Classification and automatic annotation extension of images using Bayesian network

Sabine Barrat 1 Salvatore Tabbone 1
1 QGAR - Querying Graphics through Analysis and Recognition
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In many vision problems, instead of having fully annotated training data, it is easier to obtain just a subset of data with annotations, because it is less restrictive for the user. For this reason, in this paper, we consider especially the problem of classifying weakly-annotated images, where just a small subset of the database is annotated with keywords. In this paper we present and evaluate a new method which improves the effectiveness of content-based image classification, by integrating semantic concepts extracted from text, and by automatically extending annotations to the images with missing keywords. Our model is inspired from the probabilistic graphical model theory: we propose a hierarchical mixture model which enables to handle missing values. Results of visual-textual classification, reported on a database of images collected from the Web, partially and manually annotated, show an improvement by 32.3% in terms of recognition rate against only visual information classification. Besides the automatic annotation extension with our model for images with missing keywords outperforms the visual-textual classification by 6.8%. Finally the proposed method is experimentally competitive with the state-of-art classifiers.
Type de document :
Communication dans un congrès
12th International Workshops on Structural and Syntactic Pattern Recognition (SSPR 2008) and 7th International Workshop on Statistical in Pattern Recognition (SPR 2008) - S+SSPR 2008, Dec 2008, Orlando, United States. 2008
Liste complète des métadonnées

https://hal.inria.fr/inria-00339113
Contributeur : Sabine Barrat <>
Soumis le : dimanche 16 novembre 2008 - 21:19:47
Dernière modification le : jeudi 11 janvier 2018 - 06:19:59
Document(s) archivé(s) le : lundi 7 juin 2010 - 23:01:13

Fichier

spr08_vf.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00339113, version 1

Collections

Citation

Sabine Barrat, Salvatore Tabbone. Classification and automatic annotation extension of images using Bayesian network. 12th International Workshops on Structural and Syntactic Pattern Recognition (SSPR 2008) and 7th International Workshop on Statistical in Pattern Recognition (SPR 2008) - S+SSPR 2008, Dec 2008, Orlando, United States. 2008. 〈inria-00339113〉

Partager

Métriques

Consultations de la notice

197

Téléchargements de fichiers

99