire that certain facts hold, which would take the form of closure properties, such as
“kells of this kind – and the kells that appear in the residues of their transitions – must
have transitions of this sort”. For instance, we would require all kells that support the
Component gate to have certain transitions implementing the Component operations, and
all the kells in the residues of their transitions to be kells of a similar kind. Closure
properties of this kind are unfortunately instances of so-called generator axioms that
may lead to a state explosion in models of the specification, which makes them im-
possible to analyze using the model checking approach of the Alloy Analyzer. This
problem is an instance of the unbounded universal quantifiers problem discussed in
Section 5.3 of [16], and needs to be avoided if we want to exploit the Alloy Analyzer

9In Alloy, *r of some relation r denotes the reflexive and transitive closure of r, while ˆr denotes its
transitive closure.
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Fractal in Alloy 11

in assessing the consistency of the specification. Our approach in this specification is
to not describe explicitly the set of transitions logically associated with a kell. Instead,
we will define Alloy predicates that describe state changes on certain kells, but refrain
from imposing that these state changes appear as explicit transitions in the supporting
kells. In effect, for the purposes of this specification, we will deal only with elements
of the Kell set, and will not consider elements of the TKell set. In the following sec-
tions, we adopt this approach: all properties and predicates considered will deal apply
to elements of Kell.

Before moving to the specification of the (optional) default meta-level capabilities
of the Fractal model, we gather here a number of declarations used in the rest of the
specification. The distinction between Client and Server is here merely a primitive type
distinction, which governs bindings between gates: to bind two gates together, one
must be a dual of the other. The denominations Client and Server merely reflect that
duality. The predicate isoKell can be interpreted as a strong identity predicate, whereby
two kells are strongly identical if they have the same identifier, the same gates and the
same subkells (they may differ in their internal state).

sig Client extends Gate {}
sig Server extends Gate {}
one sig NoSuchInterfaceException extends Val {}
one sig IllegalLifeCycleException extends Val {}
one sig Ok extends Val {}
pred isoKell(c:Kell, c1:Kell) {

c.kid = c1.kid
c.sc = c1.sc
c.gates = c1.gates

}

4 Naming and binding

The naming and binding part of the specification captures the notions necessary for
the construction of distributed configurations. We follow here the informal Fractal
specification [10], Section 2.2.

The first concept is that of name. A name is merely an entity that is used to refer to
another one. A name comes equipped with a reference to its naming context (feature
context).

module fractal/naming

open util/relation as RR
open fractal/foundations as FF

sig Name {
context: Id,
pack: NamePickle

}

sig NamePickle {
unpack: Name,
context: Id

}

RR n° 6721



12 Merle & Stefani

A name can also be pickled (or marshalled) to make it persistent or to communicate
it between different machines. This is obtained through the combination of the pack

feature and of operations encode and decode 10, defined as follows:

fact PackUnpackIdempotent { all n:Name | n.pack.unpack = n }

pred encode(n:Name, p:NamePickle, n1:name) {
n1 = n
p = n.pack

}

pred decode(nc:NamingContext, p:NamePickle, n:Name, nc1:NamingContext) {
nc1 = nc
p.context = nc.nid and p.unpack.context = nc.nid implies n = p.unpack

}

assert DecodingYieldsSameNameThanEncoded {
all p:NamePickle, n:Name, nc:NamingContext {

encode[n,p] and nc.nid = n.context implies decode[nc,p,n]
}

}

Names exist only within contexts. Contexts are primarily associations between
names and referents – i.e., entities which are refered to by names. Making contexts
explicit allows us to define different systems of names and to have them coexist and
cooperate without the need to rely on a global naming authority to disambiguate inde-
pendently created names. Contexts are defined as follows:

sig Referent in Gate + Name {}

sig NamingContext {
nid: Id,
exported: Name −> lone Referent

}

The feature exported in a naming context identifies the association between names in
the context and their referents 11.

Two key invariants, given below, apply to names and contexts 12. The first one
merely asserts that names appearing in a context correctly refer to this context. The
second one clarifies the fact that referents cannot be names that belong to the context
(they can be names that belong to other contexts, though, thus allowing referral chains
to be constructed across multiple contexts).

10Alloy allows the definition of first-order predicates, whose declarations start with keyword pred and are
optionally followed by the list of the predicate arguments. Operations, that perform state changes in a system
can be defined as predicates with some arguments corresponding to the initial state, i.e., the state prior to the
execution of the operation, and other arguments corresponding to the final state, i.e., the state resulting from
the execution of the operation. For a discussion on how to model state changes in Alloy, we refer the reader
to Chapter 6 of [16].

11In Alloy, a declaration of the form exported: Name −> lone Referent denotes an injective binary
relation between the set Name and the set Referent. The keyword lone is an example of a relation mul-
tiplicity. In our case, it signifies that a given name is to be associated with one, and only one, referent. Of
course, two distinct names can have the same referent.

12Defined in the Alloy module util/relation, the function dom returns the domain of a binary relation and
ran returns the range of a binary relation.
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Fractal in Alloy 13

fact NameRefersToContext {
all nc:NamingContext | all n:dom[nc.exported] | n.context = nc.nid

}

fact InContextNamesNotExported {
all nc:NamingContext | all n:ran[nc.exported] | n.context != nc.nid

}

The main operation supported by a naming context is the export operation. Opera-
tion export returns a new name n for referent r in context nc. The name n is a valid name
for referent r in the context nc. The naming context nc can for instance be a network
context where remotely accessible interfaces are given names of a special form (e.g.,
URLs for a Web service context). Note that a name can be exported as well. This is
necessary to handle names across different naming contexts. A referent that is already
a name in the target context cannot be exported. Operation export is specified below 13.

one sig NamingException extends Val {}

pred export(nc1, nc2: NamingContext, r: Referent, n:Name + NamingException) {
let A = not (some s:Referent − r | n−>s in nc1.exported),

B = (not r.context = nc1.nid) {
(A and B) implies nc2.exported = nc1.exported + n −> r and nc1.nid = nc2.nid
else n in NamingException and nc1 = nc2

}
}

One may verify a number of properties in relation to operation export. Here are a
few self-explanatory ones:

assert ExportReturnsNewNameOrOldMap {
all nc,ncc:NamingContext, r:Referent, n:Name |

export[nc,ncc,r,n] implies
let A = (not n in dom[nc.exported]),

B = (n.(nc.exported) = r),
C = (not r.context = nc.nid) {

(A or B) and C
}

}

assert ExportNameBelongsToContext {
all nc,ncc:NamingContext, r:Referent, n:Name |

export[nc,ncc,r,n] implies n.context = nc.nid
}

assert ExportExceptionLeavesContextUnchanged {
all nc,ncc: NamingContext, r:Referent, n:NamingException |

export[nc,ncc,r,n] implies nc = ncc
}

13Note the use of the Alloy construct let A = ... { S }, which just declares a variable A to stand as a deno-
tation for some value, denotation which is then used inside the statement S. Note also the use of a nested im-
plication of the form C1 implies F1 else F2, which is equivalent to (C1 and F1) or ((not C1) and F2).
Note, finally, the keyword one which precedes the declaration of the NamingException value: it just sig-
nifies that the set NamingException is a singleton. In Alloy, set elements are essentially identified with
singletons.
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The following assertions highlight the fact that name resolution within a single
naming context can be partial. To be complete, name resolution must typically take
place across several naming contexts. However, we also allow partial name resolution
across several naming contexts. This takes care of situations were name resolution
cannot be carried out in full (e.g., in disconnected situations) or need not be carried out
in full (e.g., when no access to a referenced interface or component is attempted).

assert ExportClosureIsJustExport {
all nc:NamingContext | nc.exported = ˆ(nc.exported)

}

assert ExportClosureEndsInInterfaceOrNotInContextName {
all nc:NamingContext, n:Name, r:Referent |

r in n.(nc.exported) implies (r in Gate) or (r in Name and r.context != nc.nid)
}

