M. Adcroft, D. Adcroft, and . Marshall, How slippery are piecewise-constant coastlines in numerical ocean models?, pp.95-108, 1998.

B. Auroux, J. Auroux, and . Blum, A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm, Nonlinear Processes in Geophysics, vol.15, issue.2, 2008.
DOI : 10.5194/npg-15-305-2008

URL : https://hal.archives-ouvertes.fr/inria-00327422

]. S. Cohn, An introduction to estimation theory, J. of the Met. Soc. of Japan, vol.75, issue.1B, pp.257-288, 1997.

[. D. Pham, R. Verron, D. T. Pham, and M. C. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanography, Journal of Marine Systems, vol.16, issue.3-4, pp.323-340, 1998.
DOI : 10.1016/S0924-7963(97)00109-7

H. Eby, G. Eby, and . Holloway, Sensitivity of a Large-Scale Ocean Model to a Parameterization of Topographic Stress, Journal of Physical Oceanography, vol.24, issue.12, pp.2577-2587, 1994.
DOI : 10.1175/1520-0485(1994)024<2577:SOALSO>2.0.CO;2

L. C. Gilbert, C. Gilbert, and . Lemarechal, Some numerical experiments with variable-storage quasi-Newton algorithms, Mathematical Programming, vol.11, issue.2, pp.407-435, 1989.
DOI : 10.1007/BF01589113

R. Hellerman, M. Hellerman, and . Rosenstein, Normal Monthly Wind Stress Over the World Ocean with Error Estimates, Journal of Physical Oceanography, vol.13, issue.7, pp.1093-1104, 1983.
DOI : 10.1175/1520-0485(1983)013<1093:NMWSOT>2.0.CO;2

]. W. Holland, Baroclinic and topographic influences on the transport in western boundary currents, Geophysical Fluid Dynamics, vol.13, issue.1, pp.187-210, 1973.
DOI : 10.1073/pnas.33.11.318

. Ilin, An experiment in constructing a smoothed bottom relief of the world ocean, pp.14617-622, 1974.

. Kalnay, Global Numerical Weather Prediction at the National Meteorological Center, Bulletin of the American Meteorological Society, vol.71, issue.10, pp.1410-1428, 1990.
DOI : 10.1175/1520-0477(1990)071<1410:GNWPAT>2.0.CO;2

]. E. Kazantsev, Local Lyapunov exponents of the quasi-geostrophic ocean dynamics, Applied Mathematics and Computation, vol.104, issue.2-3, pp.217-257, 1999.
DOI : 10.1016/S0096-3003(98)10078-4

URL : https://hal.archives-ouvertes.fr/inria-00073618

]. E. Kazantsev, Sensitivity of a simple ocean model to perturbations of the bottom topography, 2008.

L. Dimet, T. Dimet, and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, pp.97-110, 1986.
DOI : 10.1111/j.1600-0870.1986.tb00459.x

[. Dimet, A general formalism of variational analysis, 1986.

[. Provost, A comparison of two numerical methods for integrating a quasi-geostrophic multilayer model of ocean circulations: finite element and finite difference methods, Journal of Computational Physics, vol.110, issue.2, 1994.

D. Lewis, J. Lewis, and . Derber, The use of adjoint equations to solve a variational adjustment problem with advective constraints, pp.309-327, 1985.

]. E. Lorenz, Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, vol.20, issue.2, pp.130-141, 1963.
DOI : 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

. Losch, How Sensitive Are Coarse General Circulation Models to Fundamental Approximations in the Equations of Motion?, Journal of Physical Oceanography, vol.34, issue.1, pp.306-319, 2004.
DOI : 10.1175/1520-0485(2004)034<0306:HSACGC>2.0.CO;2

]. G. Marchuk, Formulation of the theory of perturbations for complicated models, Applied Mathematics & Optimization, vol.2, issue.3, pp.1-33, 1975.
DOI : 10.1007/BF01458193

. Milliff, Ocean general circulation model sensitivity to forcing from scatterometer winds, Journal of Geophysical Research: Oceans, vol.9, issue.21, p.11337, 1998.
DOI : 10.1029/1998JC900045

. Navon, Variational Data Assimilation with an Adiabatic Version of the NMC Spectral Model, Monthly Weather Review, vol.120, issue.7, pp.1433-1446, 1992.
DOI : 10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2

. Nicolis, Short-range predictability of the atmosphere: Mechanisms for superexponential error growth, Quarterly Journal of the Royal Meteorological Society, vol.50, issue.523, pp.705-722, 1995.
DOI : 10.1002/qj.49712152312

. Penduff, How Topographic Smoothing Contributes to Differences between the Eddy Flows Simulated by Sigma- and Geopotential-Coordinate Models, Journal of Physical Oceanography, vol.32, issue.1, pp.122-137, 2002.
DOI : 10.1175/1520-0485(2002)032<0122:HTSCTD>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-00182346

C. Thépaut, Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model, Thépaut and P. Courtier, pp.1225-1254, 1991.
DOI : 10.1002/qj.49711750206

. Verron, ]. J. Blayo, E. Verron, and . Blayo, The No-Slip Condition and Separation of Western Boundary Currents, Journal of Physical Oceanography, vol.26, issue.9, pp.1938-1951, 1996.
DOI : 10.1175/1520-0485(1996)026<1938:TNSCAS>2.0.CO;2

H. Verron, W. R. Verron, and . Holland, Impact de donnes d'altimtrie satellitaire sur les simulations numriques des circulations gnrales ocaniques aux latitudes moyennes, Ann. Geophys, vol.7, pp.31-46, 1989.

]. J. Verron, Nudging satellite altimeter data into quasi-geostrophic ocean models, Journal of Geophysical Research, vol.78, issue.C3, pp.7479-7491, 1992.
DOI : 10.1029/92JC00200