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Abstract

We present a new non conforming space-time mesh refinement method for sym-
metric first order hyperbolic system. This method is based on the one hand on the
use of a conservative higher order discontinuous Galerkin approximation for space
discretization and a finite difference scheme in time, on the other hand on appro-
priate discrete transmission conditions between the grids. We use a discrete energy
technique to drive the construction of the matching procedure between the grids
and guarantee the stability of the method.

Key words: Local time stepping, discontinuous Galerkin, first-order hyperbolic
problem, energy conservation, finite difference scheme, explicit scheme.
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1 Introduction

This work has been motivated by the construction of a non conforming space-
time mesh refinement method for wave propagation in aeroacoustics, in the
spirit of the previous work for the wave equation [3,4], Maxwell’s equations [5]
or elastodynamics [1,6], when finite elements are used for the space discretiza-
tion of the equations. The novelty of this work lies on the fact that a discon-
tinuous Galerkin (DG) approximation is used for space discretization. This is
specifically interesting for aeroacoustic applications. Since, to our knowledge,
there is no existing finite element method for the linearized Euler equations.

Preprint submitted to Elsevier 10 June 2008



The inherent flexibility of this type of method allows us ,“naturally”, to deal
with non matching grids in space. However, when time discretization (using fi-
nite differences) is concerned, the use of a local time step, which is for instance
highly desirable in case of refined space meshes, remains a difficult question:
particularly, the stability of the resulting numerical method is a delicate issue.
Let us mention that the question of local time stepping with DG methods has
been considered in the particular case of Maxwell’s equations in [12] (where
the stability question is not completely clarified) or in [8] for elastic waves.
More recently, in [7], a method is proposed for the second order equation where
the objective (energy conservation) is close to ours but the method consists
more in working on the time discretization, typically in the fine grid. In this
paper, we develop a rather general method which is applicable to zero order
perturbations of symmetric hyperbolic systems in the sense of Friedrichs (Lin-
earized Euler equations or Maxwell’s equations are of this type). The key point
is the derivation of appropriate discrete transmission conditions between two
space-time grids. We use a discrete energy technique to construct such condi-
tions, and guarantee the stability of the matching procedure under the same
CFL condition that should be used if the two grids were considered separately.
The object of this paper is to present the construction of the method and to
emphasize the stability analysis. Some numerical tests in 2D are presented in
the last section.

2 First order symmetric hyperbolic systems

Let Ω be a domain in R
d, d = 1, 2, 3, we consider a zero order perturbation of

symmetric hyperbolic system in the sense of Friedrichs [9] :



































find u : Ω × R
+ 7→ R

m such that:

M∂tu +
d

∑

j=1

Aj∂xj
u + Cu = f , in Ω × R

+ \ {0},

u(x, 0) = u0(x), in Ω,

(1)

where M , Aj , j = 1, · · · , d and C are square matrices of dimension m × m,
uniformly bounded functions of x ∈ Ω. We assume that M is symmetric
positive definite (uniformly in x) and that each Aj, j = 1, · · · , d is symmetric.
We complete the system (1) by the boundary condition on Γ = ∂Ω (n =
(n1, · · · , nd)t being the unit outward normal to Γ):

(A(n) − N)u = 0 on Γ × R
+ \ {0}, A(n) =

d
∑

j=1

njAj , (2)

where, for each x ∈ Γ, N = N(x) is a m × m matrix satisfying

N + N t ≥ 0, ker(A(n) − N) + ker(A(n) + N) = R
m. (3)
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The well-posedness of the initial boundary value problem (1, 2), under condi-
tions (3), is well known since the work of Friedrichs [9], when the Aj’s satisfy:

div A =
d

∑

j=1

∂xj
Aj ∈ L∞(Rd; Rm×m) (4)

Let us emphasize here the related energy identity and energy estimates. Denot-
ing by (· , ·) (respectively < · , · >) the inner product in L2(Ω)m (respectively
L2(Γ)m), we define the energy of u at time t by:

E(t) =
(

M u(t),u(t)
)

.

