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Abstract.  Software Adaptation is a hot topic in Software Engineering
since it is the only way to compose non-intrusively black-bo x compo-
nents or services with mismatching interfaces. However, adaptation is a
complex issue especially when behavioral descriptions of srvices are con-
sidered. This paper presents optimised techniques to geneate adaptor
protocols, being given a set of service interfaces involvedin a composi-
tion and an adaptation contract. In this work, interfaces ar e described
using a signature, and a protocol that takes value passing into account.
Our proposal is completely supported by tools that automate the gener-
ation and the veri cation of the adaptor protocols. Last, we show how
our adaptation techniques are implemented into BPEL.

1 Introduction

Service composition is a central issue in Service Oriented @nputing. Reuse of
existing entities is mandatory not to implement again the sane blocks of soft-
ware, and then help developers to reduce development timegspect delays, and
have their companies save money by diminishing software d&m costs. However,
direct reuse and composition of existing services is in mostf cases impossible
because their interfaces present some incompatibilitiesSoftware Adaptation [3]
is a very promising solution to compose in a non-intrusive wg black-box com-
ponents or (Web) services whose functionality is as require for the new system,
although they present interface mismatches. Adaptation teehniques aim at au-
tomatically generating new components calledadaptors, and usually rely on an
adaptation contract which is an abstract description of how mismatches can be
worked out. All the messages pass through the adaptor whichas as an orches-
trator, and makes the involved services work correctly togéher by compensating
mismatches.

Contributions.  Model-based behavioral adaptation approaches are eitherer
strictive or generative. Restrictive approachesl[5, 2] try to solve the problem by
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cutting o (pruning) the behaviors that may lead to mismatch , thus restrict-
ing the functionality of the services involved. Generative approached4, 7] try to
accommodate the protocols without restricting the behavia of the services, by
generating adaptors that act as mediators, remembering andeordering events
and data when necessary. In the current state of the art, regictive approaches
are fully automated and are directly related to programming languages, but they
do not support advanced adaptation scenarios. On the other And, generative
approaches su er from the computational complexity of geneating adaptors,
often lack of tool support, and are not related to implementation languages. In
this paper, we propose model-based adaptation techniqueshat are both gen-
erative and restrictive since we support complex adaptatiom scenarios (such as
message reordering), while removing incorrect behaviordiVe also diminish the
computational complexity of adaptor generation by using onthe- y exploration
and reduction techniques to avoid the generation of the fullstate space of the
adaptor under construction. Last, let us emphasize that ourapproach is fully
supported by tools we implemented, and adaptors are nally mplemented using
service implementation languages.

Approach. In this paper, we rst present a model of services that makesti pos-
sible to describe signatures (operation names and types) ahbehaviors (interac-
tion protocols). Protocols are essential because erronesiexecutions or deadlock
situations may occur if the designer does not take them into acount while build-
ing composite services. More than only considering messagiexchanged in proto-
cols, it is important to include value passing (parameters)coming with messages
since this feature may raise composition issues too (unmakting number of pa-
rameters, di erent ordering, etc). Next, we introduce the contract notation that
is used to describe how mismatches appearing in signaturesd protocols can
be worked out by de ning correspondences between messagesthalso between
message parameters. Then, from a set of service protocols drma contract, we
present our approach to generate adaptor protocols which dées on (i) encodings
into the LOTOS process algebra [14], and (ii) on-the- y exploration and reduc-
tion techniques. Veri cation of contracts is also possibleby using CADP [13] a
rich veri cation toolbox for LOTOS. Last but not least, we sh ow how adaptors
can be implemented in the WS-BPEL (BPEL for short) service orchestration
language. Our proposal is supported by tools (Fig. 1) that atomate the extrac-
tion of abstract interfaces from XML description of services (BPEL2STS, the
generation of the LOTOS encoding Composito}, the e cient computation of
the adaptor protocol from the LOTOS speci cation ( Scrutaton), the veri cation
of the adapted system Evaluato), and the generation of BPEL from adaptor
models (STS2BPEL. The only step of our approach which requires manual in-
tervention is the adaptation contract construction.

