
HAL Id: inria-00341843
https://inria.hal.science/inria-00341843

Submitted on 26 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Replacement policies for shared caches on symmetric
multicores: a programmer-centric point of view

Pierre Michaud

To cite this version:
Pierre Michaud. Replacement policies for shared caches on symmetric multicores: a programmer-
centric point of view. [Research Report] RR-6734, INRIA. 2008, pp.22. �inria-00341843�

https://inria.hal.science/inria-00341843
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
67

34
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Replacement policies for shared caches on symmetric
multicores : a programmer-centric point of view

Pierre Michaud

N° 6734

Novembre 2008

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Replacement policies for shared caches on symmetric
multicores : a programmer-centric point of view

Pierre Michaud

Thème COM — Systèmes communicants
Équipes-Projets CAPS

Rapport de recherche n° 6734 — Novembre 2008 — 22 pages

Abstract: The presence of shared caches in current multicore processors may gener-
ate a lot of performance variability when several applications execute simultaneously.
For the programmer of an application with quality-of-service goals, this performance
variability may lead to a very pessimistic tuning. To solve this problem, there must
be a way for the programmer to define a reasonable performancetarget and make sure
that the actual performance is greater than or close to the target. We propose that the
performance target be defined as the performance measured when each core runs a
copy of the application, which we call self-performance. This study characterizes self-
performance and explains how the shared-cache replacementpolicy can be modified
for self-performance to be meaningful.

Key-words: Symmetric multicore processor, quality of service, self-performance,
shared cache, replacement policy, memory bandwidth

Politiques de remplacement sur les caches partagés des
multi-coeurs symétriques

Résuḿe : La présence de caches partagés dans les processeurs multi-coeurs est
une source importante de variabilité de performance lorsque plusieurs applications
s’exécutent simultanément. Pour le programmeur d’une application avec des objectifs
de qualité de service, cette variabilité de performance peut conduire à un dimensionne-
ment très pessimiste de l’application. Afin de résoudre ceproblème, on doit donner au
programmeur la possibilité de définir un objectif raisonnable en performance, et on doit
faire en sorte que la performance réelle soit supérieure ou proche de cet objectif. Nous
proposons que l’objectif en performance soit défini comme la performance mesurée
lorsque chaque coeur exécute une copie de l’application. Nous appelons cette mesure
l’auto-performance. Cette étude caractérise l’auto-performance et explique comment
la politique de remplacement des caches partagés peut être modifiée pour que l’auto-
performance soit un objectif atteignable.

Mots-clés : Processeur multi-coeur symétrique, qualité de service,auto-performance,
cache partagé, politique de remplacement, bande passantemémoire

Replacement policies for shared caches on symmetric multicores 3

1 Introduction

There exists an implicit performance contract between the processor and the program-
mer. When the programmer writes a program and measures its performance by running
it, he assumes that the performance is approximately deterministic, hence reproducible.
There can be some performance variations, some due to the operating system (e.g., dif-
ferent physical page allocation that changes cache conflicts), some due to the microar-
chitecture (e.g., different initial branch predictor states). But, before the multicore era,
these variations were generally small.

With multicore processors able to execute several applications simultaneously, per-
formance variations can have a much larger magnitude. This is mainly due to shared
microarchitectural resources, especially shared caches.Depending on workload char-
acteristics, the actual performance of a particular application may be much smaller than
the performance measured by the programmer. For applications with quality-of-service
goals, this leads to very pessimistic tuning.

Previously proposed solutions to this problem involve the use of programmable
priorities or quotas [5, 3, 10, 1, 8, 2, 4]. With these solutions, programmers who want
a performance guarantee must ask for resources they are sureto obtain. In practice,
this requires either to partition shared resources evenly between cores or to keep some
cores unused.

We propose a new solution, which is to have an explicit contract between the mi-
croarchitecture and the programmer. The programmer measures the application per-
formance by running simultaneously a copy of the application on each core. This
defines what we callself-performance. This study characterizes self-performance and
shows that, for self-performance to be meaningful, the microarchitecture must manage
shared resources carefully. In particular, we show that conventional cache replace-
ment policies are not compatible with the self-performancecontract. We propose some
replacement policies that are compatible with self-performance. One of our replace-
ment policies, called B2, is simpler to implement in hardware than previously proposed
quota-based solutions.

The paper is organized as follows. Section 2 explains the concept of self-performance
and the motivations behind it. We show in Section 3 that conventional cache replace-
ment policies are not compatible with self-performance andwe provide insights as
to why this is so. We also show that, even without consideringthe self-performance
contract, conventional cache replacement policies lead tothe paradoxical situation that
increasing the memory bandwidth may decrease the performance of some applications.
In Section 4, we propose sharing-aware replacement policies that solve the problems
emphasized in the previous section. Section 5 discusses some implications of our
proposition for throughput and for multi-threaded programs. Finally, Section 6 con-
cludes this work.

Simulations. The simulation results presented in this study correspond to a multi-
core with 4 identical cores, depicted in Figure 1. The 4 coresshare a 4 MB 16-way
set-associative level-2 (L2) cache. The main characteristics of the simulated microar-
chitecture are summarized in Table 1. More details about thesimulator and about
benchmarks are provided in Appendix A. Unless stated otherwise, each simulated IPC
(instructions retired per cycle) reported in this study corresponds to the IPC of the
thread running on core #1 for 10 million CPU cycles while other threads run on cores
#2,#3 and #4.