One easily sees that this quantity satisfies

1

2

dE

dt
= (f ,u) −

(

(

C −
1

2
divA

)

u,u
)

− <
N + N t

4
u ,u > . (5)

Indeed, multiplying the equation in (1) by u , we get after integration on Ω:

1

2

d

dt

∫

Ω
M u · u dx +

d
∑

j=1

∫

Ω
(Aj ∂xj

u) · u dx +
∫

Ω
C u · u dx =

∫

Ω
f · u dx. (6)

We integrate by parts the second term. By symmetry of the Aj ’s, we get:

d
∑

j=1

∫

Ω
(Aj ∂xj

u)·u dx = −
d

∑

j=1

∫

Ω
(Aj ∂xj

u)·u dx−
∫

Ω
divAu·u dx+

∫

Γ
A(n)u·u dσ,

which gives us

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d
∑

j=1

∫

Ω
(Aj ∂xj

u) · u dx =
1

2

[

−
∫

Ω
divAu · u dx +

∫

Γ
A(n)u · u dσ

]

,

=
1

2

[

−
∫

Ω
divAu · u dx +

1

2

∫

Γ
(N + N t)u · u dσ

]

.

(7)
where we have used the boundary condition (2). Finally, substituting (7) into
(6) leads to (5). The reader will notice that:

• Using Gronwall’s lemma, it is easy to get L2 estimates of the solution. This
is where the positivity property of N plays a major role. When f belongs
to C0(L2), one obtains an upper bound in exp αt where α is related to
‖divA‖∞ and ‖C‖∞ and the lower bound for the eigenvalues of M .

• When the symmetric part of 2C − divA is positive, one sees that the en-
ergy E(t) is a decreasing function of time as soon as f = 0: the system is
dissipative and one gets uniform (in time) L2 estimates of the solution.
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Remark 1 An important application is sound propagation in a homogeneous
fluid in stationnary flow (aeroacoustics). The unknown is u = (v, p)t where
v is the velocity field and p the pressure, governed by the compressible Euler
equations (after appropriate scaling) :



















∂tv +
(

M · ∇
)

v +
(

v · ∇
)

M + ∇p = 0,

∂tp +
(

M · ∇
)

p + ∇ · v = 0,

(8)

where M(x) is the given Mach vector distribution for the reference flow. The
reader will easily check that (8) is a particular case of (1) and that the condition
(4) amounts to saying that M(x) is Lipschitz-continuous. Finally the slipping
condition v · n = 0 is of type (2) and satisfies (3).

3 Conservative discontinuous Galerkin method

The method developed here is applicable to the general problem (1, 2)(see
section 5) but, for the sake of clarity, we first consider the case where Ω = R

d

(no boundary), the matrices Aj, j = 1, · · · , d are constant, C = 0 and f = 0.
Note that this is a case where the energy is conserved.

A conservative variational formulation. A particularity of DG methods (see
[2,10]) is that a mesh of the domain is introduced before the space discretiza-
tion. Thus we consider a (family of) mesh(es) Th, h > 0, of Ω = R

d

Th = {K ∈ Th}, Ω = ∪K∈Th
K,

whose stepsize h = sup diam K is devoted to tend to 0. Here,we do not make
particular assumptions on the shape of the “elements” K. However, in practice,
these will be triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D.
The point to emphasize is that to the conformity is not required (i. e. hanging
nodes are allowed). We assume in the sequel that the solution u(t) of (1, 2)
satisfies

∀ h, u(t) ∈ C0(R+; Vh), (9)

where we have introduced the space:

V
h = {v ∈ L2(Ω)m / ∀ K ∈ Th, vK := v|K ∈ H1(K)m} (10)

Denote nK the unit outward normal to ∂K and introducing the interfaces
ΣKL = ∂K ∩ ∂L (possibly empty) for all (K, L) ∈ T 2

h , we notice that (1) is
equivalent to finding u(t) : R

+ 7→ V
h such that:

M∂tuK +
d

∑

j=1

Aj∂xj
uK = 0, in K, ∀K ∈ Th, (11a)

A(nk)uk + A(nL)uL = 0, on ΣKL, ∀ (K, L) ∈ T 2
h , (11b)
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To obtain a variational formulation, we multiply (11a) by some vK ∈ [H1(K)]m

and then integrate on K to obtain:

d

dt

∫

K
MuK · vK dx +

d
∑

j=1

∫

K
Aj∂xj

uK · vK dx = 0.