Outline. The remainder of this paper is structured as follows. Sectin 2 presents
our model of services. Section 3 introduces the contract netiion which is used
for adaptation purposes. In Section 4, we present the adaptogeneration and
veri cation techniques. Section 5 focuses on adaptor implmentation. Section 6
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Fig. 1. Overview of our approach

compares our approach to related work, and Section 7 ends thgaper with some
concluding remarks.

2 Service Model

In this section we present our service interface model. We asime that service in-
terfaces are given using both a signature and a protocolSignatures correspond
to operation pro les described using WSDL, i.e., operation names associated
with argument and return types relative to the messages and dta being ex-
changed when the operation is called. Additionally, we promse that protocols
are represented by means oSymbolic Transition Systems(STSs) which are La-
belled Transition Systems (LTSs) extended with value passig (data parameters
coming with messages). Communication between services igpresented using
eventsrelative to the emission (denoted using!) and reception (denoted using
?) of messagesorresponding to operation calls. Events may come with a sebf
data terms whose types respect the operation signatures. Iour model, alabelis
either the internal action (tau) or a tuple ( SI;M;D;PL ) where Sl is a service
identier, M is a message nameD stands for the direction (,?), and PL is
either a list of data terms if the message corresponds to an eission, or a list of
variables if the message is a reception.

An STS is a tuple (A; S;1; F; T ) where: A is an alphabet that corresponds to
message events relative to the service provided and requideoperations, S is a
set of states,| 2 Sis the initial state, F 2 S are nal states,andT2S A Sis
the transition function. This formal model has been chosen lecause it is simple,
graphical, and it can be easily derived from existing implengentation platforms'
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languages, see for instance [10, 21, 9] where such abstracts for Web services
were used for veri cation, composition or adaptation purposes. For space reasons,
in the rest of the paper, we will describe service interfacesnly with their STSs.
Signatures will be left implicit, yet they can be inferred from the typing of
arguments (made explicit here) in STS labels.

Example. We will use throughout this paper an on-line restaurant bookng

system as a running example. First of all, let us present theliree existing services
we reuse to build this new system (Fig. 2). ServiceYellowPagescan receive a
search request, and returns an address and a map. ServiégasyRestaurantan

receive and answer availability requests to check if a restarant has room for a

given date and number of people. After these interactions, ltis service can receive
a booking message and send an acknowledgement back. Serve&Eaxi receives
booking requests with address and date. In addition, we givéhe system end-user
requirements (USER. The user can rst look for a place. Then, (s)he can search
again, quit, or reserve a restaurant found in the former step If reservation is

possible, the user can accept and book a taxi if necessary. €htau transitions

in the user protocol stand for internal decisions taken by he/him.

USER (u)

reservelrestau:string,
date:datetime,
nbpers:int

search!place:string

eTaxi (et)

book?ad:addr, reserve?avail:bool
date:datetime

search!place:string

bookTaxi'myadd:addr, 3 i
@ date:datetime © confirminame:string C )
book!ad:addr,

date:datetime EasyRestaurant (er) availabilityCheck?restau:string,

b :int, when:dateti
YeIIowPages (yp) availabilityCheck?restau:string, nbpers-nt, when.catetime
nbpers:int, when:datetime

find!select:addr,map:map

o

availabilityCheck!resp:bool

book! book?id:string
find?name:string @ O

Fig.2. Example { service protocols

3 Adaptation Contracts

In this section, we present the adaptation contract notation that allows us to
specify interactions and to work mismatch situations out. We rely on synchro-
nization vectors [1] (or vectors for short). They express correspondences tveeen
messages, like bindings between ports or connectors in aritbctural descriptions.
Each event appearing in a vector is executed by one service drthe overall result
corresponds to an interaction between all the involved serices. A vector may
involve any number of services and does not require intera@ns occuring on the
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same names of events. Furthermore, variables are used in ews as placeholders
for message parameters. The same variable name appearing dierent events
(possibly in di erent vectors) enables one to relate sent an received message
parameters. Vectors can be either written by hand or obtaine from a graphical
description of the architecture built by the designer (Fig. 3).