RR n° 6734

4 Michaud

IL1 DL1

core 1

Memory

MRQ

MRQ

MRQ

MRQ

bus
arbiter

4 Mbytes

IL1 DL1

IL1 DL1

IL1 DL1

core 2

core 3

core 4
set−associative

16−way

L2 cache

Figure 1: Symmetric multicore simulated in this study.

multicore 4 dynamically-scheduled cores
core fetch 2 instructions per cycle (x86)
core retire 2 instructions per cycle (x86)

reorder buffer 64 instructions (x86)
branch predictor YAGS, 12 Kbytes, 25-bit global history, 8-bit tags

branches 10-cycle misprediction penalty (minimum), solved at retirement
IL1 cache private, 32 Kbytes, 4-way set-associative, 64-byte blocks, LRU

latency 1 cycle, 1 block refill & 2 instructions read per cycle
DL1 cache private, 32 Kbytes, 4-way set associative, 64-byte blocks,LRU,

write-back write-allocate, latency 2 cycles,
1 block refill & 1 load/store per cycle

L2 cache shared, 4 Mbytes, 16-way set associative, 64-byte blocks, LRU,
write-back write-allocate, latency 15 cycles,
bandwidth 1 block/cycle (refill or block read or block update)

MRQ 20 pending L2 misses
memory bus 8 bytes per CPU cycle

memory latency 300 CPU cycles
hardware prefetch disabled

Table 1: Simulated microarchitecture : default configuration

INRIA

Replacement policies for shared caches on symmetric multicores 5

2 Self-performance

In this study, we consider independent sequential tasks. Currently, most programs
executing on existing multicores are sequential programs.Though it is hoped that
more and more parallel applications will be developed, sequential programming is still
very important. We explain in Section 5.3 what are the implications of our proposition
for multi-threaded programs.

2.1 The problem

For applications with quality-of-service (QoS) goals, it is important that the perfor-
mance measured at programming time be deterministic, or appears to be so. In a multi-
core, several resources are shared : physical memory, caches, buses, power supply, etc.
Because of resource sharing, when several independent applications run concurrently
on different cores, the performance of each application depends on the characteristics
of the other applications. On a single CPU, the operating system (OS) can control the
amount of physical memory and CPU time allotted to each task,in particular tasks
with QoS goals. On a multicore, the OS can decide which applications to run simulta-
neously and for how long, but it has no control on microarchitectural resource sharing.
The notion of CPU time is not accurate, as the quantity of workdone during a fixed
period of time may vary drastically depending on resource sharing. What we need
is a way for the programmer to specify a performance target and a microarchitecture
that minimizes the possibility for the actual performance to fall significantly below the
performance target. An obvious solution would be to assume that the application runs
alone on the multicore. But the multicore would be underused.

The solution that has been proposed so far is to let the OS havea fine control
of shared microarchitectural resources [5, 3, 10, 1, 8, 2, 4]. Each shared resource is
associated with priorities or quotas that are programmable. For example, the program-
mer defines his microarchitectural needs, i.e., the resources he wants (cache size, bus
bandwidth, etc.), and the OS tries to give to each application the resources it asks for.
However, this raises a question : what if the sum of resourcesasked by applications
running concurrently exceeds the processor’s resources ? With programmable quotas,
each application is given a share of resources that is a function of but is not necessarily
equal to what the application asks for [10]. This implies that the applications for which
it is important to obtain a performance guarantee must ask for quotas that they are sure
to obtain. In practice, this means that when a resource is shared by up to N threads, the
programmer must ask for1/N (or less) of the resource in order to obtain a performance
guarantee.

Based on this observation, we propose a viable alternative to programmable quotas
1. We call it self-performance. Self-performance is less flexible than programmable
quotas but is simpler to implement.

2.2 Self-performance

Obtaining a performance guarantee is a two-stage problem :

• We need a way to define a performance target.

1To our knowledge, programmable quotas have not been adoptedby the industry yet.

RR n° 6734

6 Michaud

• We must minimize the possibility for the actual performance to fall below the
targeted performance.

On the one hand, we do not want the performance target to be toopessimistic. On
the other hand, the performance target must be a value that ispossible to enforce. If
it is too optimistic, it may be impossible to reach the performance targets of all the
applications running simultaneously. If we measure the application performance when
it runs simultaneously with some other random applications, we may obtain a perfor-
mance target that is too optimistic. If we choose misbehaving applications to stress
shared resources, we may obtain a performance target that istoo pessimistic. Instead,
we propose to define the performance target of an applicationby running copies of this
application on all cores. More precisely, we define theself-performancecontract as
follows :

The self-performance of a sequential program on a symmetricmulticore
processor is the performance measured for one instance of the application
on asymmetric run, i.e., when running simultaneously and synchronously
copies of that program on all cores, using the same inputs. The actual per-
formance must be greater than or close to the self-performance, whatever
the applications running on the other cores.

The rationale is as follows. If the application uses few resources, its self-performance
is very close to the performance when it runs alone. But if theapplication asks for
a lot of resources, it competes with copies of itself and getsa share that is equal to
the resource size divide by the number of cores. The performance target defined this
way is neither too optimistic nor too pessimistic. Self-performance can be measured
by the programmer without requiring any knowledge of the microarchitecture internal
details (e.g., which resources are shared, how the resourcearbitration works, etc.). The
programmer does not even need to know the number of cores. Theonly thing that the
programmer must be aware of is the self-performance contract. For the convenience of
the programmer, the OS should provide aselfperfutility for launching symmetric runs.
Programmers who do not need a performance guarantee can measure performance as
usual, without using theselfperfutility. But it is an optimistic performance in this case.

System resources. In this study we focus on shared microarchitectural resources, and
more particularly shared caches. We do not address the problem of system resources,
like physical memory. For example, if the programmer has QoSgoals and wants a high
self-performance, he should prevent the application memory demand from exceeding
the memory size divided by the number of cores. We assume thatthe OS is always able
to give this amount of memory to the application.

3 Shared caches and self-performance

Unlike for system resources, the operating system has little control on shared microar-
chitectural resources. It is possible to have some control by carefully choosing which
application to run simultaneously (provided such choice exists). But existing proces-
sors do not allow the OS to control microarchitectural resources more finely.