After an integration by parts, we have:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d

dt

∫

K
MuK · vK dx −

d
∑

j=1

∫

K
AjuK · ∂xj

vK dx

+
∑

L

∫

ΣKL

A(nK)uK · vK dσ = 0.

(12)

The general principle of DG methods is to replace on ΣKL, the quantity
A(nK)uK by some numerical flux F(uK ,uL) on ΣKL, in order to take into
account the transmission conditions (11b). There are various possible choices
for the fluxes F (this is where DG approximations may differ). As in [12],
we consider here the centered fluxes, which will lead to an energy preserving
method. Using (11b) and nL = −nK on ΣKL, we have, on ΣKL:

A(nK) uK =
1

2
[A(nK) uK − A(nL) uL]

(

≡ A(nK)
uK + uL

2

)

(13)

We choose F(uK ,uL) as the right hand side of (13) to obtain:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d

dt

∫

K
MuK · vK dx −

d
∑

j=1

∫

K
AjuK · ∂xj

vK dx

+
1

2

∑

L

∫

ΣKL

[A(nK) uK − A(nL) uL] · vKdσ = 0.

After summation over K, we see that u ≡ uh is the solution of the problem














find uh(t) : R
+ 7→ V

h such that :

d

dt
m(uh,vh) + ah(uh,vh) = 0, ∀vh ∈ V

h,
(14)

where we have defined the bilinear forms in Vh:


















































m(uh,vh) =
∫

Ω
M(x)uh · vh dx

(

≡
∑

K

∫

K
M(x)uK · vK dx

)

,

ah(uh,vh) =
1

2

∑

K,L

∫

ΣKL

[A(nK) uK − A(nL) uL] · vK dσ

−
∑

j,K

∫

K
Aj uK · ∂xj

vK dx.

(15)

The fundamental property of ah(·, ·) is given by the following theorem:
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Theorem 1 For all (uh,vh) ∈ V
2
h, ah(uh,vh) = −ah(vh,uh).

Proof. We integrate by parts the second term in ah(uh,vh) (cf. 15) to get:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ah(uh,vh) = −
1

2

∑

K,L

∫

ΣKL

[A(nK) uK + A(nL) uL] · vK dσ.

+
∑

j,K

∫

K
Aj uK · ∂xj

vK dx

Taking half of the sum of the two expressions we got for ah(uh,vh), we obtain

ah(uh,vh) =
1

2

∑

j,K

∫

K

[

Aj ∂xj
uK · vK − Aj uK · ∂xj

vK

]

dx −
1

2
γh(uh,vh)

where γh(uh,vh) =
∑

K,L

∫

ΣKL

A(nL) uL · vK dσ.

To conclude, it remains to check that γh(·, ·) is skew-symmetric. Interchanging
the roles of K and L in the summation, we have, since ΣKL = ΣLK ,

γh(uh,vh) =
∑

K,L

∫

ΣKL

A(nK) uK · vL dσ.

Using first A(nK) = −A(nL) on ΣKL, next the symmetry of A(nL), we get

γh(uh,vh) = −
∑

K,L

∫

ΣKL

A(nL) uK · vL dσ = −
∑

K,L

∫

ΣKL

A(nL) vL · uK dσ,

that is to say γh(uh,vh) = −γh(vh,uh). 2

Remark 2 Writing γh(uh,vh) =
(

γh(uh,vh)− γh(vh,uh)
)

/2, we get another

expression of ah(uh,vh) which we shall use in the sequel, namely:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ah(uh,vh) =
1

2

∑

K

d
∑

j=1

∫

K

[

Aj ∂xj
uK · vK − Aj uK · ∂xj

vK

]

dx

+
1

4

∑

K,L

∫

ΣKL

[A(nK) uL · vK − A(nK) vL · uK ] dσ.