However, vectors are not su cient to support more advanced aaptation
scenarios such as contextual rules, choice between vectoos, more generally,
ordering (e.g., when one message in some service corresponds to several in a
other service, which requires to apply several vectors in sgience). The ordering
in which vectors have to be applied can be specied using di eent notations
such as regular expressions, LTSs, or (Hierarchical) Mesga Sequence Charts.
Due to their readability and user-friendliness, we chose tospecify adaptation
contracts using vector LTSs, that is, LTSs whose labels are vectors. In addition,
vector LTSs ease the development of adaptation algorithmsiace they provide
an explicit description of the adaptation contract set of states. An adaptation
contract for a set of service STSs is a couple\{; L) where V is a set of vectors,
and L is a vector LTS built over V. If only message name correspondences are
necessary to solve mismatches between services, the veclorS may leave the
vector application order unconstrained using a single sta¢ and all vector tran-
sitions looping on it. In particular, this pattern may be used on speci ¢ parts of
the contract for which the designer does not want to impose an ordering.

Example. The very rst step in the construction of an adaptation contr act
is to relate messages, and then building the architecture othe system-to-be.
The graphical architecture of our booking system is shown inFigure 3 (left)
where for instance thesearchmessages in the user requirements correspond to
the nd ones in the YellowPageservice. A speci ¢ notation is used to denote an
unsynchronized messagd,e., a message with no correspondence (segit in the
user requirements for example).

YellowPages Vsearchl, Vsearch2, Vquit

Vresl

EasyRestaurant

availabilityCheck  (er),

availabilityCheck Vsearchl

book

book Vres2

bookTaxi

@ output port

O input port Vquit, Vconfl, Vconf2

Vbtaxil, Vbtaxi2

Fig. 3. Example { (left) system architecture, (right) vector LTS

However, such an architecture is not su cient because we areconsidering
value passing too, and data exchanged through messages (Fig) have to be
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matched as well. We give below the vectors that are rst dedued automatically
from the architecture and complemented with data mappings.As an example
the searchrequest emitted by the user comes with a parameter fflace whose
counterpart is the argument coming with the reception of nd in the YellowPages
service (vectorVsearch). Next, in vector Vsearch?2 we can see that answer sent
by the YellowPageservice comes with two parameters, one of which is matched
(selec) but the other one (map) is received by the adaptor yet never used after-
wards in any other vector. An example of data reordering exits in vector Vresl
Note that the variable scope is not limited to one vector, anda data received in a
vector can be used (sent) in another. We have implemented argsis techniques
to check possible scope inconsistencies (see Section 4.3).
Vsearchl= hu:searcHplace yp: nd ?placd

Vsearch2= hu:searclvselect yp: nd Iselect mapi

Vquit = hu:quitli

Vresl = hu:reservérestau date; nbpers er: availabilityCheckerestay nbpers datei
Vres2 = hu:reserv@resp er:availabilityChecKresp

Vconfl = hu:con rm!name er:book?name

Vconf2 = her:bookli

Vbtaxil = hu:bookTaxiladdressdate; et: book?addressdatei

Vbtaxi2 = het:bookladdressdatei

Being given this set of interactions, the user would be abled submit in nitely
availability requests to EasyRestaurantor the same restaurant, which is useless.
Accordingly, a vector LTS is de ned (Fig. 3, right) in order t o impose a single
interaction between the user and theEasyRestauranservice every time the user
is eager to check for place availability at some restaurant.

4 Adaptor Generation and Veri cation

An adaptor model for a set of services is an STS running in parél with the ser-
vice STSs and guiding their execution (all exchanged messag pass through the
adaptor) in such a way that mismatches are avoided and the ordring of messages
imposed by the adaptation contract is guaranteed. Generatg adaptor protocols
is a complicated task since the adaptor has to respect the agaation contract
taking into consideration behavioral constraints of servces formalised into their
interfaces (STSs). In addition, protocols may generate man interleaved inter-
actions that we want to preserve to accept all the possible mgsage execution
orders.

In this work, we chose to encode the adaptation constraintsgervice interfaces
and adaptation contract) into the LOTOS process algebra [14. LOTOS relies
on a rich notation that allows to specify complex concurrent systems possibly
involving data types. Our goal is rst to generate LOTOS code for service inter-
faces and their interaction constraints as speci ed in the ontract. In a second
step, the LOTOS encoding allows the automatic generation ofdaptor protocols
whose traces represent all possible (correct) interactiombetween services. To do
so, we rely onCADP[13] a toolbox for LOTOS which implements optimised state
space exploration techniques. In particular, we employon-the-y algorithms to
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increase,w.r.t. existing approaches, the e ciency of the adaptator generaion
and reduction process by avoiding the generation of the fullstate space. The
LOTOS encoding also enables the adaptor protocol veri caton by using model
checking tools available inCADP. Techniques and tools presented in this section
have been validated on more than 200 examples.