A binder is a naming context that can resolve names and establish connections
(bindings) towards entities referred to by resolved names. A binding is created typically
by a bind operation. The creation of a binding results in the creation of a component
that provides a (local) interface which corresponds to (e.g., is a proxy to) the resolved
name. A binder records the association (bindings) between resolved names and the
(local) interfaces they refer to. Binders are specified below.

sig Binder extends NamingContext {
bindings: Name −> lone Gate,

}

fact BindingNamesBelongToContext {
all b:Binder | all n: dom[b.bindings] | n.context = b.nid

}

fact BindingsAndExportedDomainsDisjoint {
all b:Binder | no (dom[b.bindings] & dom[b.exported])

}

The bind operation is specified below, together with some self-explanatory properties.

pred bind(b,b1:Binder, n:Name, i:Gate + NamingException) {
b.nid = b1.nid
n −> i in b.exported implies b = b1
else i in Gate implies b1.bindings = b.bindings + n −> i
else i in NamingException and b = b1

}

assert BindExceptionLeavesBinderUnchanged {
all b,b1:Binder, n:Name, i: NamingException | bind[b,b1,n,i] implies b = b1

}

assert BindReturnsNewInterfaceOrFromExported {
all b,b1:Binder, n:Name, i:Gate | bind[b,b1,n,i] implies n −> i in b.exported + b1.bindings

}

Finally, one can prove a correct interplay between export and bind, namely that bind

returns a local (in-context) gate referred to by a previously exported name.

assert BindReturnsPreviouslyExportedReferent {
all b,b1:Binder, n:Name, i:Gate |
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export[b,b1,i,n] implies bind[b1,b1,n,i]
}

5 Basic introspection

The component controller in Fractal supports basic introspection capabilities: discov-
ering all the interfaces associated with a component and their type. We follow here the
informal Fractal specification [10], Section 3.

Our formal specification of the component controller begins with the declaration of
the Type signature, with its subtype relation, noted sstypes. At this level of abstraction,
the only property recorded of the subtype relation is that it constitutes a partial order
14.

module fractal/component

open util/relation as RR
open fractal/foundations as FF
open util/graph[Type] as GG

sig Type extends Val {
sstypes: set Type

}

fact SubTypingIsPartialOrder { GG/dag[sstypes] }

sig ComponentType extends Type {}
sig InterfaceType extends Type {}

The next signatures declare the Component gates and the Interface gates. A Component

gate is a server gate which also records the type of the component it belongs to. An
Interface gate records its type, as well as the Component gate of the component it belongs
to. As noted in the informal Fractal specification, this setting is similar to that adopted
by the Microsoft COM model, with Component corresponding to the COM IUnknown

interface.

sig Component extends Server {
ctype: ComponentType

}

sig Interface in Gate {
owner: Component,
itype: InterfaceType,

}

A ckell is now defined as a kell with one gate which is an instance of Component (its
other gates can be arbitrary gates). The fact CKellsHaveComponent constraints ckells to
have only one Component gate.

sig CKell in Kell {
comp: Component

}

14Note the use of the Alloy utility module graph and the predicate dag from this module.
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fact CKellsHaveComponent { all c:CKell | c.comp = c.gates & Component }

Likewise, we define an ikell as a kell whose gates are all instances of Interface.

sig IKell in Kell {}

fact IKellsHaveInterfaces { all c: IKell | c.gates in Interface }

We now define compkells as ckells, which are also ikells, thus, as kells which have
a Component gate, and whose gates are all instances of Interface.

sig CompKell in Kell {}

fact CompKellsAreCKellsAndIKells { CompKell = CKell & IKell }

fact InterfacesInCompKellsHaveOwner { all c: CompKell | all i:c.gates | i.owner = c.comp }

The basic properties of compkells are corroborated by the following simple, self-
explanatory assertions.

assert OneComponentPerCompKell {
all c:CompKell | one c.gates & Component

}

assert ComponentInCompKellsIsInterface {
all c:CompKell | c.comp in Interface

}

assert CompKellsHaveOnlyInterfaces {
no c:CompKell { some c.gates & (Gate − Interface) }

}

assert OwnersInCompKellsAreComponent {
all c:CompKell | all i:c.gates | i.owner in Component & Interface

}

Before specifying the different operations that are attached to Component and Interface,
we first define an equivalence predicate on compkells. Roughly, isoCKell indicates that
two compkells have the same identifier, the same subcomponents, and the same gates –
i.e., their internal and external structures (but not necessarily their exact states) are the
same. By virtue of the above CKellsHaveComponent invariant, two equivalent compkells
have the same Component gate.

pred isoCKell(c:CompKell, c1:CompKell) {
isoKell[c,c1]

}

assert IsoCompKellsHaveSameComponent {
all c,c1:CompKell | isoCKell[c,c1] implies c.comp = c1.comp

}

We give below the different operations attached to a Component gate. Operation
getInterfaces returns the set of gates is of a compkell c, given its Component interface o.
In the process, compkell c becomes compkell c1, which is required to be equivalent
to c – i.e., have the same gates, the same identifier, and the same subkells. Operation
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getInterface returns the gate i whose identifier iid is passed as argument to the opera-
tion. In the process, compkell c becomes compkell c1. Operation getCType returns the
component type ct of compkell c.

// Operations from the Component interface

pred getInterfaces(c:CompKell, o:Component, is: set Interface, c1:CompKell) {
o = c.comp
is = c.gates
isoCKell[c,c1]

}

pred getInterface(c:CompKell, o:Component, iid:Id, i:Interface + NoSuchInterfaceException,
c1:CompKell) {

o = c.comp
isoCKell[c,c1]
i in c.gates implies iid = i.gid
else i = NoSuchInterfaceException

}

pred getCType(c:CompKell, o:Component, ct: ComponentType, c1:CompKell) {
o = c.comp
ct = o.ctype
isoCKell[c,c1]

}

The specification of the above operations provide examples of ambiguities that arise in
the informal Fractal specification (in fact, in any informal specification), and which are
difficult to weed out without a formal model. In fact, [10] leaves unspecified the exact
postconditions of operations. Here we strike a middleground between a strong form
which would require that the target compkell be left untouched, i.e., that would specify
c = c1 in place of our isoCKell[c,c1], and a very weak form which would only require
c.kid = c1.kid. The strong form would forbid any kind of side-effect to such meta-level
operations (such as setting a counter or updating a log of such operations), whereas the
very weak form would make these introspection operations essentially useless (since
the obtained information would be obsolete as soon as it is obtained).

We specify below operations associated with an Interface gate. Operation getOwner

returns the Component gate associated with the compkell c that hosts the target Interface

gate i. Operation getName returns the identifier of the target Interface gate i. Operation
getType returns the interface type it of the target Interface gate i.

// Operations from the Interface interface

pred getOwner(c:CompKell, i:Interface, o:Component, c1:CompKell) {
i in c.gates
o = i.owner
isoCKell[c,c1]

}

pred getName(c:CompKell, i:Interface, iid:Id, c1:CompKell) {
i in c.gates
iid = i.gid
isoCKell[c,c1]

}
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pred getType(c:CompKell, i:Interface, it: InterfaceType, c1:CompKell) {
i in c.gates
it = i.itype
isoCKell[c,c1]

}

We give below two simple properties, which assert the consistency of the Component

and Interface operations.

assert ComponentToInterfacesAndBack {
all c,c1:CompKell | all i: Interface | all is: set Interface {

getInterfaces[c,c.comp,is,c1] and i in is implies getOwner[c,i,c.comp,c1]
}

}

assert InterfaceToComponentAndBack {
all c,c1:CompKell | all i: Interface | all is: set Interface {

getOwner[c,i,c.comp,c1] and getInterfaces[c,c.comp,is,c1] implies i in is
}

}

The informal Fractal specification also defines the operation isInternal into the Interface

interface. However for a better separation of concerns between the specification of con-
trollers, this operation is defined later in Section 6.3. This is due to the fact that internal
interfaces are managed by ContentController.