(16)

Space discretization. To each K ∈ Th, we associate a finite-dimensional sub-
space VK of [H1(K)]m, (typically Vk = [Pr(K)]m, where Pr(K) the set poly-
nomials of degree ≤ r) and define “discrete” subspace of V

h

Vh = {v ∈ L2(Ω)m / ∀ K ∈ Th, vK := v|K ∈ VK} (17)
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The semi discrete problem consists in finding uh(t) : R
+ 7→ Vh such that

d

dt
m(uh,vh) + ah(uh,vh) = 0, ∀vh ∈ Vh, (18)

From theorem 1, we deduce that the energy of the semi-discrete solution uh,
namely Eh(t) = m(uh,uh), is conserved in time.

Time discretization and stability analysis. We construct a fully explicit (at
most local mass matrices have to be inverted, element by element) leap-frog
scheme.We choose to compute the discrete solutions at times tn+1/2 = (n +
1/2)∆t. This is a priori a strange choice but we make it for convenience. It
will allow us to simplify the notation for the presentation of the local time
stepping procedure: find u

n+1/2
h ∈ Vh, nN such that

m(
u

n+3/2
h − u

n−1/2
h

2∆t
,vh) + ah(u

n+1/2
h ,vh) = 0, ∀vh ∈ Vh n ≥ i. (19)

Choosing vh = u
n+3/2
h +u

n−1/2
h in (19), and using again theorem 1, one deduces

the conservation in time of the discrete energy

En
h =

1

2

[

‖u
n+1/2
h ‖2 + ‖u

n−1/2
h ‖2

]

+ ∆t ah(u
n+1/2
h ,u

n−1/2
h ), (20)

where ‖v‖2 = m(v,v), ∀v ∈  L2(Ω)m. To get a sufficient L2 stability condi-
tion, it suffices to show the positivity the energy (20), which leads to

∆t ‖ah‖ ≤ 1 where ‖ah‖ = sup
uh,vh∈Vh\{0}

ah(uh,vh)

‖uh‖ ‖vh‖
. (21)

Remark 3 (21) is an abstract CFL condition. In practice, since one deals
with a first order differential operator one has ‖ah‖ = O(h−1) and (21) means
that the ratio ∆t/h much remain bounded.

4 A conservative local time stepping procedure

We suppose that Ω is a union of two domain Ωc and Ωf separated by an
interface Σ = Ω̄c ∩ Ω̄f . We suppose that, for some reason (see [5,1] for some
motivating examples), the mesh Th is the union of a (typically coarse) mesh
T c

h for the domain Ωc and a (typically fine) mesh T f
h for the domain Ωf . Our

goal is to use in each grid a different time step, ∆tf in Ωf and ∆tc > ∆tf in
Ωc. The motivation for doing this can be dictated by various reasons [5,1]: for
instance, according to the hyperbolic nature of the problem, it is natural to
choose ∆t proportional to the local mesh size, which is in agreement with the
CFL condition (see remark 3).

The method that we propose in this paper is valid when the ratio between the
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two time steps is a rational number. However, for the sake of simplicity, we
explain its construction in the case where this ratio is 2:

∆tc = ∆t, ∆tf = ∆t/2. (22)

We begin by rewriting the semi-discrete formulation associated to the mesh
Th = T c

h ∪ T f
h by a 2 × 2 system whose unknowns are the respective solutions

of the semi-discrete solution uh on Ωc and Ωf . For this, we need the additional
notation:

Iℓ = {(K, L) / ΣKL 6= ∅, ΣKL ⊂ Ωℓ}, ∀ ℓ ∈ {c, f},

I = {(K, L) / ΣKL 6= ∅, ΣKL ⊂ Σ}.