Among shared microarchitectural resources, caches exhibit the most chaotic and
difficult-to-predict behavior. For example, on a set-associative cache withleast-recently-
used(LRU) replacement, a small decrease of the number of cache entries allotted

INRIA

Replacement policies for shared caches on symmetric multicores 7

to a thread may result in the miss ratio suddenly going from 0 to 100%. The most
obvious way to avoid the erratic behaviors due to shared caches is to avoid shared
caches. Nevertheless, shared caches have some advantages.On a multicore with pri-
vate caches, whenever a single thread is running, the cache capacity of idle cores is
generally wasted. When a cache is shared between several cores, the whole cache ca-
pacity is accessible to a single running thread. This is particularly interesting for the
last on-chip cache level, as off-chip accesses are costly. There are other advantages
when several threads from the same application communicatewith each other. With
private caches, several copies of the same data may be replicated. Not only does this
decrease the effective cache capacity, but this means potentially a cache miss for each
copy. For these reasons, several recent multicores have shared level-2 (L2) or level-3
(L3) caches. However, to our knowledge, there is no mechanism in these multicores
to control the way the cache capacity is partitioned betweendifferent threads running
concurrently. The partitioning is simply the result of the cache replacement policy, that
is why we call itnatural partitioningin this study.

3.1 Under natural cache partitioning, the self-performance can ex-
ceed the actual performance

The model of cache partitioning proposed in [12], though inaccurate in practice, is
useful for understanding some qualitative aspects of natural cache partitioning. We
present a simplified version of the model, which we will use tohelp understand our
simulation results.

Let us considern threads numbered from1 to n running simultaneously, and a
fully-associative shared cache with a capacity ofC blocks. The number of cached
blocks belonging to threadi is wi. It is assumed that the cache capacity is saturated,
i.e., C =

∑n

i=1
wi. The miss rate of threadi, in misses per cycle, ismi. The total

miss rate ism =
∑n

i=1
mi. The model assumes that, on a miss from any thread, the

probability that the victim block belongs to threadi is proportional to the total number
of cached blocks belonging to threadi, i.e., it iswi/C. DuringT cycles,miT blocks
from threadi are inserted in the cache andmT ×wi/C blocks from threadi are evicted
from the cache. It is assumed that an equilibrium is eventually reached, such thatwi is
stable. It means that, for each thread, the number of block insertions equals the number
of block evictions. Hence we havemiT = mT × wi/C, that is,

mi

wi

=
m

C
(1)

This quantity,mi/wi, was not identified in [12]. We call it thecache pressureof thread
i. Equation (1) means that the equilibrium partitioning is such that all threads have
equal cache pressure. Figure 2 shows on an example how the concept of cache pressure
is useful for finding the equilibrium cache partition from the threads miss rate curves
(misses per cycle as a function of the number of cached blocks). On this example, the
cache is shared between 2 threads. Thread 1 needs less than half the cache capacity to
have a null miss rate. However, because it shares the cache with thread 2, thread 1 has
a non-null miss rate. The example of Figure 2 explains why natural cache partitioning
cannot guarantee that the actual performance will reach theself-performance target.
In particular, the performance of a thread may be severely decreased when the other
threads have high miss rates.

RR n° 6734

8 Michaud

isobar p

miss rate

0 C/2 C cached blocksw1 w2

m2

m1

Figure 2: Example with 2 threads. The miss ratemi of threadi (in misses per cycle) is
assumed to be a function of the numberwi of cached blocks. The equilibrium partition
(w1, w2) is such that the two threads have equal cache pressurep = m1/w1 = m2/w2,
hence the points(w1, m1) and(w2, m2) lie on the sameisobar, which is represented
by a straight line whose slope is the pressurep. To find the equilibrium partition, rotate
the isobar around the origin untilw1 + w2 = C.

Experiment on a real multicore. We did a simple experiment on a MacBook Pro
featuring an Intel Core 2 Duo processor and 2 GB of memory. This processor has 2
cores and a 4 MB shared L2 cache. We ran benchmarkvpr from the SPEC CPU2000.
The measured execution time was approximately 51 seconds. Then we measured the
self-performance ofvprby running simultaneously two instances ofvpr. The execution
time ofvpr was 53 seconds, which means that the self-performance ofvpr is close to its
performance when it runs alone. Then we ranvpr simultaneously with benchmarkmcf
from the SPEC CPU2000. The execution time ofvpr was 73 seconds, i.e., 38% worse
than the self-performance. Then we ranvpr simultaneously with a microbenchmark
that we wrote and which we denote999. Microbenchmark999is provided in Figure 3.
It has a very high miss rate (1 miss every 4 instructions) and evicts cache blocks very
aggressively. The execution time ofvpr was 101 seconds, i.e., 90% worse than the self-
performance. We used the Apple toolsharkto access the performance counters of the
Core 2 Duo and we checked that the decrease of performance comes from an increase
of L2 cache misses. This experiment shows that, under natural cache partitioning, the
actual performance may be significantly smaller than the self-performance.

3.2 Self-performance is not necessarily defined under natural cache
partitioning

In our definition of self-performance, we made the implicit assumption that, on a sym-
metric run, performance is the same on all cores. With identical cores, this is indeed the
case most of the time. According to the cache pressure model (cf. Figure 2), if threads
have the same miss rate curve, they get the same share of the cache capacity. Therefore,
a symmetric run on 4 cores should result in each thread getting one fourth of the cache

INRIA

Replacement policies for shared caches on symmetric multicores 9

i n t a [SIZE] ;

main ()
{

i n t i , n ;
i n t x = 0 ;
f o r (n =0; n<1000000; n++) {

f o r (i =0 ; i<SIZE ; i +=STEP) {
x += a [i] ;

}
}
p r i n t f (”%d\n ” , x) ;

}

Figure 3: Microbenchmark999 (compiled with gcc -O3 -DSIZE=160000000 -
DSTEP=16)

capacity. However, the cache pressure model is only an approximation of reality. From
our experiments and simulations, the LRU replacement policy is unlikely to generate
strange performance variations on symmetric runs. But thisis not necessarily true with
other replacement policies. Though we present results onlyfor LRU in this study, we
also did simulations with the DIP replacement policy.