6 Configuration

6.1 Attribute control

The AttributeController interface in Fractal allows to configure properties of a component.
We follow here the informal Fractal specification [10], Section 4.2.

We specify below kells with AttributeController gates – i.e., elements of ACKell or
ackells.

module fractal/attribute

open fractal/foundations as FF

sig AttributeController extends Server {}

sig ACKell in Kell {
actrl: AttributeController

}

fact AttributeControllerInACKellIsExternalGate { all c:ACKell | c.actrl in c.gates }

We now define an equivalence predicate on ackells. Two such kells are equiva-
lent if they have the same identifier, the same subkells, the same gates and the same
AttributeController gate.

pred isoACKell(c:ACKell, c1:ACKell) {
isoKell[c,c1]
c1.actrl = c.actrl

}
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The informal Fractal specification does not define operations for the AttributeController

interface. However, the informal specification defines a convention for defining applica-
tion-specific attribute controllers. We now give an example of how to formalize this
convention. This example component provides both getter and setter operations for a
foo property. We define two signatures: ExampleAttributeController as a subset of Attribute

Controller gates, and ExampleKell as a subset of ackells containing the foo field and where
the attribute controller is an ExampleAttributeController gate.

sig ExampleAttributeController extends AttributeController {}

sig ExampleACKell in ACKell {
foo: Val

} {
actrl in ExampleAttributeController

}

We specify below the getter and setter operations for the foo property.

pred getFoo(c:ExampleACKell, ac:ExampleAttributeController, r:Val, c1:ExampleACKell) {
c.actrl = ac
r = c.foo
isoACKell[c,c1]

}

pred setFoo(c:ExampleACKell, ac:ExampleAttributeController, v:Val, c1:ExampleACKell) {
c.actrl = ac
c1.foo = v
isoACKell[c,c1]

}

Finally we give a consistency property on these two operations.

assert GetFooAfterSetFoo {
all c,c1: ExampleACKell, v:Val |

setFoo[c, c.actrl, v, c1] implies getFoo[c1, c1.actrl, v, c1]
}

6.2 Binding control

The BindingController interface in Fractal supports the binding of client interfaces of a
component to server interfaces. The effect of this binding is to allow the components
that are connected via these bound interfaces to communicate. We follow here the
informal Fractal specification [10], Section 4.3.

In our case, we do not specify the exact effect of binding a client and a server
gate, since the semantics of this binding typically depends on the enclosing compo-
nent where it takes place. However kells providing a BindingController gate record which
client interfaces are bound (feature bindings in an instance of BCKell). Notice the differ-
ent constraints that apply:

• a client gate is bound at most to a single server gate (lone multiplicity in bindings

feature declaration);

• client gates must be gates of the hosting kell (fact ClientsInBindingCntrlAreBCKellGates);
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• the bindings relation records the binding of client gates (fact BindingsBindClientGates).

module fractal/binding

open util/relation as RR
open fractal/foundations as FF

sig BindingController extends Server {}

sig BCKell in Kell {
bctrl: BindingController,
clients: set Client,
bindings: Client −> lone Server

}

fact BindingsBindClientGates {
all c:BCKell | dom[c.bindings] in c.clients

}

fact ClientsInBindingCntrlAreBCKellGates {
all c:BCKell | c.clients in c.gates

}

fact BindingControllerInBCKellIsExternalGate {
all c:BCKell | c.bctrl in c.gates

}

The following assertion is valid as it is implied by the conjunction of ClientsInBinding-
CntrlAreBCKellGates and GatesInKellHaveUniqueIds invariants.

assert ClientsInBCHaveUniqueIds {
all c:BCKell | all ci,cj:c.clients | ci.gid = cj.gid implies ci = cj

}

Before specifying the operations attached to BindingController gates, we define an
equivalence predicate between kells with a BindingController gate. Two such kells are
equivalent if they have the same identifier, the same gates, the same subkells, the same
client gates and the same BindingController gate.

pred isoBCKell(c:BCKell, c1:BCKell) {
isoKell[c,c1]
c1.clients = c.clients
c1.bctrl = c.bctrl

}

We specify below the different operations associated with BindingController gates.
Operation list returns the set of client gate identifiers of the kell hosting the target
BindingController gate; in the process, the hosting kell c evolves into kell c1. Opera-
tion lookup returns the server gate i that is bound to the client gate whose identifier iid

is passed as argument. Operation bind binds the client interface whose identifier cid is
passed as argument to the server gate si passed as argument. Finally, operation unbind

unbinds the client gate whose identifier cid is passed as argument.

// Operations from the BindingController interface

one sig IllegalBindingException extends Val {}
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sig BindingReturn in Ok + NoSuchInterfaceException + IllegalBindingException
+ IllegalLifeCycleException {}

pred list(c:BCKell, bc:BindingController, r: set Id, c1:Kell) {
c.bctrl = bc
r = c.clients.gid
isoBCKell[c,c1]

}

pred lookup(c:BCKell, bc:BindingController, iid: Id, i: Server + NoSuchInterfaceException,
c1:Kell) {

c.bctrl = bc
isoBCKell[c,c1]
iid in (c.clients).gid implies (some ci: Client { ci.gid = iid and ci in c.clients and

i in ci.(c.bindings) })
else i = NoSuchInterfaceException

}

pred bind(c:BCKell, bc:BindingController, cid: Id, si:Server, r: BindingReturn, c1:Kell) {
bc = c.bctrl
some ci:Client {

r = IllegalLifeCycleException implies isoBCKell[c,c1]
else no cid & (c.clients).gid implies r = NoSuchInterfaceException and isoBCKell[c,c1]
else some ci.(c.bindings) implies r = IllegalBindingException and isoBCKell[c,c1]
else ( cid in (c.clients).gid and no ci.(c.bindings) and

ci.gid = cid and ci in c.clients and
r = Ok and c1.bindings = c.bindings + ci −> si and
isoBCKell[c,c1] )

}
}

pred unbind(c:BCKell, bc:BindingController, cid: Id, r: BindingReturn, c1:Kell) {
some ci:Client, si: Server {

c.bctrl = bc
r = IllegalLifeCycleException implies isoBCKell[c,c1]
else no cid & (c.clients).gid implies r = NoSuchInterfaceException and isoBCKell[c,c1]
else no ci.(c.bindings) implies r = IllegalBindingException and isoBCKell[c,c1]
else ( cid in (c.clients).gid and ci −> si in (c.bindings) and

ci.gid = cid and r = Ok and
c1.bindings = c.bindings − ci −> si and
isoBCKell[c,c1] )

}
}

We give below a number of properties that assess the mutual consistency of the dif-
ferent BindingController operations. Predicates getClient, getBoundClient, and getBoundServer

are just abbreviations for some simple conditions. The last two properties UnbindAfterBind

Possible and BindAfterUnbindPossible are commutation conditions on the bind and unbind

operations.

assert LookupAfterBindYieldsCorrectServer {
all c:BCKell, cid: Id, si:Server, r: Ok, c1:BCKell |

bind[c,c.bctrl,cid,si,r,c1] implies lookup[c1,c1.bctrl,cid,si,c1]
}

pred getClient(c:BCKell, cid:Id, ci:Client) {
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cid = ci.gid
ci in c.clients

}

pred getBoundClient(c:BCKell, cid:Id, ci:Client) {
getClient[c,cid,ci]
ci in dom[c.bindings]

}

pred getBoundServer(c:BCKell, cid:Id, si:Server) {
some ci:Client | getBoundClient[c,cid,ci] and ci −> si in c.bindings

}

assert UnbindPossibleMeansBindingExists {
all c:BCKell, cid:Id, c1:BCKell {

unbind[c,c.bctrl,cid,Ok,c1] implies some s:Server { s in Client.(c.bindings) }
}

}

assert UnbindAfterBindPossible {
all c:BCKell, cid: Id, si:Server, c1:Kell |

bind[c,c.bctrl,cid,si,Ok,c1] implies unbind[c1,c1.bctrl,cid,Ok,c]
}

assert BindAfterUnbindPossible {
all c:BCKell, cid: Id, c1:BCKell, si:Server {

unbind[c,c.bctrl,cid,Ok,c1] and getBoundServer[c,cid,si] implies
bind[c1,c1.bctrl,cid,si,Ok,c]

}
}

6.3 Content control

The ContentController interface in Fractal allows to introspect the internal structure of a
component in the form of its so-called internal interfaces and of its subcomponents.
We follow here the informal Fractal specification [10], Section 4.4.