Moreover, we define:

V
ℓ
h = {(vh)|Ωℓ

,vh ∈ Vh} ≡ {vℓ,h ∈ L2(Ωℓ) / ∀ K ∈ T ℓ
h , (vℓ,h)|K ∈ VK}. (23)

Denoting uℓ,h = uh|Ωℓ
and using (16), it is easy to see that we can rewrite the

variational formulation (14) as find uℓ,h(t) : R
+ 7→ V

ℓ
h such that :



















d

dt
mc(uc,h,vc,h) + ac

h(uc,h,vc,h) + bh(uf,h,vc,h) = 0, ∀vc,h ∈ V
c
h,

d

dt
mf(uf,h,vf,h) + af

h(uf,h,vf,h) − bh(vf,h,uc,h) = 0, ∀vf,h ∈ V
f
h,

(24)

where mℓ and aℓ
h are the following local bilinear forms on V

ℓ
h × V

ℓ
h:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

mℓ(uh,vh) =
∫

Ωℓ

uK · vK dx
(

≡
∑

K∈T ℓ
h

∫

K
M(x) uK · vK dx),

aℓ
h(uh,vh) =

1

2

∑

K∈T ℓ
h

d
∑

j=1

∫

K

[

Aj ∂xj
uK · vK − Aj uK · ∂xj

vK

]

dx

+
1

4

∑

(K,L)∈Iℓ

∫

ΣKL

[A(nK) uL · vK − A(nK) vL · uK ] dσ,

(25)

and bh is the interface bilinear form on V
f
h × V

c
h:

bh(uf,h,uc,h) =
1

4

∑

(K,L)∈I

∫

ΣKL

A(nk)uf
L · uc

K dσ. (26)

For the time discretization, our aim is to determine a numerical scheme which
coincides inside each grid with the scheme (19) (up to the change of time step)
and guarantees the conservation of an appropriate discrete energy. To be more
precise, we need to give:

(i) the discrete instants at which the solution will be computed in each grid,
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(ii) the choice of the discrete energy we wish to conserve.

The choice of (i) and (ii) is not unique. Another choice could result into an-
other scheme. In this paper, we use a “staggered” grid in time and propose
to compute the solution in Ωc at times tn+1/2 = (n + 1/2)∆t and the solution
in Ωf at times tn+3/4 = (n + 3/4)∆t and tn+1/4 = (n + 1/4)∆t . According to
the leap-frog procedure, this leads us to propose the following scheme for the
time interval ]tn+1/2, tn+3/2] (with obvious notation):











































































mc(
u

n+ 3

2

c,h − u
n− 1

2

c,h

2∆t
,vc,h) + ac

h(u
n+ 1

2

c,h ,vc,h) + bh([uf,h]n+ 1

2 ,vc,h) = 0,

mf(
u

n+ 5

4

f,h − u
n+ 1

4

f,h

∆t
,vf,h) + af

h(u
n+ 3

4

f,h ,vf,h) − bh(vf,h, [uc,h]n+ 3

4 ) = 0,

mf(
u

n+ 3

4

f,h − u
n− 1

4

f,h

∆t
,vf,h) + af

h(u
n+ 1

4

f,h ,vf,h) − bh(vf,h, [uc,h]n+ 1

4 ) = 0,

∀ (vc,h,vf,h) ∈ V
c
h × V

f
h.

(27)

Here, [uf,h]n+1/2 (respectively [uc,h]n+3/4 and [uf,h]n+1/4) is an approximation
of uf,h (respectively uc,h) at time tn+1/2 (respectively tn+3/4 and tn+1/4) to be
determined. According to (20), it is natural to define as a discrete energy in
Ωc at time tn, the quantity (setting ‖vc‖

2
c = mc(vc,vc))

En
c,h =

1

2

[

‖u
n+1/2
c,h ‖2

c + ‖u
n−1/2
c,h ‖2

c

]

+ ∆t ac
h(u

n+1/2
c,h ,u

n−1/2
c,h ) . (28)

Analogously, the discrete energy in Ωf can be defined at all instants k∆t/2, k ∈
N, in particular at times tn (with ‖vf‖