DIP was recently proposed as a substitute for LRU in L2 and L3 caches [9]. DIP
is a very attractive proposition that may be implemented in future processors. All
our observations and conclusions with LRU are the same with DIP, except that natu-
ral cache partitioning under the DIP policy can lead to strong performance asymmetry
on symmetric runs. The DIP policy was originally proposed for private caches, but
it can be adapted easily to shared caches. Instead of having asingle PSEL counter
for the cache, we have one PSEL counter for each core. Figure 4shows the result of
running 4 instances of microbenchmark999compiled withSIZE = 219 (cf. Figure
3) when the L2 replacement policy is DIP and the memory bandwidth is 4 bytes per
cycle. The plot shows the number of retired instruction on each core as a function of
time. Despite cores being identical, this example exhibitsa strong performance asym-
metry, the performance of core #3 being higher than the othercores. Our simulator
uses a pseudo-random number generator (RNG), which is used in the DIP policy and
in the bus arbitration policy. Actually, the leading core varies with the RNG seed. This
phenomenon can be understood as follows. Going back to the cache pressure model,
we expect threads with identical miss rate curves (in particular identical threads) to
converge to a state where the shared cache is equally partitioned between threads. The
reason is that there is a negative feedback : the more cached blocks belong to a given
thread, the higher the probability for that thread to have its blocks evicted. Though
we have no formal proof, a negative feedback seems to be at work with the LRU pol-
icy as well. Under LRU, we did not encounter a single example of a symmetric run
leading to significant performance asymmetry. DIP may have acompletely different
behavior. When the BIP policy generates fewer misses than LRU, it is selected by the
PSEL counter as the best policy. Under BIP replacement, a block inserted in the cache
recently has a high probability to be the next victim. It willbe the next victim if it is
not re-referenced before the next cache miss (from any thread). In such case, the BIP
policy has a tendency to evict blocks belonging to the threadwith the highest miss rate,
i.e., on a symmetric run, the thread with the smallest numberof cached blocks. Hence
we have a positive feedback where small divergences get amplified with time. This is
a case of sensitivity to initial conditions : before the divergence occurs, we are unable

RR n° 6734

10 Michaud

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 10 20 30 40 50 60 70 80 90

re
tir

ed
 in

st
ru

ct
io

ns

million cycles

core 1
core 2
core 3
core 4

Figure 4: Symmetric run of microbenchmark999with SIZE = 219 (Figure 3). Mem-
ory bandwidth is 4 bytes/cycle and the L2 replacement policyis DIP. The plot shows
the number of retired instructions on each core as a functionof time.

to predict the future evolution. Such chaotic behavior is ofcourse incompatible with
providing a performance guarantee. The SAR policies proposed in Section 4 solve this
problem.

3.3 A symmetric run is not equivalent to a static partitioning of
shared resources

One of our counter-intuitive findings is that self-performance is not exactly the perfor-
mance one would measure with programmable quotas by partitioning each resource
statically and equally between cores. Actually, when memory bandwidth limits per-
formance, self-performance exceeds the performance of a single run with statically
partitioned resources.

Figure 5 shows the IPC (instructions retired per cycle) for asubset of our bench-
marks whose performance is limited by memory bandwidth. Foreach benchmark we
show results for 4 configurations, where SGL denotes single runs (i.e., there are 3 idle
cores) and SYM denotes symmetric runs. SGL-1 is for a memory bandwidth of 1 byte
per CPU cycle and a 1 MB shared cache. SYM-4 is for a bandwidth of 4 bytes/cycle
and a 4 MB cache. SGL-2 is for a memory bandwidth of 2 byte per CPU cycle and
a 1 MB shared cache. SYM-8 is for a bandwidth of 8 bytes/cycle and a 4 MB cache.
The shared-cache associativity remains constant and equalto 16. As can be seen the
performance of SYM-4 is higher than the performance of SGL-1, and the difference
is not negligible (23% for429.mcf). A similar conclusions holds for SYM-8 versus
SGL-2, but the difference is less pronounced. The explanation of these counterintu-
itive results lies in memory bandwidth sharing. It is illustrated by Figure 6 with an
artificial example. In our definition of a symmetric run, copies of the same program
are run synchronously, meaning that they are launched at thesame time. However
in practice, the execution on the different cores is not exactly synchronous. In fact,
perfect synchronization would be very difficult to obtain and would actually decrease
self-performance. Perfect synchronization implies that if we launch the program copies
exactly at the same cycle, they should finish exactly at the same cycle. But even when
all cores have exactly the same microarchitectural state atthe beginning of the sym-

INRIA

Replacement policies for shared caches on symmetric multicores 11

00 , 10 , 20 , 30 , 40 , 50 , 6

4 0 1 4 1 0 4 2 9 4 3 3 4 3 7 4 5 0 4 7 0 4 7 1 4 7 3 4 8 2 4 8 3b e n c h m a r k
IPC S G L � 1S Y M � 4S G L � 2S Y M � 8

Figure 5: IPC for a subset of our benchmarks. For each benchmark, the IPC of 4
different configurations is shown. Configuration SGL-1 is for a single run (i.e., there
are 3 idle cores) with a memory bandwidth of 1 byte per CPU cycle and a 1 MB shared
cache. Configuration SYM-4 is for a symmetric run with a bandwidth of 4 bytes/cycle
and a 4 MB cache. SGL-2 is for a single run with a bandwidth of 2 bytes/cycle and a
1 MB cache. SYM-8 is for a symmetric run with a bandwidth of 8 bytes/cycle and a 4
MB cache.

metric run, and assuming the microarchitecture behavior isdeterministic, the program
copies do not finish exactly at the same time because certain shared resources cannot
be accessed by all threads simultaneously. Consequently, there is a slight desynchro-
nization of cores on a symmetric run. Because cache misses are often bursty, a slight
desynchronization permits obtaining a more uniform utilization of the bus bandwidth.
This is what Figure 6 illustrates.