We specify below kells with ContentController gates – i.e., elements of CCKell. In-
ternal gates appear only as a set of gates, which are not gates for interaction with the
environment (i.e., the exterior) of a kell. There are no further semantics associated
with this notion of internal gate, since it typically varies with each kell (internal gates
typically allow to explicitly connect subkells to some inner functionality of their par-
ent kell). Making explicit internal gates allows to control, through the ContentController

gate, the internal connections between a parent kell and its subkells. Instances of CCKell

also provide access to (in general, a subset of) their subkells (feature subcomps in the
CCKell signature). Notice that CCKell is defined as a subset of CKell – i.e., each instance
of CCKell has both a ContentController gate and a Component gate. All subkells of a kell
in CCKell, or cckell, are ckells – i.e., they all have a Component gate.

module fractal/content

open util/relation as RR
open fractal/foundations as FF
open fractal/component as FC
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sig ContentController extends Server {}

sig CCKell in Kell {
cctrl: ContentController,
internals: set Gate,
subcomps: set CKell

}

fact ContentControllerInCCKellIsExternalGate { all c:CCKell | c.cctrl in c.gates }

fact InternalsAreNotExternalsInCCKells { all c: CCKell | no (c.internals & c.gates) }

fact SubcompsAreSubComponentsInCCKells { all c: CCKell | c.subcomps in c.sc }

fact InternalsIdsAreDistinct { all c:CCKell | all g,g1:c.internals | g.gid = g1.gid implies g = g1 }

fact CCKellsHaveDistinctComponentsInSubComps {
all c:CCKell | all c1,c2:c.subcomps {

c1.comp = c2.comp implies c1 = c2
c1.kid = c2.kid implies c1 = c2

}
}

assert CCKellsHaveCompAsIdsInSubComps {
all c:CCKell | all c1,c2:c.subcomps {

c1.kid = c2.kid <=> c1.comp = c2.comp
}

}

As mentioned previously, the Interface interface contains the operation isInternal,
which returns true if an interface i is an internal interface or false if it is an external
interface.

// Operation from the Interface interface

pred isInternal(c:CompKell, i:Interface, c1:CompKell) {
c in CCKell and i in c.internals
isoCKell[c,c1]

}

We now define an equivalence predicate on cckells. Two such kells are equiv-
alent if they have the same identifier, the same subkells, the same gates, the same
ContentController gate, the same internal interfaces, and the same subcomponents.

pred isoCCKell(c:CCKell, c1:CCKell) {
isoCKell[c,c1]
c.cctrl = c1.cctrl
c.internals = c1.internals
c.subcomps = c1.subcomps

}

We specify below the different operations attached to a ContentController gate. Oper-
ation getInternalInterfaces returns the set of internal interfaces of the cckell hosting the
target ContentController gate. Operation getInternalInterface returns the internal gate whose
identifier iid is passed as argument. Operation getSubComponents returns the set scc of
subkells accessible via the ContentController gate. Operation addSubComponent adds a
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ckell designated by its Component gate icc to the set of subcomps of the host cckell.
Operation removeSubComponent does the reverse.

// Operations from the ContentController interface

one sig IllegalContentException extends Val {}

one sig ContentReturn in Ok + IllegalContentException + IllegalLifeCycleException {}

pred getInternalInterfaces(c:CCKell, cc:ContentController, sg: set Gate, c1:Kell) {
cc = c.cctrl
sg = c.internals
isoCCKell[c,c1]

}

pred getInternalInterface(c:CCKell, cc:ContentController, iid: Id, ig: Gate, c1:Kell) {
cc = c.cctrl
ig.gid = iid
ig in c.internals
isoCCKell[c,c1]

}

pred getSubComponents(c:CCKell, cc:ContentController, scc: set Component, c1:Kell) {
cc = c.cctrl
scc = (c.subcomps).comp
isoCCKell[c,c1]

}

pred addSubComponent(c:CCKell, cc:ContentController, icc: Component, r: ContentReturn,
c1:Kell) {

some scc:CKell {
cc = c.cctrl
icc = scc.comp
r = IllegalLifeCycleException implies isoCCKell[c,c1]
else icc in c.subcomps.comp implies r = IllegalContentException and isoCCKell[c,c1]
else r = IllegalContentException implies isoCCKell[c,c1]
else r = Ok and c1.kid = c.kid and c1.comp = c.comp and c1.cctrl = c.cctrl and

scc in c1.subcomps
}

}

pred removeSubComponent(c:CCKell, cc:ContentController, icc:Component, r:ContentReturn,
c1:CCKell) {

cc = c.cctrl
r = IllegalLifeCycleException implies isoCCKell[c,c1]
else no icc & c.subcomps.comp implies r = IllegalContentException and isoCCKell[c,c1]
else r = IllegalContentException implies isoCCKell[c,c1]
else some scc: c.subcomps {

icc = scc.comp and
r = Ok and
c1.cctrl = c.cctrl and c1.comp = c.comp and c1.kid = c.kid and
no scc & c1.subcomps

}
}

Finally we give some consistency properties on operations.

assert RemoveAfterAddIsPossible {
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all c,c1: CCKell, icc:Component {
(addSubComponent[c,c.cctrl,icc,Ok,c1] and
c1.gates = c.gates and
some scc:CKell {scc.comp = icc and c1.subcomps = c.subcomps + scc} ) implies

removeSubComponent[c1,c1.cctrl,icc,Ok,c]
}

}

assert AddAfterRemoveIsPossible {
all c,c1: CCKell, icc:Component {

(removeSubComponent[c,c.cctrl,icc,Ok,c1] and
c1.gates = c.gates and
some scc:CKell {scc.comp = icc and c1.subcomps = c.subcomps − scc} ) implies

addSubComponent[c1,c1.cctrl,icc,Ok,c]
}

}

assert GetSubCompSucceedsAfterAdd {
all c,c1: CCKell, icc:Component {

addSubComponent[c,c.cctrl,icc,Ok,c1] implies
(getSubComponents[c1,c1.cctrl,c1.subcomps.comp, c1] and icc in c1.subcomps.comp)

}
}

The following GetSubCompFailsAfterRemove property does not hold. Because of the
weak conditions on removeSubComponent, it may well be that a component with the
same Component gate icc exists as a subcomponent of a component from which a com-
ponent with Component gate icc has just been removed.

assert GetSubCompFailsAfterRemove {
all c,c1: CCKell, icc:Component {

removeSubComponent[c,c.cctrl,icc,Ok,c1] implies no icc & c1.subcomps.comp
}

}

The following assertions are not valid either – i.e., adding or removing a component
do not imply that all previous subkells, subcomponents, gates, and internal interfaces
are preserved.

assert AddPreservePreviousSubKells {
all c,c1:CCKell, icc:Component {

addSubComponent[c,c.cctrl,icc,Ok,c1] implies
some ck:CKell { ck.comp = icc and c1.sc = c.sc + ck }

}
}

assert AddPreservePreviousSubComponents {
all c,c1:CCKell, icc:Component {

addSubComponent[c,c.cctrl,icc,Ok,c1] implies
some ck:CKell { ck.comp = icc and c1.subcomps = c.subcomps + ck }