4.1 Principles of the Encoding into LOTOS

This approach aims at successively encoding: the serviceSTSs, the abstract
requirements for composition and adaptation {.e., the adaptation contract),
and the desired system architecture that formalises how theservices interact
guided by the contract.

Service STS encoding. Each service STSsv is encoded using several LOTOS
processes. Each LOTOS process corresponds to one stateof the STS, and
its behavior is a choice containing as many branches as therare transitions
outgoing from s. Each branch encodes the label associated to the transitign
and is followed by a call to the LOTOS process that encodes théarget state
of the transition being translated. An additional branch, using a speci c FINAL
action, models termination whens is nal. STS labels are encoded into LOTOS
following patterns presented in Figure 4. Sent (resp. receied) messages are rep-
resented with a \_EM (resp. \ _.REQ) su x. In addition, LOTOS symbols ! and
? are used to support data transfer (resp. emission and recein). In our con-
text, the correct distribution will be ensured by the encoding of the adaptation
constraints (see the next step in this section), therefore bk service STS labels
that involve value passing (emission or reception of paramers) are translated
into LOTOS with a question mark followed by as many fresh variables as there
are parameters coming with the message. Since these variasl are placeholders,
their LOTOS type can simply be an arbitrary one that we call PH This type
is de ned beforehand using the LOTOS abstract datatype faclities with all the
placeholder names appearing in the contract de ned as type a@nstructors.

STS labels LOTOS

sv:m! sv_m_EM

: sv:m? : : sv_m_REC :

C sv:mlel,...en O Osv m_EM ?x1:PH .. ?xn:PH
: sv:m?yl,. : Osv m_REC ?yl:PH .. ?yn:P

Fig. 4. Encoding patterns for STS labels

VI W

O
O

Adaptation contract encoding. An adaptation contract is encoded by gen-
erating (i) a process for the vector LTS, (ii) a process for eah vector de ned in
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the contract, and (iii) the interleaving of all these vector processes. The correct
ordering of vectors is ensured by the vector LTS process thdes to two actions

for each vectorv. A rst one ( run_v) activates the corresponding vector process.
A second one (el _v) releases the vector LTS and enables it to overlap vector
applications. The vector LTS process (i) is encoded using th same pattern as
service STSs, that is every state is encoded as a LOTOS proced-or each tran-

sition with label v in the vector LTS, two LOTOS actions are generated in a
sequencerun_v;rel _v.

Vector processes (ii) are rst launched through a \run_" interaction with the
vector LTS (Fig. 5, 1). Next, they communicate with serviceson all actions ap-
pearing in their vector de nition. They have to receive all sent messages (Fig. 5,
2) before beginning to emit some (Fig. 5, 4b.2). There is no sgci ¢ ordering
between receptions (esp. between emissions) in a vector process. When a vector
process executes a vector, it must be ready to interact with he service STSs on
their emissions (Ox in Fig. 5). Then, several strategies argossible to release the
vector (rel _v), and therefore to execute the services' receptions. A rstoption
is to wait the complete processing of a vector before ring a Bw one (4a.2 done
after 4b.1 and 4b.2). Another strategy is to execute the relase action once all
the emissions executed, that means that the execution of theeceptions by the
services (ly in Fig. 5) can be postponed, and the vector LTS ca launch another
vector. This behavior makes the reordering of messages palste, a typical case
of mismatch between services.

As regards value passing, an auxiliary LOTOS process$tore is generated
to store information about the availability of received values. Every time some
values are sent by a service, they are received by one of the ater processes
and stored by using the (global) processStore, which makes them available
at the level of the adaptor. This availability is essential, because when service
receptions in a vector are being run (emissions at the levelfahe adaptor), this
ring is conditioned by the availability of the values to be e mitted. Thus, every
service emission in a vector is followed by an interaction wh the processStore
to set to true the availability of the received values (Fig. 5, 3), and evey service
reception in a vector is preceded by some interactions with ie Store process
to check that the required values have been received (Fig. 54b.1). In the latter
case, the vector process may have to wait the availability othe needed resources.
Such an active waiting is encoded using a looping process théerminates once
the data are available. If they are never available, this wil generate a deadlock
in the underlying state space that will be cut away in a secondstep by our
reduction techniques (see Section 4.2).