2
f = mf(vf ,vf)):

En
f,h =

1

2

[

‖u
n+1/4
f,h ‖2

f + ‖u
n−1/4
f,h ‖2

f

]

+
∆t

2
af

h(u
n+1/4
f,h ,u

n−1/4
f,h ) . (29)

Therefore, the total discrete energy can be defined at times tn by

En
h = En

c,h + En
f,h (30)

To obtain a discrete energy identity, we first choose

vc,h = u
n+3/2
c,h + u

n−1/2
c,h

in the first equation of (27) to compute En+1
c,h − En

c,h. Next, we take

vf,h = u
n+5/4
f,h + u

n+1/4
f,h and vf,h = u

n+3/4
f,h + u

n−1/4
f,h

respectively in the second and third equations of (27) and add the two resulting
equalities to compute

En+1
f,h − En

f,h.
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After summation, we get the following energy identity:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

En+1
h − En

h

∆t
= bh

(

[uf,h]n+1/2,
u

n+3/2
c,h + u

n−1/2
c,h

2

)

−
1

2

[

bh

(u
n+5/4
f,h + u

n+1/4
f,h

2
, [uc,h]n+3/4

)

+ bh

(u
n+3/4
f,h + u

n−1/4
f,h

2
, [uc,h]n+1/4

)

]

Thus, we have conservation of the energy, i. e. En+1
h = En

h , as soon as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[uc,h]n+3/4 = [uc,h]n+1/4 =
u

n+3/2
c,h + u

n−1/2
c,h

2
,

[uf,h]n+1/2 =
u

n+5/4
f,h + u

n+3/4
f,h + u

n+1/4
f,h + u

n−1/4
f,h

4
.

(31)

The scheme we propose is finally (27, 31). The energy conservation property
guarantees of course the L2 stability of this scheme under the CFL condition

∆t max
(

‖ac
h‖,

‖af
h‖

2

)

≤ 1. (32)

i. e. the same CFL condition as if the computations in the two grids were
decoupled. After decomposition of the discrete unknowns on appropriate bases
of the spaces V

c
h and V

f
h (constructed from bases of the local spaces VK), we

end up with the following algebraic problem (with again obvious notation)























































M c
h

U
n+ 3

2
c −U

n− 1

2
c

2∆t
+ Ac

h U
n+ 1

2
c + Bh

U
n+ 5

4

f + U
n+ 3

4

f + U
n+ 1

4

f + U
n− 1

4

f

4
= 0,

Mf
h

U
n+ 5

4

f − U
n+ 1

4

f

∆t
+ Af

h U
n+ 3

4

f − Bt
h

U
n+ 3

2
c + U

n− 1

2
c

2
= 0,

Mf
h

U
n+ 3

4

f − U
n− 1

4

f

∆t
+ Af

h U
n+ 1

4

f − Bt
h

U
n+ 3

2
c + U

n− 1

2
c

2
= 0,

(33)
where M c

h and Mf
h are the local mass matrices, Ac

h and Af
h are the local stiff-

ness matrices, and Bh is the coupling stiffness matrix (transmission matrix).

This scheme is of order two “inside” each grid, but at the interface, looking
at equations (31), we see that, if the second equality is consistent in O(∆t2),
the first one is only in O(∆t). By adapting the analysis of [4] and [11], one
can see that, in 1D, the L2- global accuracy of the method is O(∆t3/2) (this is
also confirmed by numerical experiments in 2D). Following [13], we propose a
post-processing to restore the second order accuracy, considering

Ũ
n+ 1

2
c =

U
n+ 3

2
c + U

n− 1

2
c

2
, Ũk

f =
U

k+ 5

4

f + U
k+ 3

4

f + U
k+ 1

4

f + U
k− 1

4

f

4
, (34)

10



with k equal to n or n + 1/2. We can write directly the scheme satisfied by
Ũn

c and Ũn
f , which is of second order (all approximations are centered).



















