}
}

assert AddPreservePreviousGates {
all c,c1:CCKell, icc:Component {

addSubComponent[c,c.cctrl,icc,Ok,c1] implies c1.gates = c.gates
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}
}

assert AddPreservePreviousInternals {
all c,c1:CCKell, icc:Component {

addSubComponent[c,c.cctrl,icc,Ok,c1] implies c1.internals = c.internals
}

}

assert RemovePreservePreviousSubKells {
all c,c1:CCKell, icc:Component {

removeSubComponent[c,c.cctrl,icc,Ok,c1] implies
some ck:CKell { ck.comp = icc and c1.sc = c.sc − ck }

}
}

assert RemovePreservePreviousSubComponents {
all c,c1:CCKell, icc:Component {

removeSubComponent[c,c.cctrl,icc,Ok,c1] implies
some ck:CKell { ck.comp = icc and c1.subcomps = c.subcomps − ck }

}
}

assert RemovePreservePreviousGates {
all c,c1:CCKell, icc:Component {

removeSubComponent[c,c.cctrl,icc,Ok,c1] implies c1.gates = c.gates
}

}

assert RemovePreservePreviousInternals {
all c,c1:CCKell, icc:Component {

removeSubComponent[c,c.cctrl,icc,Ok,c1] implies c1.internals = c.internals
}

}

6.4 Super control

The SuperController interface in Fractal allows to introspect the super components of a
component, i.e., the components that contain a component. We follow here the informal
Fractal specification [10], Section 4.4.

We specify below kells with SuperController gates – i.e., elements of SCKell. In-
stances of SCKell provide access to (in general, a subset of) their super components
(feature supercomps in the SCKell signature) 15. All super components of a kell in SCKell,
or sckell, are ckells – i.e., they all have a Component gate.

module fractal/super

open fractal/foundations as FF
open fractal/component as FC

sig SuperController extends Server {}

15In Alloy, ˜r of some binary relation r denotes the transpose of r, forming a new relation by reversing the
order of atoms in each tuple.
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sig SCKell in Kell {
sctrl: SuperController,
supercomps: set CKell

}

fact SuperControllerInSCKellIsExternalGate { all c:SCKell | c.sctrl in c.gates }

fact SupercompsAreSuperKells { all c: SCKell | c.supercomps in (˜sc)[c] }

fact SCKellsHaveDistinctComponentsInSuperComps {
all c:SCKell | all c1,c2:c.supercomps {

c1.comp = c2.comp implies c1 = c2
c1.kid = c2.kid implies c1 = c2

}
}

assert SCKellsHaveCompAsIdsInSuperComps {
all c:SCKell | all c1,c2:c.supercomps {

c1.kid = c2.kid <=> c1.comp = c2.comp
}

}

We now define an equivalence predicate on sckells. Two such kells are equivalent if
they have the same identifier, the same subkells, the same gates, the same SuperController

gate, and the same super components.

pred isoSCKell(c:SCKell, c1:SCKell) {
isoKell[c,c1]
c.sctrl = c1.sctrl
c.supercomps = c1.supercomps

}

We specify below the operation attached to a SuperController gate. Operation getSuper-
Components returns the set scc of super components accessible via the SuperController

gate.

// Operation from the SuperController interface

pred getSuperComponents(c:SCKell, sc:SuperController, scc: set Component, c1:Kell) {
sc = c.sctrl
scc = (c.supercomps).comp
isoSCKell[c,c1]

}

6.5 Name control

The NameController interface in Fractal allows to associate a name to a component. We
follow here the informal Fractal specification [10], Section 4.4.

We specify below kells with NameController gates – i.e., elements of NCKell. In-
stances of NCKell, or nckells, provide access to a name (feature name in the NCKell sig-
nature).

module fractal/name

open fractal/foundations as FF
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sig NameController extends Server {}

sig NCKell in Kell {
nctrl: NameController,
name: Id

}

fact NameControllerInNCKellIsExternalGate { all c:NCKell | c.nctrl in c.gates }

We now define an equivalence predicate on nckells. Two such kells are equiva-
lent if they have the same identifier, the same subkells, the same gates, and the same
NameController gate.

pred isoNCKell(c:NCKell, c1:NCKell) {
isoKell[c,c1]
c.nctrl = c1.nctrl

}

We specify below operations attached to a NameController gate. Operation getName

returns the name n of the nckell hosting the target NameController gate. Operation
setName sets the name n of a component.

// Operations from the NameController interface

pred getName(c:NCKell, nc:NameController, n:Id, c1:NCKell) {
c.nctrl = nc
n = c.name
isoNCKell[c,c1]

}

pred setName(c:NCKell, nc:NameController, n:Id, c1:NCKell) {
c.nctrl = nc
c1.name = n
isoNCKell[c,c1]

}

Finally we give a consistency property on these two operations.

assert GetNameAfterSetName {
all c,c1:NCKell, n:Id | setName[c,c.nctrl,n,c1] implies getName[c1,c1.nctrl,n,c1]

}

6.6 Lifecycle control

The LifecycleController interface in the Fractal model provides basic capabilities to con-
trol the execution of a component. The execution of a component from the point of view
of this LifecycleController is abstracted as evolving between two macro-states, Started and
Stopped. We follow here the informal Fractal specification [10], Section 4.5.

We specify first these two macro-states.

module fractal/lifecycle

open util/relation as RR
open fractal/foundations as FF
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sig LFState extends Val {}
one sig Started extends LFState {}
one sig Stopped extends LFState {}

We then define the set LFKell that offers a LifecycleController gate. The feature ctrls iden-
tifies the set of “control” gates – i.e., those gates whose operations are not inhibited
when in the Stopped state.

sig LifeCycleController extends Server {}

sig LFKell in Kell {
lfctrl: LifeCycleController,
state: LFState,
ctrls: set Gate

}

fact LFCtrlIsACntrlGate { all c:LFKell | c.lfctrl in c.ctrls }

fact CtrlGatesAreInGates { all c:LFKell | c.ctrls in c.gates }

fact LFStateIsStoppedOrStarted { all c:LFKell | c.state in Started + Stopped }

We define first an equivalence predicate between kells with LifecycleController gates.
Two such kells are equivalent if they have the same identifier, the same subkells, the
same gates, the same LifecycleController gate, the same macro-state, and the same control
gates.

pred isoLFKell(c:LFKell, c1:LFKell) {
isoKell[c,c1]
c.lfctrl = c1.lfctrl
c.state = c1.state
c.ctrls = c1.ctrls

}

We specify below the operations attached to LifecycleController gates. Operation getState

returns the macro-state s of the kell hosting the target LifecycleController gate lfc. Oper-
ation start places the kell c hosting the target LifecycleController gate lfc into the Started

macro-state. Operation stop places the kell into the Stopped macro-state. This may
imply all sorts of changes in c, hence the weak constraint on the resulting kell c1: it
has the same identifier than c, and the same LifecycleController interface, and it is in the
Started or Stopped macro-state respectively.