3.4 Increasing the memory bandwidth may decrease performance.

Once there is an agreement between the programmer and the microarchitect that self-
performance represents the minimum performance, the microarchitect must try to min-
imize the possibility of this not being the case. For the microarchitect, this means a
special attention to each shared resource. In our simulations, only two resources are
shared : the L2 cache and the bus bandwidth. The focus of this study is the cache
replacement policy. But for our results to be meaningful we had to be careful with the
cache indexing and with the bus arbitration policy.

L2 and L3 caches are generally indexed with physical addresses. On a symmet-
ric run, physical indexing utilizes cache sets more uniformly than virtual indexing,
so self-performance is likely to be higher than what would bemeasured by partition-
ing the cache statically and equally between cores. We already observed an analogue
phenomenon with memory bandwidth in Section 3.3. However, it is difficult to ex-
ploit this phenomenon in the cache without sacrificing the performance guarantee. The
self-performance would be too optimistic. Instead, the OS should implement a page

RR n° 6734

12 Michaud

2B

time

misses/cycle

double bandwidth
symmetric run, slightly desynchronized

B

Figure 6: Example for explaining why self-performance can exceed the performance
of a single run with memory bandwidth statically partitioned. This example assumes 2
cores.

coloring scheme such that the cache indexing is equivalent to using the virtual address.
2 Our simulations in this study assume a virtual indexing.

As for the bus arbitration policy, we initially implementeda simpleleast-recently-
selected(LRS) scheme, which we thought would be sufficient. The LRS arbiter selects,
among non-empty request queues, the least recently selected one. LRS arbitration
is commonly used for arbitrating resource conflicts betweenthreads in some multi-
threaded processors like the Sun UltraSPARC T1 [6]. But we found that, when LRS is
used for the bus, we cannot guarantee self-performance. To see why, consider the case
of an application with a low average miss rate but whose misses occur in bursts. On a
symmetric run, the desynchronization of cores permits avoiding most bus conflicts (cf.
Figure 6). But when the application is run simultaneously with threads having a high
average miss rate, it is granted bus access again only after each of the competing threads
has accessed the bus once. Thus the application suffers frombandwidth saturation
despite having a low average miss rate. To solve this problem, we have implemented a
different bus arbitration policy. We associate a 4-bit up-down saturating counter with
each request queue. This counter represents ascore. To select which queue should
access the bus, the arbiter chooses, among non-empty queues, the one with the lowest
score. If a selection occurs (at least one queue is not empty), the score of the selected
queue is incremented byX , whereX is the number of running threads minus one
(X = 3 in this study), and the score ofeachnon-selected queue is decremented by
1. Moreover, to facilitate desynchronization on symmetricruns, we introduced a little
randomness by not updating the scores once every 1000 selections on average. With
this arbitration policy, an application with a low average miss rate has a low score and
its requests can access the bus quickly even if the other threads have a high miss rate.

2For avoiding having too many constraints on page allocation, page coloring may be active only when
measuring performance with theselfperfutility. But for a stronger performance guarantee, page coloring
should be the default behavior (some operating-systems like FreeBSD already use page coloring).

INRIA

Replacement policies for shared caches on symmetric multicores 13

00 , 20 , 40 , 60 , 8 11 , 21 , 41 , 6

4 0 1 4 0 3 4 1 6 4 2 9 4 3 4 4 3 5 4 4 4 4 4 5 4 5 6 4 5 8 4 6 4 4 6 5b e n c h m a r k
IPC S Y M � 49 9 9 � 4S Y M � 89 9 9 � 8

Figure 7: IPC for a subset of our benchmarks. The benchmark isrun on core #1. Two
workloads are considered for the 3 remaining cores : workload SYM runs a copy of
the benchmark on each core (symmetric run) and workload 999 runs a copy of mi-
crobenchmark 999 on each core. For both workloads, we show the IPC when memory
bandwidth is 4 bytes/cycle (SYM-4 and 999-4) and when it is 8 bytes/cycle (SYM-8
and 999-8).

Figure 7 shows the IPC on core #1 when the 3 other cores run a copy of the bench-
mark (symmetric run) and when they run instances of microbenchmark 999. In both
cases, we show the IPC when memory bandwidth is 4 bytes/cycle(SYM-4 and 999-4)
and when it is 8 bytes/cycle (SYM-8 and 999-8). We show results only for benchmarks
whose performance suffers from running simultaneously with microbenchmark 999.
As can be seen, the actual performance can be much smaller than the self-performance.
This is particularly striking for403.gccand435.gromacs. For403.gcc, the actual per-
formance can be 6 times worse than the self-performance.

Another striking observation is that increasing the memorybandwidth can decrease
the performance of an application. For example, when running with microbenchmark
999,435.gromacsexperiences a 16% performance drop when memory bandwidth goes
from 4 to 8 bytes/cycle. By limiting the rate at which blocks can be evicted from the
cache, a smaller bandwidth offers a better protection against aggressive cache evictions,
but only to a certain extent. The cache pressure model confirms this observation. On
Figure 8, we consider a thread #1 with a working set ofW1 blocks and a miss rate
curve that drops suddenly whenW1 blocks are cached. The bandwidth isB (maximum
number of misses per cycle). If the other threads are able to saturate the bandwidth, the
miss rate of threads #1 ism1 = W1

C
B . If we increase the bandwidthB, we increase the

performance of the threads for which bandwidth is a bottleneck, but we also increase
the miss rate of thread #1, hence decreasing its performance.

This situation where an obvious structural improvement (making the bus wider
or faster) may decrease the performance of an application isnot a healthy situation.
The microarchitect does not expect an application to experience a slowdown when the
memory bandwidth is increased.