M c
h

Ũn+3/2
c − Ũn−1/2

c

2∆t
+ Ac

h Ũn+1/2
c + Bh

Ũ
n+3/2
f + Ũ

n−1/2
f

2
= 0,

Mf
h

Ũ
n+3/2
f − Ũ

n+1/2
f

∆t
+ Af

h Ũn+1
f − Bt

h

Ũn+3/2
c + Ũn+1/2

c

2
= 0,

Mf
h

Ũn+1
f − Ũn

f

∆t
+ Af

h Ũ
n+1/2
f − Bt

h

Ũn+3/2
c + 2Ũn+1/2

c + Ũn−1/2
c

4
= 0,

(35)

This scheme is stable under condition (32) since it is equivalent to (33). How-
ever, the direct stability analysis of (35) would be far from trivial.

For computing the discrete unknowns in the interval ]tn+1/2, tn+3/2], one has
to invert the (sparse) linear system:

















M c
h ∆tBh 0

−∆t
2

Bt
h Mf

h ∆tAf
h

−∆t
4

Bt
h 0 Mf

h

































Ũn+3/2
c

Ũ
n+3/2
f

Ũn+1
f

















= F n (36)

with F n computed from previous instants. Since the matrix Bh only “sees”
the unknowns attached to elements that touch the interface Σ, the scheme
remains essentially explicit for interior unknowns. It is only implicit for the
unknowns in the neighborhood of the interface.

Remark 4 The invertibility of (36) is a consequence of the stability analysis.

It can also be checked after elimination of Ũ
n+3/2
f and Ũn+1

f , which leads to

Mh Ũn+3/2
c = F , (37)

where the symmetric matrix

Mh = M c
h +

∆t2

2

[

Bh(Mf
h )−1Bt

h −
∆t

2
Bh(Mf

h )−1Af
h(Mf

h )−1Bt
h

]

is shown to be positive definite under the condition (32). Solving (37) can be
used for the practical implementation. In particular, if, on the interface Σ, the
mesh of Ωf is a sub-mesh of the mesh of Ωc, one can show that Mh is block
diagonal element by element and the scheme is thus completely explicit.

5 Extensions of the method.

Variable coefficients, lower order perturbation and boundary conditions. The
method we have presented in section 4 easily extends to the general problem

11



(1, 2). In fact, the major modification concerns the semi-discrete problem in
space, i. e. we have simply to explain how (14) is modified. The discontinuous
Galerkin formulation of (1) can be written















find uh(t) : R
+ 7→ V

h such that :

d

dt
m(uh,vh) + ah(uh,vh) + ã(uh,vh) = 0, ∀vh ∈ V

h,
(38)

where the bilinear forms m(·, ·) and ah(·, ·) are still defined by (15), the only
differences being that the matrices Aj and A(nK) (the reader will notice that
this matrix remains well defined thanks to the regularity assumption (4)) vary
in space and that we consider a mesh of the domain Ω. The additional bilinear
form ã(·, ·) is given by

ã(uh,vh) =
∫

Ω
(C −

1

2
divA)uh · vh dx +

∫

Γ
Nuh · vh dσ. (39)

and corresponds to a block diagonal matrix (it does not contain any interface
term). All what concerns the time discretization remains essentially unchanged
except that, in order to preserve the stability condition, the term ã(uh,vh)
should be approximated by the classical Crank-Nicolson procedure. This does
not perturb the explicit nature of the scheme thanks to the properties of ã(·, ·).

A more general time-step ratio. We keep here the notation of section 4. We
assume that the time steps ∆tc and ∆tf have a common multiple ∆t:

∆tc = ∆t/qc, ∆tf = ∆t/qf , (40)

where qc and qf > qc are two relative prime integers (in section 4, we considered
qc = 1, qf=2). The solution in Ωℓ in the interval ]tn+1/2, tn+3/2] is computed
at qℓ equally distributed instants, distant from ∆tl:

tn+ 2k+3

2qℓ = (n +
2k + 3

2qℓ
) ∆t, k = 0, · · · , qℓ − 1 .