// Operations from the LifecycleController interface

sig LFReturn in Ok + IllegalLifeCycleException {}

pred getState(c:LFKell, lfc:LifeCycleController, s:LFState, c1:LFKell) {
c.lfctrl = lfc
s = c.state
isoLFKell[c,c1]

}

pred start(c:LFKell, lfc:LifeCycleController, r:LFReturn, c1:LFKell) {
c.lfctrl = lfc
r = IllegalLifeCycleException implies isoLFKell[c,c1]
else c.state = Started implies r = Ok and isoLFKell[c,c1]
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else c.state = Stopped and r = Ok and c1.state = Started and c1.kid = c.kid and
c1.lfctrl = c.lfcrtrl

}

pred stop(c:LFTKell, lfc:LifeCycleController, r:LFReturn, c1:LFTKell) {
c.lfctrl = lfc
r = IllegalLifeCycleException implies isoLFKell[c,c1]
else c.state = Stopped implies r = Ok and isoLFKell[c,c1]
else c.state = Started and r = Ok and c1.state = Stopped and c1.kid = c.kid and

c1.lfctrl = c.lfcrtrl
}

We give some consistency properties on these three operations.

assert GetStateReturnsStartedAfterStart {
all c,c1:LFKell {

start[c,c.lfctrl,Ok,c1] implies getState[c1,c1.lfctrl,Started,c1]
}

}

assert GetStateReturnsStoppedAfterStop {
all c,c1:LFKell {

stop[c,c.lfctrl,Ok,c1] implies getState[c1,c1.lfctrl,Stopped,c1]
}

}

Unfortunately, in this instance, the exact semantics of the Started and Stopped states,
and hence of the start and stop operations, can only be given by reference to the behavior
of the hosting kell. We specify below this semantics, exploiting the notion of transition.
Essentially, the Stopped state is defined as one where no transition involving signals
targetting non control gates is possible.

sig LFTKell in LFKell {}

fact LFTKellsAreTKells { all c: LFTKell | c in TKell }

fact LFTKellStoppedHasNoFunctionalTransitions {
all c:LFTKell | all t:c.transitions | c.state = Stopped implies t.(sin+sout).target in c.ctrls

}

Finally, let’s note that the following assertions are not valid – i.e., starting or stop-
ping a component do not imply that previous subkells and gates are preserved.

assert StartPreservePreviousSubKells {
all c,c1:LFKell {

start[c,c.lfctrl,Ok,c1] implies c1.sc = c.sc
}

}

assert StartPreservePreviousGates {
all c,c1:LFKell {

start[c,c.lfctrl,Ok,c1] implies c1.gates = c.gates
}

}

assert StopPreservePreviousSubKells {
all c,c1:LFKell {

stop[c,c.lfctrl,Ok,c1] implies c1.sc = c.sc
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}
}

assert StopPreservePreviousGates {
all c,c1:LFKell {

stop[c,c.lfctrl,Ok,c1] implies c1.gates = c.gates
}

}

7 Instantiation

7.1 Factories

The Fractal model has two notions of component factories: a generic one, and a specific
one. A generic factory is able to create arbitrary components from a type, a description
of their content, and a description of their membrane (or set of controllers). A factory

is only able to create components of a certain type. We specify these notions formally
below. We follow here the informal Fractal specification [10], Section 5.

We first define the notion of factory. By definition, a factory is a component, hence
a kell, that exhibits a Factory interface. A factory is specific to a component type, a con-
troller description, and a content description. The notions of controller description and
content description are just defined as simple signatures ControllerDesc and ContentDesc,
with no further constraint16.

module fractal/instantiation

open fractal/foundations as FF
open fractal/component as FC

sig ContentDesc extends Val {}
sig ControllerDesc extends Val {}

sig Factory extends Server {}

sig FKell in Kell {
fg: Factory,
insType: ComponentType,
ctrlDesc: ControllerDesc,
cntDesc: ContentDesc

}

fact FactoryInFKellIsExternalGate {
all c:FKell | c.fg in c.gates

}

We define first an equivalence predicate between kells with Factory gates. Two
such kells are equivalent if they have the same identifier, the same subkells, the same
gates, the same Factory gate, the same instance type, the same controller and content
descriptions.

16A future version of the Fractal model should improve on this, by defining in particular how these de-
scriptions themselves can be manipulated, e.g., for the purpose of specifying deployment processes, and
what constraints apply to them.

RR n° 6721



32 Merle & Stefani

pred isoFKell(c:FKell, c1:FKell) {
isoKell[c,c1]
c.fg = c1.fg
c.insType = c1.insType
c.ctrlDesc = c1.ctrlDesc
c.cntDesc = c1.cntDesc

}

Operations associated with the Factory interface are specified below. The main oper-
ation is the newInstance operation, that creates a component, i.e., a kell with a Component

interface, of the type associated with the factory.

// Operations from the Factory interface

one sig InstantiationException extends Val {}

one sig FactoryReturn in Ok + InstantiationException {}

pred getInstanceType(c:FKell, f:Factory, t:ComponentType, c1:FKell) {
f = c.fg
t = c.insType
isoFKell[c,c1]

}

pred getControllerDesc(c:FKell, f:Factory, d:ControllerDesc, c1:FKell) {
f = c.fg
d = c.ctrlDesc
isoFKell[c,c1]

}

pred getContentDesc(c:FKell, f:Factory, d:ContentDesc, c1:FKell) {
f = c.fg
d = c.cntDesc
isoFKell[c,c1]

}

pred newInstance(c:FKell, f:Factory, ci:CompKell, icc:Component, r:FactoryReturn,
c1:FKell) {

f = c.fg
r = InstantiationException implies isoFKell[c,c1]
else r = Ok and icc = ci.comp and icc.ctype = c.insType and isoFKell[c,c1]

}

We give below a simple property, which asserts the consistency of the newInstance

and getCType operations.

assert GetCTypeAfterNewInstance {
all c:FKell, ci:CompKell, icc:Component {

newInstance[c,c.fg,ci,icc,Ok,c] implies getCType[ci,icc,c.insType,ci]
}

}

A generic factory is a component that provides the GenericFactory interface, with a
single operation newInstance, that creates a new component, with a Component interface,
given a component type, a content description, and a controller description.

sig GenericFactory extends Server {}
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sig GFKell in Kell {
gf: GenericFactory

}

fact GenericFactoryInGFKellIsExternalGate {
all c:GFKell | c.gf in c.gates

}

We define an equivalence predicate between kells with GenericFactory gates. Two
such kells are equivalent if they have the same identifier, the same subkells, the same
gates, and the same GenericFactory gate.

pred isoGFKell(c:GFKell, c1:GFKell) {
isoKell[c,c1]
c.gf = c1.gf

}

// Operations from the GenericFactory interface

pred newInstanceGF(c:GFKell, f:GenericFactory, t:ComponentType, ctrld:ControllerDesc,
cntd:ContentDesc, ci:CompKell, icc:Component, r:FactoryReturn, c1:GFKell) {

f = c.gf
r = InstantiationException implies isoGFKell[c,c1]
else r = Ok and icc = ci.comp and icc.ctype = t and isoGFKell[c,c1]

}

We give below a simple property, which asserts the consistency of the newInstanceGF

and getCType operations.

assert GetCTypeAfterNewInstanceGF {
all c:GFKell, ct:ComponentType, ctrld:ControllerDesc, cntd:ContentDesc,

ci:CompKell, icc:Component {
newInstanceGF[c,c.gf,ct,ctrld,cntd,ci,icc,Ok,c] implies getCType[ci,icc,ct,ci]

}
}

7.2 Bootstrap

The informal Fractal specification specifies a bootstrap condition for any Fractal sys-
tem: that there exists some generic factory accessible through some well-known name.
We capture the first part of this bootstrap condition very simply: it merely mandates the
existence of a generic factory. Operation getBootstrapComponent returns the GenericFactory

interface associated with a generic factory component.

fact BootstrapCondition {
some GFKell

}

pred getBootstrapComponent(f:GenericFactory) {
some c:GFKell | f = c.gf

}
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8 Typing

Fractal defines a simple type system for components and component interfaces, i.e.,
ComponentType and InterfaceType respectively, and its associated type factory. We follow
here the informal Fractal specification [10], Section 6.