RR n° 6734

14 Michaud

0 C cached blocks

miss rate

W1

B

m1=BxW1/C

pressure = B/C

Figure 8: Cache pressure model applied for a shared cache of capacityC, assuming a
bandwidthB (maximum number of misses per cycle). On this example, thread #1 has
a working set of sizeW1 and a miss rate curve that drops suddenly whenW1 blocks
are cached. If the other threads are able to saturate the bandwidth, the miss ratem1 of
thread #1 isW1

C
B. Thus an increase of bandwidth decreases the performance ofthread

#1.

4 Sharing-aware replacement (SAR) policies

Sharing-aware replacement (SAR) is intended to solve the problems we highlighted in
Section 3. SAR can be applied to any replacement policy, e.g., LRU, pseudo-LRU,
DIP, etc. But the details of the implementation depend on theunderlying replacement
policy. In this study, we use LRU SAR policies and we describean implementation
corresponding to this case. The basic idea of SAR is to take into account the cache
space occupied by each thread. This requires that thethread identifier(TID) be stored
along with each block in the cache. With 4 cores, each TID is 2-bit wide. We say
that a TID isinactiveif there are fewer running threads than cores and the TID does
not correspond to a thread currently running on a core. (an inactive TID typically
corresponds to a thread that has finished execution of that iswaiting for an event or a
system resource). A SAR policy selects a victim block as follows :

• Each TID proposes a potential victim block in the cache set

• If there is at least one invalid block in the set, we take an invalid block as the
victim.

• Otherwise, the SAR policy selects avictim TIDand the actual victim block is the
victim block proposed by the victim TID.

• If the cache set contains some blocks belonging to an inactive TID, such inactive
TID is chosen as the victim TID. This is for being able to exploit the full cache
capacity when there are fewer running threads than cores.

For a LRU SAR policy, we must first describe how the LRU stack isimplemented. The
LRU stack consists of the blocks in the cache set ordered fromMRU (most-recently-
used) to LRU. There are several possible ways to implement a LRU stack in hardware.
A solution consuming no storage at all would be to maintain a physical order among

INRIA

Replacement policies for shared caches on symmetric multicores 15

blocks, from MRU to LRU. Promoting a block to the MRU state consists in moving the
block to the MRU position and shifting the other blocks accordingly. However, such
implementation would consume a lot of cache bandwidth and a lot of energy. Instead,
it is possible to use short pointers to the blocks and to move the pointers instead of the
blocks themselves. For an associativity of 16, this requires a 4-bit pointer per block,
pointing to a location in the cache set. Pointers are stored in a separate table, which we
call the R-table.3 There is one R-table entry for each cache set. Each R-table entry
contains sixteen 4-bit pointers, ordered from MRU to LRU. Moreover, we assume that
the 2-bit TIDs are stored in the R-table. So each block in the R-table is represented
by 4 + 2 = 6 bits. Updating the LRU stack requires an associative searchamong the
16 pointers and moving the matching block to the MRU position. The victim block
proposed by a given TID is the block belonging to that thread whose position in the
stack is closest to the LRU position. To obtain the victim proposed by a given TID,
sixteen 2-bit comparators provide a 16-bit vector where each bit indicates whether or
not the corresponding block belongs to the thread. Then a priority encoder finds, in the
16-bit vector, the ”1” closest to the LRU position.4

4.1 The SAR SB policy

A possible solution for ensuring that a thread gets the cachespace it would get on a
symmetric run is to give the same amount of cache space to eachthread. This can be
done by choosing as victim TID the TID with the largest numberof cached blocks.
In case of equality, we choose the TID whose proposed victim is closest to the LRU
position. Such policy should progressively converge to an equilibrium partition where
all threads get an equal share. There are two possible options. The number of blocks
may be computed either for the whole cache or just for the cache set. We denote the
first policy global-biggest(GB), and the second oneset-biggest(SB). The GB policy
chooses as victim TID the TID with the largest number of blocks in the whole cache,
while the SB policy chooses as victim TID the TID with the largest number of blocks
in the cache set where the missing block goes. The GB policy can be implemented
by maintaining 4 counters giving the total number of blocks belonging to each thread.
On a miss, one or two counters are updated. The SB policy can beimplemented by
counting blocks on-the-fly while the miss request is being processed.5

Simulation results for the SB policy are shown in Figure 9. The SB policy is suc-
cessful at making worst-case performance close to self-performance. This was ex-
pected, as the SB policy converges relentlessly to a state where each cache set is evenly
divided between competing threads. Actually, we found thatthe GB policy is not safe
and we do not show results for it. We have mentioned it just to emphasize the necessity
of working at the set level. The main reason why the GB policy is not safe is that it
does not guarantee that each cache set is evenly divided between threads. Indeed, some
applications do not use cache sets uniformly. For example, we simulated benchmark
429.mcf with 3 instances of microbenchmark 999 compiled with STEP = 32, i.e.,
using only even cache sets. With a GB policy, the performanceof 429.mcf is 22%
lower than the self-performance. The fact that one must workat the set level to obtain
a strong performance guarantee has already been observed in[10].

3These pointers are not part of the SAR hardware cost, they implement the LRU policy.
4The hardware we have described so far is not more complex thanwhat would be necessary to implement

programmable quotas. But papers describing quota-based solutions sometimes skip these details.
5Actually, when counting blocks, we consider the 17 blocks consisting of the 16 blocks in the cache set

plus the missing block.

RR n° 6734

16 Michaud

00 , 20 , 40 , 60 , 8 11 , 21 , 41 , 6

4 0 1 4 0 3 4 1 6 4 2 9 4 3 4 4 3 5 4 4 4 4 4 5 4 5 6 4 5 8 4 6 4 4 6 5b e n c h m a r k
IPC S Y M9 9 99 9 9 � S B9 9 9 � B 2

Figure 9: The SB policy makes the worst-case performance (999) close to self-
performance (SYM). The B2 policy, simpler than SB, is almostas effective.