Finally, vector processes (iii) are interleaved since theydo not communicate
together. All the vector processes may synchronize with theStore process to
store new available values, or check the availability of sora values to be sent. The
collaboration diagram in Figure 5 summarizes the pattern fa encoding vectors
into LOTOS when vector overlapping is enabled.

System encoding. In this step, we generate a LOTOS expression corresponding
to the whole system constraints from the LOTOS processes ending the service
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service STSi

4b.2:waits for services to be 2:waits for services to be
ready to receive (ly) ready to send (Ox)

3:sets data in Ox
as available

l:activates Vj and waits
A <

<
Store 4b.1:checks if data in ly
are available

vector
LTS

Y
vector 4a.liis released by Vj

Vj=<0x,ly> P 4a.2:activates VK ...
<

<

Fig.5. Encoding pattern for vectors

STSs, the ones encoding the adaptation contract, and respéng the desired sys-
tem architecture (adaptor in-the-middle, intercepting all messages). This means
that the service STSs only interact together on FINAL (correct termination is
when all services terminate) while they interact with vectors on actions used
in their alphabets. The synchronizing between vector proceses and vector LTS
has been described earlier on (usingrun_" and \ rel _" actions). In addition,
all actions that are not messages of the system,e., messages appearing in the
involved services, are hidden as they represent internal dions of the adaptor we
are building (e.g, \run_" and \ rel _" actions, or all interactions with the Store
process). They are the \mechanics" of adaptation and are notrelevant for imple-
mentation. They will be removed by reduction steps of the adgtor generation
process (see Section 4.2).

Tool support: Compositor. The LOTOS encoding is fully automated by Com-
positor, a tool we have implemented. Supported inputs are XML STSs ad the
aut LTS textual format extended with value passing for service nterfaces, and
XML for contract speci cations. Strategies to implement th e di erent ways of
releasing vectors have been implemented as an option.

4.2 On-the-Fly Adaptor Generation

An adaptor can be obtained from the state space of the whole stem (ser-
vices and adaptation contract) by keeping only the correct kehaviors, which
amounts to cut the execution sequences leading to deadlockages. In the adap-

tation techniques that support deadlock elimination [6, 2], the computation of

the deadlock-free behaviors is done by performing a backwdrexploration of the

explicit, entirely constructed, state space by starting at the deadlock states and
cutting all the transitions whose target state leads to a deallock. To increase
e ciency, we avoid the entire construction of the state space and instead we
explore it forwards in order to generate the adaptoron-the-y by carrying out

deadlock elimination and behavioral reduction simultaneasly.

Deadlock elimination. First, the execution sequences leading to deadlocks
must be pruned. We do this by keeping, for each state encounted, only its
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successor states that potentially reach a successful termation state, which is

source of a transition labeled with the action FINAL Besides avoiding deadlocks
(sink states reached by actions other thanFINAL), this also avoids livelocks,

i.e., portions of the state space where some services get \trappé and can-

not reach their nal states anymore. The desired successortates satisfy the

PDL [8] formula hrue :FINAL true, which can be checked on-the-y using the
Evaluator [18] model checker. However, this scheme is not e cient sine each
invocation of Evaluatorhas a linear complexity w.r.t. the size of the state space
and therefore a sequence of invocations (in the worst casene for each state)
may have a quadratic complexity. An e cient solution is to tr anslate the eval-

uation Q\I‘Ithe formula\}gto the resolution of the boolean equdion system (BES)

fXs= SF,NALsotrue _ o soXso0, where a boolean variableXs is true i state

s satis es the propositional variable X corresponding to the PDL formula. A

state s potentially leading to a successful termination is detectel by solving on-

the- y the variable X of this BES using the algorithm A3 of the CaesarSolve
library [16]. In this way, a sequence of resolutions perforrad during a forward

exploration of the state space has a linear-time overall coplexity and does not

store transitions, but only states in memory.