8.1 Role, contingency and cardinality

We specify first the notion of role, contingency, and cardinality as abstract set signa-
tures (i.e., Role, Contingency, and Cardinality respectively) and define their possible values
as singleton subsets – i.e., server and client roles, mandatory and optional contingencies,
singleton and collection cardinalities.

module fractal/type system

open fractal/foundations as FF
open fractal/component as FC

abstract sig Role extends Val {}
one sig server, client extends Role {}
fact OnlyServerAndClientAreRoles { Role = server + client }

abstract sig Contingency extends Val {}
one sig mandatory, optional extends Contingency {}
fact OnlyMandatoryAndOptionalAreContingencies { Contingency = mandatory + optional }

abstract sig Cardinality extends Val {}
one sig singleton, collection extends Cardinality {}
fact OnlySingletonAndCollectionAreCardinalities { Cardinality = singleton + collection }

8.2 Component and interface types

We then define both ComponentType and InterfaceType sets. A component type is a set it of
interface types. An interface type is made of a name, a signature, a role, a contingency,
and a cardinality. Each interface type of a component type has a distinct name.

sig ComponentType extends FC/ComponentType {
it: set InterfaceType

}

sig InterfaceType extends FC/InterfaceType {
name: Id,
signature: Type,
role: Role,
contingency: Contingency,
cardinality: Cardinality

}

fact InterfaceTypesInComponentTypeHaveDistinctNames {
all ct:ComponentType | all i,j:ct.it | i.name = j.name implies i = j

}

We specify below operations attached to the ComponentType interface. Operation
getInterfaceTypes returns the set r of interface types of a component type. Operation
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getInterfaceType returns the interface type r having the name n or the exception NoSuchInter-
faceException.

// Operations from the ComponentType interface

pred getInterfaceTypes(ct:ComponentType, r: set InterfaceType, ct1: ComponentType) {
r = ct.it
ct1 = ct

}

pred getInterfaceType(ct:ComponentType, n:Id, r: InterfaceType + NoSuchInterfaceException,
ct1: ComponentType) {

r in ct.it implies n = r.name else r = NoSuchInterfaceException
ct1 = ct

}

We give below two simple properties, which assert the consistency of the Component-
Type operations.

assert GetInterfaceTypesAndGetInterfaceType {
all ct:ComponentType, its:set InterfaceType {

getInterfaceTypes[ct,its,ct] implies all i:its | getInterfaceType[ct,i.name,i,ct]
}

}

assert GetInterfaceTypeAndGetInterfaceTypes {
all ct:ComponentType, i:InterfaceType, its: set InterfaceType |

getInterfaceType[ct,i.name,i,ct] and getInterfaceTypes[ct,its,ct] implies i in its
}

We specify below operations attached to the InterfaceType interface. Operation
getItfName returns the name of an interface type. Operation getItfSignature returns the
signature of an interface type. Operation isClientItf returns true if the role of an interface
type is equals to client and false if it is server. Operation isOptionalItf returns true if the
contingency of an interface type is equals to optional and false if it is mandatory. Opera-
tion isCollectionItf returns true if the cardinality of an interface type is equals to collection

and false if it is singleton.

// Operations from the InterfaceType interface

pred getItfName(it:InterfaceType, r:Id, it1:InterfaceType) {
r = it.name
it1 = it

}

pred getItfSignature(it:InterfaceType, r:Type, it1:InterfaceType) {
r = it.signature
it1 = it

}

pred isClientItf(it:InterfaceType, it1:InterfaceType) {
it.role = client
it1 = it

}

pred isOptionalItf(it:InterfaceType, it1:InterfaceType) {
it.contingency = optional
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it1 = it
}

pred isCollectionItf(it:InterfaceType, it1:InterfaceType) {
it.cardinality = collection
it1 = it

}

8.3 Type factory

We specify below kells with TypeFactory gates – i.e., elements of TFKell, or tfkells, are
type factories.

sig TypeFactory extends Server {}

sig TFKell in Kell {
tf: TypeFactory

}

fact TypeFactoryInTFKellIsExternalGate { all c:TFKell | c.tf in c.gates }

We now define an equivalence predicate between tfkells. Two such kells are equiv-
alent if they have the same identifier, the same subkells, the same gates, and the same
TypeFactory gate.

pred isoTFKell(c:TFKell, c1:TFKell) {
isoKell[c,c1]
c1.tf = c.tf

}

We specify below operations attached to the TypeFactory gates. Operation createItfType

returns an interface type it with the name n, the signature s, the role r, the contingency
co, and the cardinality ca. Operation createType returns a component type ct composed
of the set its of interface types.

// Operations from the TypeFactory interface

pred createItfType(c:TFKell, tff:TypeFactory, n:Id, s:Type, r:Role, co:Contingency,
ca:Cardinality, it:InterfaceType, c1:TFKell) {

c.tf = tff
it.name = n
it.signature = s
it.role = r
it.contingency = co
it.cardinality = ca
isoTFKell[c,c1]

}

pred createType(c:TFKell, tff:TypeFactory, its:set InterfaceType, ct:ComponentType, c1:TFKell) {
c.tf = tff
ct.it = its
isoTFKell[c,c1]

}
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8.4 Sub typing relations

We now specify the sub typing relations between types, interface types, and component
types, based on substitutability. Predicate isSubTypeOf is true if a type t1 is a sub type
of a type t2. This predicate is used to evaluate the sub typing relation between two
signatures of interface types. Predicate isSubInterfaceTypeOf is true if an interface type
it1 is a sub type of an interface type it2. Predicate isSubComponentTypeOf is true if a
component type ct1 is a sub type of a component type ct2.

pred isSubTypeOf(t1, t2: Type) {
t1 in t2.*sstypes

}

pred isSubInterfaceTypeOf(it1, it2: InterfaceType) {
it1.name = it2.name
it1.role = it2.role
it2.role = server implies {

isSubTypeOf[it1.signature, it2.signature]
(it2.contingency = mandatory implies it1.contingency = mandatory)

} else {
isSubTypeOf[it2.signature, it1.signature]
(it2.contingency = optional implies it1.contingency = optional)

}
(it2.cardinality = collection implies it1.cardinality = collection)

}

pred isSubComponentTypeOf(ct1, ct2: ComponentType) {
all it1:ct1.it {

it1.role = client implies one it2: ct2.it { isSubInterfaceTypeOf[it1, it2] }
}
all it2:ct2.it {

it2.role = server implies one it1: ct1.it { isSubInterfaceTypeOf[it1, it2] }
}

}

These previous three sub typing relations are reflexive and transitive.

assert IsSubTypeOfIsReflexive {
all t:Type {

isSubTypeOf[t, t]
}

}

assert IsSubTypeOfIsTransitive {
all t1, t2, t3:Type {

isSubTypeOf[t1, t2] and isSubTypeOf[t2, t3] implies isSubTypeOf[t1, t3]
}

}

assert IsSubInterfaceTypeOfIsReflexive {
all it:InterfaceType {

isSubInterfaceTypeOf[it, it]
}

}

assert IsSubInterfaceTypeOfIsTransitive {
all it1, it2, it3:InterfaceType {
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isSubInterfaceTypeOf[it1, it2] and isSubInterfaceTypeOf[it2, it3]
implies isSubInterfaceTypeOf[it1, it3]

}
}

assert IsSubComponentTypeOfIsReflexive {
all ct:ComponentType {

isSubComponentTypeOf[ct, ct]
}

}

assert IsSubComponentTypeOfIsTransitive {
all ct1, ct2, ct3:ComponentType {

isSubComponentTypeOf[ct1, ct2] and isSubComponentTypeOf[ct2, ct3]
implies isSubComponentTypeOf[ct1, ct3]

}
}

9 Consistency

We have developed in the previous sections a formal specification of the Fratal com-
ponent model. It mirrors the informal specification pretty truthfully (see Section 10
for a list of the differences between the two), and it has been written in a modular
fashion, keeping the different controllers as independent from one another as possi-
ble, again following the philosophy of the informal specification. One may wonder
however, whether the combination of all these different features in a single component
may not give rise to inconsistencies. The following simple predicate, which asserts the
existence of a component supporting all the different controllers defined in the present
specification, can be shown to have an instance (and hence to be consistent). Specifi-
cally, the command listed below produces a kell which is an element of all the different
sets listed below (ACKell, etc.). Note that a lesser scope (e.g., a scope of 9 instead of 10

in the command) is not enough to obtain a model.

module fractal/consistency

open fractal/foundations as FF
open fractal/attribute as FAC
open fractal/binding as FBC
open fractal/component as FC
open fractal/content as FCC
open fractal/instantiation as FIC
open fractal/lifecycle as FLC
open fractal/name as FNC
open fractal/super as FSC
open fractal/type system as FTS

pred ControllersAreConsistent {
some ACKell & BCKell & CompKell & CCKell & FKell & GFKell

& LFKell & NCKell & SCKell & TFKell
}

// Command
run ControllersAreConsistent for 10 but 30 Id, 20 Val
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10 Discussion

We discuss in this section the main differences between the informal Fractal specifica-
tion [10] and the present formal one. We also comment briefly on the use of Alloy and
of the Alloy Analyzer.