4.2 The SAR B2 policy

The SB policy requires to find the TID that has the most blocks in a set. With 4 cores,
this requires 3 comparisons. We propose a simpler SAR policy, that we callbiggest-of-
two, or B2 for short. Like the SB policy, the B2 policy counts the 17 blocks in the cache
set concerned by the miss (16 cached blocks plus the missing block). While processing
the cache miss, the B2 policy chooses a random block in the set. The TID of this block
is denoted therandom TID. The TID of the missing block is denoted themissing TID.
The B2 policy chooses the victim TID between the missing TID and the random TID,
choosing the one that has the largest number of blocks among the 17 blocks. In case
of equality, the random TID is chosen as victim TID. In other words, the victim is the
random TID unless the missing TID has more blocks in the sets.Unlike the SB policy,
on a 4-core processor, the B2 policy requires a single comparison. Counting blocks
is not necessary if we have a circuit that compares two 17-bitvectors and tells which
one contains the most 1’s. As can be seen in Figure 9, the B2 policy is practically as
efficient as the SB policy.

It should be noted that the B2 policy is simpler to implement than programmable
quotas. With programmable quotas, the per-set share allotted to a thread depends on
the number of contenders in that set (which may be less than the number of threads). In
[10], computing the per-set share for the SQVP policy requires determining the number
of contenders (i.e., threads that have at least one block in the set) and doing a division.
The hardware for computing per-set shares is not described in [10].

INRIA

Replacement policies for shared caches on symmetric multicores 17

400 429 437 401 433 444 403 434 445 410 435 447
416 436 450 429 437 453 433 444 454 434 445 456
435 447 458 436 450 459 437 453 462 444 454 464
445 456 465 447 458 470 450 459 471 453 462 473
454 464 482 456 465 483 458 470 400 459 471 401
462 473 403 464 482 410 465 483 416 470 400 429
471 401 433 473 403 434 482 410 435 483 416 436

Table 2: 28 workloads running on cores #2, #3 and #4 respectively

5 Implications of our proposition

5.1 Programmable TIDs

Although our proposition is less flexible than programmablequotas, it is possible to
have some control on the shared cache (and more generally on shared microarchitec-
tural resources). Until now, we have assumed that threads running simultaneously had
different TIDs. But if the TIDs are programmable, we are not constrained to using
different TIDs. For example, if we know that the applications running have no QoS re-
quirements, it is not necessary to guarantee self-performance. In this case, if we want
the cache to behave like a conventional shared cache (for whatever reason), we can give
the same TID to all threads. As another example, consider thecase where we have 4
threads and, for whatever reason, we want to give half of the shared cache capacity to
one of the threads. To do this, we use one TID for the thread we want to advantage,
and a second TID that is shared by the 3 other threads.

5.2 Impact on average performance

We have mentioned in Section 5.1 that having programmable TIDs permits emulating
a conventional shared cache. The machine owner may prefer this configuration if ap-
plications have no explicit performance targets, if there are more jobs than cores, and
if he wants to take advantage of symbiotic jobscheduling to maximize throughput [11].
On the other hand, if some applications have QoS requirements, different TIDs should
be given to different threads. Yet, the machine owner still wants a high throughput.
Until now, we have focused exclusively on making the worst performance as close as
possible to the self-performance, so that self-performance can serve as a measure of
performance when the multicore workload is unknown at programming time. How-
ever, for maximizing throughput, what is important is the average performance. The
average IPC of an application can be estimated by computing the arithmetic mean of
the application IPC when the application runs with various workloads. There is a direct
relation between average performance and throughput. If the multicore is time-shared
between a given set of applications and if each application gets the same fraction of
CPU time, the average throughput is equal to the number of cores times the arithmetic
mean of the average IPCs of applications.

Compared with natural cache partitioning, the SB and B2 policies should increase
the performance of applications with a low miss rate and a small working set, but
should decrease the performance of applications with a highmiss rate and a working
set whose size is larger than the equal-partition share but smaller than the cache (cf. the
cache pressure model). To measure the average IPC, we ran each benchmark on core

RR n° 6734

18 Michaud

00 , 20 , 40 , 60 , 811 , 21 , 41 , 6

4 0 0 4 0 1 4 0 3 4 1 0 4 1 6 4 2 9 4 3 3 4 3 4 4 3 5 4 3 6 4 3 7 4 4 4 4 4 5 4 4 7b e n c h m a r k
IPC A V G � L R UA V G � S BA V G � B 2

00 , 20 , 40 , 60 , 811 , 21 , 41 , 6

4 5 0 4 5 3 4 5 4 4 5 6 4 5 8 4 5 9 4 6 2 4 6 4 4 6 5 4 7 0 4 7 1 4 7 3 4 8 2 4 8 3b e n c h m a r k
IPC A V G : L R UA V G : S BA V G : B 2

Figure 10: Average IPC for each benchmark. The average is computed over the 28
workloads of Table 2, under natural partitioning (AVG-LRU), SAR SB (AVG-SB) and
SAR B2 (AVG-B2).

#1 and obtained its IPC when the 3 other cores run the 28 different workloads given in
Table 2 (with 28 benchmarks, this requires28 × 28 = 784 simulations). The average
IPC of each benchmark is the arithmetic mean of the 28 different IPCs measured for
this benchmark on the 28 workloads. Results are given in Figure 10. As expected, the
SAR SB and B2 policies decrease the average IPC on a few benchmarks (401,429,450)
and increase it on a few others (434,435,456). Overall, the SAR policies do not have a
significant impact on the average performance. They just provide a different trade-off.
This means that, from the point of view of throughput, SAR policies are practically
equivalent to conventional replacement policies.