Behavioral reduction.  Second, the adaptor STS obtained by pruning can be
reduced on-the- y modulo an appropriate equivalence relaton in order to get rid
of the internal actions and obtain an adaptor as small as posble. These internal
actions correspond here to the encoding of the system adaptian constraints,
e.g, \run_"and\ rel _"actions. Such internal actions are not relevant for adapta
implementation but are usually inherent to adaptation processes, as they model
internal computations done by adaptors [6]. The algorithms presented in [15]
can be used to implement on-the- y reductions modulo tau-ca uence (a form
of partial order reduction preserving branching bisimulation) and the tau :a
and weak trace equivalences, both of which eliminate interal transitions and
(for weak trace) determinize adaptor STSs.

Tool support: Scrutator and CADP. The on-the-y adaptor genera-
tion is implemented by the Scrutator tool that we have developed using the
Open/Caesar[11] environment for graph manipulation provided by the CADP
veri cation toolbox. Two kinds of pruning are implemented by the tool: the
rst one deletes the states leading eventually to deadlocksand the second one
keeps only the states leading (potentially or eventually) o transitions labeled by
a given action (here,FINAL. Besides the on-the- y reductions currently o ered
by Scrutator (tau-con uence, tau :a, and weak trace equivalence), we plan to im-
plement reductions modulo other equivalences, such as brahing bisimulation;
for the time being, the adaptors generated byScrutator can be reduced o -line
modulo strong or branching bisimulation using the Bcg-Min tool of CADP.

To automate the whole adaptation process,Compositorgenerates an SVL
script [12] in charge of the following activities: building and reducing the adap-
tor on-the-y by invoking Scrutator on the LOTOS speci cation of the system;
\mirroring" of the adaptor actions (reversing emissions and receptions, \_.EM
and \_REQ) as the adaptor acts as an orchestrator in-the-middle of the ser-
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vices; and pretty-printing of the adaptor STS by translatin g its actions from a
LOTOS-like to a more user-friendly syntax.

The reduced adaptor protocol for our running example is show in Figure 6.
The initial state is identied by 0. In this state, the adaptor can interact with
the user (messageSEARQHANd receives as parameter the place (s)he is looking
for. Next, the adaptor sends this place to theYellowPageservice with the FIND
message, etc.

yp:FIND ?SELECT MAR

u:SEARCH ?PLACE

er:BOOK ? :BOOKTAXI ?ADDRESS DATE

:BOOKTAXI ’>ADDRESS‘DATE<EYBOOK IADDRESS,DATE

Fig.6. Example { adaptor protocol

4.3 Adaptor Veri cation

In our approach, contracts are built by the designer. Therebre, they can contain
errors that will also appear at the level of the adaptor. As a rst step in the ver-

i cation of the adaptor, we have implemented several static analysis checks to
verify that the contract is correctly written (labels de ne d in interfaces correctly
used in vectors, vectors and vector LTS structurally consigent, scope and type of
placeholders, etc). These static analysis features are weuseful for detecting the
simple errors that one can make while writing out a contract manually. Nonethe-
less, this is not enough since protocols of interfaces and oacts (vector LTS)
are not considered. Therefore, to complement static analyis checks, we propose
more powerful veri cation techniques based on model checkig tools (Evaluato)).
Two kinds of temporal properties are suitable for checking he behavior of adap-
tors: (i) general properties (placeholder occurrence, service action preserving,
etc) related to the adaptor structure, which should be satised by any adaptor
generated using our approach, (ii)speci ¢ properties (safety and liveness) related
to the adaptor protocol, which di er from one adaptor to anot her.
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5 Adaptor Implementation

In this section we present the nal step of our approach, naméy adaptor imple-
mentation. Due to lack of space, the initial step, generatirg STS models from
(A)BPEL (using the rules de ned in [21]) is not presented here. To generate a
BPEL orchestrator from an adaptor model we proceed in two sts: (i) Itering
the model, and (ii) encoding the Itered model into BPEL.