10.1 Differences with the informal specification

Foundations The first difference with the informal specification is the elucidation of
the core concepts found in the Foundations (Section 3). The informal specification only
refers to them in passing, yet making them explicit is key to highlighting the generality
of the Fractal model. In particular, they enable us to define precisely the general notion
of behavior that can be expected from Fractal components. In formalizing these foun-
dations, we have also clarified features of the Fractal model and on purpose relaxed
certain constraints that appear in the informal specification. We list them below. Note
that we flag explicitly each feature mentioned as an extension or as a clarification.

• [ extension ] We allow component graphs (corresponding to the subcomponent
relation) to be arbitrary graphs. This means that we can have structures with
sharing, but also non-well-founded structures, such as components which are in
their own subcomponents. Non-well-founded structures are explicitly ruled out
by the informal specification. We believe this to be an unnecessary restriction as
non-well-founded structures can be useful – e.g., in modelling reflective compo-
nent structures.

• [ clarification ] We allow components to be passed by value in operations. This
feature is not discussed in the informal specification, but the heavy Java bias of
the IDL used in the informal specification does not explicitly cater for it.

• [ clarification ] We allow components to have a varying number of interfaces
during their lifetime. This feature was not explicitly disallowed in the informal
specification, but the Julia reference implementation does not support it.

General and specific differences We list below enhancements which the formal
specification brings to the informal one, and a difference between the two specifica-
tions:

• [ clarification ] Pre and post-conditions of operations on the different interfaces
defined in the specification are made explicit. For instance, the post-conditions
on operations of the Component interface specify that the target component iden-
tity, gates (interfaces) and subcomponents must remain unchanged (through the
use of the isoKell predicate). The informal specification is not explicit on these
conditions.

• [ clarification ] The present specification clarifies the admissible effects of oper-
ations not only through operations pre- and post-conditions but also by highlight-
ing valid and invalid assertions. Witness for instance the different commutation
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properties and invalid assertions listed for side-effects of the ContentController and
LifecycleController interfaces. The informal specification does not contain such a
breadth of details on operations.

• [ clarification ] The subtyping relation used in basic introspection and typing
is specified as being a partial order on types. The informal specification does
not enforce this constraint. However, having a notion of subtyping that is not a
partial order makes little sense.

• [ clarification ] The present specification enforces the unicity of the Component

interface of a component, if it exists. We do not enforce the unicity of other
kinds of controller interface. The unicity of the Component interface highlights
the fact that it acts as an identity for a component. The informal specification is
ambiguous on the unicity of controller interfaces.

• [ clarification ] The getInterfaces operation in basic introspection (Section 5) re-
turns all the external interfaces of the target component. The informal specifica-
tion is evasive on that subject. We believe this form is preferable for introspection
purposes.

• [ difference ] The informal specification distinguishes between three kinds of
bindings. We have left out this distinction in the formal specification, since it is
essentially a classification with no operational import.

10.2 Modularity of the specification

The Fractal model and its informal specification promote a philosophy of separation
of concerns, including between meta-level capabilities. The Alloy module system and
Alloy’s set-based inheritance features allowed us to follow this design philosophy, and
to specify the Fractal model in a very modular way. Each of the module of our Alloy
specification imports at least the foundations module (Section 3), since this module de-
fines the core concepts common to all other modules, and at most the component module
(Section 5), which provides basic introspection capabilities. The table below summa-
rizes the dependencies between modules. This report can be seen as a vindication of
the modularity claim of the Fractal specification.

However, we have highlighted that there exists one dependency that breaks this
modularity between controllers: the Interface interface contains an isInternal operation
related to internal interfaces. We therefore think that this operation should be removed
from the next version of the Fractal specification to preserve orthogonality between the
different component controllers.
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Alloy module module dependencies

attribute foundations

binding foundations

component foundations

content foundations + component

instantiation foundations + component

lifecycle foundations

name foundations

naming foundations

super foundations + component

type system foundations + component

10.3 Using Alloy

Alloy fulfills its promise (discussed in [16]) of providing a fast specification develop-

ment / specification debugging loop, thanks to the fully automatic character of the Alloy
Analyzer. Coupled with a fast learning curve due to its first-order, set-based charac-
ter, a well-thought out syntax, and extremely useful model visualization features in the
Alloy Analyzer, developing specifications with Alloy is a very streamlined, and even
enjoyable, process. The surprising amount of bugs (trivial or not), that were weeded
out from the specification thanks to this rapid feedback loop, especially during the early
stages of its development, is a testament to the efficacy and efficiency of the lightweight

specification approach advocated by the Alloy designers.
Our use of Alloy is mostly classical. We have adopted an operational style for

the specification of the different Fractal controllers, since this was both closer to the
informal specification and the most natural style for the specification of mostly server-
like behavior. We have made an abundant use of invalid assertions in order to signal
possibly unexpected side effects or behavior of operations. Because of the purposedly
weak semantics for operations adopted in the Fractal specification (which we have
kept in the present work), we find these negative assertions to be invaluable to debunk
misconceptions about the specification.

The one limitation of Alloy for our specification exercise is in the specification of
mathematically oriented structures such as our notion of transition for the specification
of component behavior. Unfortunately, we have had to eschew the use of transitions
to characterize the behavior of components: this would have led us to systematically
introduce closure conditions (see the discussion in Section 3); this would have, in turn,
led to an explosion in the size of our models. For the most part, this does not consti-
tute a hindrance, since we can capture the intended semantics of component operations
using standard Alloy predicates. In one instance, however (the specification of the
LifecycleController operations), the specification of the intended semantics could only be
achieved by an explicit characterization of a component behavior in terms of transi-
tions. For this kind of specification, dealing with conditions on mathematical struc-
tures, a higher-order theorem prover such as Coq [6] is probably much more suited.

RR n° 6721



42 Merle & Stefani

11 Conclusion

We have presented in this report a comprehensive formal specification of the Fractal
component model, that covers all the elements of the original informal reference speci-
fication of the Fractal model. The formal specification is written in Alloy, a simple and
natural (for object-oriented modellers) formal specification language. We have used
the Alloy Analyzer to check the consistency of the model, its key invariants, and sev-
eral properties. Compared to the informal one, the formal specification given in this
report has several advantages:

• It provides a formal description of the foundations of the Fractal component
model, which are only alluded to in the informal specification.

• It is more liberal than the informal one in a number of aspects (e.g., allowing
components to be passed by value in operations).

• It provides a truly language-independent specification of the Fractal component
model.

• It removes ambiguities from the informal specification, notably in the specifica-
tion of the post-conditions of the controller operations.

We have concentrated in this report on providing a formal equivalent of the full

informal Fractal specification, just leaving aside a formal specification of the notion of
normal, export, import binding and of template (which will be covered by future work
on a new Fractal ADL). We plan to extend this work in several directions, however:

• Using this specification as a basis for the development of a new ADL for Fractal,
with a formal semantics.

• Extending this specification to cover concepts and constraints related to the han-
dling of component packages and the specification of distributed deployment
processes.

• Extending this specification to describe, formally and abstractly, meta-level and
aspectual capabilities of current Fractal implementations, including the specifi-
cation of component-based membranes [23].

• Using this specification for showing formally how several component models
can be understood as Fractal personalities or Fractal specializations.
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