We present the scheme directly in algebraic form (Bc
h = Bh and Bf

h = −Bt
h):



























M ℓ
h

U
n+ 2k+3

2qℓ

ℓ − U
n+ 2k−1

2qℓ

ℓ

2∆tℓ
+ Aℓ

hU
n+ 2k+1

2qℓ

ℓ + Bℓ
h[Um]

n+ 2k+1

2qℓ = 0,

ℓ ∈ {c, f}, m ∈ {c, f} \ {ℓ}, k = 0, · · · , qℓ − 1.

(41)

with [Um]
n+ 2k+1

2qℓ =
qm−1
∑

j=0

U
n+ 2j+3

2qm
m + U

n+ 2j−1

2qm
m

2qm
, (42)

a choice which is shown to imply the conservation of the discrete energy:

En
h = En

c,h + En
f,h, (43)
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En
ℓ,h =

1

2

[

‖u
n+ 1

2qℓ

ℓ,h ‖2
ℓ + ‖u

n− 1

2qℓ

ℓ,h ‖2
ℓ

]

+ ∆tℓ aℓ
h(u

n+ 1

2qℓ

ℓ,h ,u
n− 1

2qℓ

ℓ,h ). (44)

which implies the L2 stability of (41, 42) under the condition

∆t max
( ‖ac

h‖

qc
,
‖af

h‖

qf

)

≤ 1. (45)

As in simple case, a post-processing of (41) is necessary to have a scheme of
order two everywhere, considering for all k = 0, · · · , qℓ − 1

Ũ
n+ 1

2
+ k

qℓ

ℓ =
qℓ−1
∑

j=0

U
n+ 2k+2j+3

2qℓ

ℓ + U
n+ 2k+2j−1

2qℓ

ℓ

2qℓ
, ℓ ∈ {c, f} . (46)

We can then write the scheme satisfied by Ũℓ as:

M ℓ
h

Ũ
n+ 1

2
+ k

qℓ

ℓ − Ũ
n+ 1

2
+ k−2

qℓ

ℓ

2∆tℓ
+ Aℓ

hŨ
n+ 1

2
+ k−1

qℓ

ℓ + Bℓ
h[Ũm]

n+ 1

2
+ k−1

qℓ = 0 , (47)

which is clearly of second order in time under the following equality:

[Ũm]
n+ 1

2
+ k−1

qℓ =



























k Ũn+3/2
m + (2qℓ − 2) Ũn+1/2

m + (2 − k) Ũn−1/2
m

2qℓ

, if 0 ≤ k ≤ 2,

(2k − 2) Ũn+3/2
m + (2qℓ − 2k + 2) Ũn+1/2

m

2qℓ

, if k ≥ 2.

6 Numerical results

Numerical 1D test experiments permit to check the convergence and second
order accuracy of our method.

We have chosen to represent here the results if an experiment of “artificial”
mesh refinement in 2D. The goal of the experiment is to check that no nu-
merical artefact is produced by the change of mesh. We consider a waveguide
geometry. The computational domain Ω = Ωc ∪ Ωf , with Ωc = [0, 20]× [0, 10]
and Ωf = [20, 25] × [0, 10], we take the space step hc = 0.05 and ∆tc satis-
fies the stability condition (32) (resp. hf = hc/2 and ∆tf = ∆tc/2) in the
coarse mesh (resp. in the fine mesh) which correspond to a mesh refinement
(1, 2). We consider the linearized Euler equations (8) with the initial conditions
v(x, 0) = 0 ; p(x, 0) = exp(− log(2.)r/100), r = ((x1 − 10)2 + (x2 − 5)2)1/2

and the boundary condition v · n = 0 on Γ. In the figure 1 (resp. figure 2) we
present the snapshots of the pressure p for wave equation; M = 0 in (8) (resp.
for aeroacoustic application with M = (0.7, 0)). For the both simulations, we
can observe that there is no artificial reflected or transmitted wave at the
interface Σ between the the domains Ωc and Ωf .
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Fig. 1. Numerical simulations for the wave equation

Fig. 2. Numerical simulations for the linearized Euler equations
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