Adaptor ltering. The adaptor generation algorithm is a implementation in-
dependent model-based one whose objective is to be applied ti erent imple-
mentation platforms (BPEL, Windows Work ows, SCA components, etc.). To
support implementation using the BPEL constructs, we have 1 apply rst three
simpli cation rules:

{ whenever a state has both emission and reception outgoing @nsitions, we
remove the reception transitions;

{ whenever a state has more than one emission outgoing transiin, we keep a
single one;

{ let o be a two-way operation, i.e, a receive-reply operation of a service to
be invoked by the adaptor in a synchronous way; for every trasition t with
an emission corresponding to such arm, and targeting state s, we remove
all transitions outgoing from s but for the transition with the correspond-
ing reception (i.e., we impose atomicity of the two events corresponding to
invocations in the adaptor). In a case where such a second treition is not
available, we also removd.

We end by cleaning the adaptor model,i.e., we remove states (and accordingly
transitions) which are not reachable (from the initial state) or not coreachable
(from a nal state). Filtering is demonstrated on Figure 6 wh ere the grey states
and related transitions are removed. Filtering is compatide with adaptation; it
just removes some of the interactions between the serviceshich are not possible
from a BPEL point of view. Veri cation techniques presented for adaptor models
apply to Itered models too. Currently, we have been able to $ow that the
important safety and liveness properties that yield for the Figure 6 adaptor (e.g.
that the client cannot be asked to con rm the reservation before the YellowPages
service has found an appropriate place, or that the client canot be asked to
con rm the reservation before the YellowPageservice has found an appropriate
place) yield also after Itering.

BPEL implementation. Once models have been cleaned up as presented
above, we automatically implement them in BPEL as follows.

Partnerlinks and variables. A partnerlink is created for each service, plus one for
the composite itself (USER. Global variables are created for the vector variables
and for each part of received or emitted message. Moreover, STATE integer
variable is used to represent the current state and a@&INAL boolean variable to
represent the termination of the adaptor.

Communication. A ¢c:msg!x1,...,xntransition (¢ not being USER followed by a
c:msg?yl,...,yrtransition is encoded as a synchronouivokeactivity with mes-
sagemsgand partnerlink c. A USER:msg?x1,...,xtransition corresponds to the
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interaction with the environment, it is encoded as areceiveactivity with message
msgand partnerlink USER Finally, a USER:msg!x1,...,xfransition corresponds
to an interaction with the environment, it is encoded as areplyactivity with mes-
sagemsg and partnerlink USER All communication activities related to USER
are linked using a correlation set namedJSERCSwith a property USERPROP.
Moreover, each of the operations in theUSERinterface has an additionnal part
with a string identi er and a corresponding property alias making the link with
USERPROP. This machinery is required to ensure the correctness of thadaptor
protocol w.r.t. its environment, e.g. the user.

Assignments.Some adaptor variables ki and yj above,e.g., namein our example)
come from vectors, while message parts in the communicatioactivities (invoke
receive reply) correspond to variables in service protocols €.g., id for message
bookin service EasyRestauranin our example). To link them, before eachinvoke
or replyactivity, we add an assignactivity assigning adaptor variables to message
parts; accordingly, after eachinvokeor receiveactivity we add an assignactivity
assigning message parts to adaptor variables.

Process. We rely on the state machine pattern. Initially the STATE variable is
set to the target state of the rst transition in the adaptor. The main body
of the process then corresponds to avhile (not FINAL) activity. Cascaded if
statements are used inside it to encode the adaptor states. Ae if body of a
state i encodes its outgoing transition(s). For a single onave use communication
encodings presented above. When there are several possilbéeeptions we use a
pick activity with an onMessagéranch for each. If there is also a termination
transition, we add an onEventbranch in the pick with a timer. In all cases, we
terminate by updating the STATE variable accordingly to the transition(s) taken
into account. For the nal state we only set FINAL to true.

Tool support: BPEL2STS and STS2BPEL. The obtaining of STS from
BPEL, the ltering of adaptor models, and the generation of BPEL adap-
tors from STS models, presented above, are automated bBPEL2STS and
STS2BPEL tools we have implemented. A part of our adaptor in BPEL is pre-
sented in Figure 7. Service deployment has been achieved ngi the NetBeans
6.0.1 IDE with the GlassFish BPEL Engine.

6 Related Work

Several adaptation proposals [4, 6, 2] focus on solving beti@ral mismatch be-
tween abstract descriptions of components. Brogi et al. (BEC) [4] present a
methodology for generative behavioral adaptation where cmponent behaviors
are speci ed with a subset of the -calculus and composition speci cations with
name correspondences. An adaptor generation algorithm issed to re ne the
given speci cation into a concrete adaptor which is able to &commodate both
message name and protocol mismatch. This approach has redgnbeen used to
obtain adaptor implementations for services [5] (see beloy Autili et al. (IT) [2]
address the enforcement of behavioral properties out of a s@f components.
Starting from the speci cation with MSCs of the components to be assembled
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4— WHILE not(FINAL)

\ STATE4

STATEL

STATE3

IF (STATE=4) —p

possible receptions
PICK ~a / in STATE 4

Fig. 7. BPEL Adaptor (part of) in the NetBeans IDE 6.0.1

and of LTL properties (liveness or safety) that the resulting system should ver-
ify, they automatically derive the adaptor glue code for the set of components
in order to obtain a property-satisfying system. They follow a restrictive adap-
tation approach, hence they are not able for example to reordr messages when
required. More recently, in [6], we have proposed an automatd adaptation ap-
proach that is generative and supports adaptation policiesand system properties
described by means of regular expressions of vectors. It sapeded both IT (as
it supported message reordering) and BBC (which could genete dumb adap-
tors [4] and has no tool-support), yet it built on algorithms based on synchronous
products and Petri nets encodings with a resulting exponeral complexity for
the computation of adaptors. Here, this is avoided thanks toprocess algebra
encodings and on-the- y generation techniques.

In their paper Adapt or Perish [7], Dumas and collaborators presented an
approach to behavioral interface adaptation based on the daition of a set
of adaptation operations for establishing the basic relaton patterns between
the messages names used in the components being adapted, athey de ned
a trace-based algebra for describing the transformationsequired to solve the
adaptation problem. They also present a visual notation fordescribing a mapping
between the behavioral interfaces of the components. Howev, their proposal
does not present a solution for deriving an adaptor from the vsual mappings, but
just contains a preliminary (i.e., non su cient) condition for detecting deadlock
scenarios in the behavioral interfaces.

Some recent approaches found in the literature [5, 20, 19] éus on existing
programming languages and platforms, such as BPEL or SCA coponents, and
suggest manual or at most semi-automated techniques for sahg behavioral
mismatch. In the context of Web services and BPEL, [5] outlires a methodology
for the generation of adaptors capable of solving behaviolanismatches between
BPEL processes. In their adaptation methodology, the authas use an intermedi-
ate work ow language for describing component behavioral mterfaces, and they
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use lock analysis techniques to detect behavioral mismatchSimilarly, [20] pro-
vides automated support for the identi cation of protocol- level mismatches, but
is able to generate an adaptor only in the absence of deadlock deadlock may
arise from the combination of the components, the authors popose a way to
handle the situation by generating a tree for all mismatchesthat result in a
deadlock, and suggesting some hints for assisting the desigr in the manual im-
plementation of the actual adaptor. In [19], the authors ded with the monitoring
and adaptation of BPEL services at run-time according to Qudity of Services
attributes (di erent focus than us). Their approach also pr oposes replacement
of partner services based on various strategies either syattic or semantic.

Finally, compared to a preliminary version of this work [17], in the current
paper, we have rst extended the model of services with valugassing. Conse-
quently, the contract notation was enhanced as well to congler not only message
matching but also correspondences between message argurteeMNew adaptation
and veri cation techniques have been proposed to deal with hese new models,
and tool support extended in consequence. Last but not leastve have addressed
adaptor implementation in BPEL.

7 Concluding Remarks

Software adaptation is a promising solution to compose in a an-intrusive way
black-box services that contain incompatibilities in their interfaces. In this pa-
per, we have presented our tool-supported techniques to gemnate adaptor pro-
tocols from interfaces of services described by signatureand protocols with
value-passing, and an adaptation contract. Adaptor gener#ion is completely
automated and the resulting adaptor makes the whole system wark correctly by
solving protocol mismatches as well as value passing issué&ince our mechanisms
are based on an encoding into the LOTOS process algebra, weka advantage of
the existing CADP toolbox for LOTOS to verify the correctness of the contract.
We have also shown with BPEL how our adaptors can be implemergd. The
main perspective of this work is to propose an assisted desigapproach to help
and guide the architect in the construction of adaptation contracts.
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