5.3 Multi-threaded programs

In this study, we have focused on sequential applications. But providing the means
to obtain a performance guarantee for multi-threaded programs is also very important.

INRIA

Replacement policies for shared caches on symmetric multicores 19

Indeed, multi-thread programming is difficult, and the programmer is willing to invest
effort in multi-thread programming provided the level of performance he has striven to
obtain can be reproduced. Performance may be difficult to reproduce when the applica-
tion has fewer threads than cores. If the number of threads isa divisor of the number of
cores, the concept of self-performance applies and performance can be measured with
theselfperfutility. If the number of threads is not a divisor of the number of cores, the
concept of self-performance does not apply, and the only wayto obtain a performance
guarantee is to reserve all the cores.

It should be noted that programmable TIDs offer some flexibility to the program-
mer. If the programmer is more comfortable (performance wise) with a shared cache,
the same TID can be given to all the threads. On the other hand,if the programmer
wants to optimize the cache locality of each thread separately, he may prefer to give a
different TID to each thread to emulate a partitioned cache.

6 Conclusion

We introduced the concept of self-performance, which is a contract between the pro-
grammer and the microarchitecture. The programmer measures performance by run-
ning a copy of the application on each core, and the microarchitecture guarantees this
level of performance independently of the characteristicsof the applications running
on the other cores. For the programmer, the advantage of self-performance is that it
is conceptually simple and does not require any knowledge ofinternal microarchitec-
tural details. For the microarchitect, respecting the self-performance contract means
paying attention to each microarchitectural resource thatis shared between threads. In
this context, shared caches are critical. We have shown thatunmanaged sharing is in-
compatible with the self-performance contract. We have proposed sharing-aware cache
replacement (SAR) policies that are compatible with self-performance. The SAR B2
policy is simpler to implement than solutions based on programmable quotas. This
simplification of the hardware was obtained by sacrificing some flexibility. Neverthe-
less, with programmable thread-IDs, our solution allows the programmer and the OS
to have some control on the cache behavior.

The performance guarantee offered by SAR policies is not absolute, in the sense
that it is very difficult to prove the guarantee mathematically without getting rid of
resource sharing (this is the case also for quota-based solutions). Nevertheless, our
experiments and simulations have shown that the situation is much better with our
proposition than without it.

A Simulation methodology and benchmarks

Our simulator is trace-driven, using traces generated withPin [7]. We have one trace
per benchmark listed in Table 3. To obtain each trace, we run the application without
any instrumentation for several seconds, then we send a signal that triggers instrumen-
tation.

We simulate 4 identical cores, each with dedicated L1 caches. The L2 cache is 4
MB, 16-way set-associative and is shared between the 4 cores. The next level after the
L2 cache is the off-chip DRAM. The main characteristics of the simulated microar-
chitecture are summarized in Table 1. The simulator does notmodel all details of the
execution core. In particular, we do not model data dependencies between instructions.

RR n° 6734

20 Michaud

benchmark input skip

400.perlbench checkspam.pl 30 s
401.bzip2 liberty.jpg 30 s
403.gcc 166.i 30 s
410.bwaves 30 s
416.gamess cytosine.2.config 30 s
429.mcf 30 s
433.milc 30 s
434.zeusmp 30 s
435.gromacs 30 s
436.cactusADM 30 s
437.leslie3d 30 s
444.namd 30 s
445.gobmk 13x13.tst 30 s
447.dealII 30 s
450.soplex pds-50.mps 20 s
453.povray 30 s
454.calculix 30 s
456.hmmer 30 s
458.sjeng 30 s
459.GemsFDTD 30 s
462.libquantum 30 s
464.h264ref foremanref encoderbaseline.cfg 30 s
465.tonto 30 s
470.lbm 30 s
471.omnetpp 30 s
473.astar BigLakes2048.cfg 30 s
482.sphinx3 30 s
483xalancbmk 30 s

Table 3: One trace was obtained for each SPEC CPU2006 benchmarks, except 481.wrf
that we could not compile. For each benchmark, we start instrumenting after a certain
execution time has elapsed.

INRIA

Replacement policies for shared caches on symmetric multicores 21

But the memory hierarchy is simulated with a lot of details. In particular, we simulate
contention for the L2 cache, contention for the memory bus, and write-back traffic. All
caches are non blocking, i.e., they continue to be accessed even if a previous request
generated a miss. All misses are fully pipelined. Unless stated otherwise, the bus band-
width to DRAM is 8 bytes per CPU cycle. There is a separate memory request queues
(MRQs) for each core. Each MRQ has room for 20 pending requests. Once a request
is selected by the arbiter and is sent on the bus, there is a latency of 300 cycles for
getting the requested block. The request is removed from theMRQ after the block has
returned from memory. Blocks evicted from write-back caches are buffered in write-
back queues. When arbitrating for a resource (cache or bus),reads have priority over
writes. Cache refills are blocked when the associated write-back queue is full. A miss
request is not schedulable if it cannot get a cache refill queue entry (i.e., the cache refill
queue is full).

References

[1] F. Guo, H. Kannan, L. Zhao, R. Illikkal, R. Iyer, D. Newell, Y. Solihin, and
C. Kozyrakis. From chaos to QoS : case studies in CMP resourcemanagement.
ACM SIGARCH Computer Architecture News, 35(1), 2007.

[2] G. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing quality of
service in chip multiprocessors. InProceedings of the 40th Annual International
Symposium on Microarchitecture, 2007.

[3] R. Iyer. CQoS : a framework for enabling QoS in shared caches of CMP plat-
forms. InProceedings of the International Conference on Supercomputing, 2004.

[4] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu,
and S. Reinhardt. QoS policies and architecture for cache/memory in CMP plat-
forms. InProceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, 2007.

[5] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing andpartitioning in a chip
multiprocessor architecture. InProceedings of the 13th International Conference
on Parallel Architectures and Compilation Techniques, 2004.

[6] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multithreaded
Sparc processor.IEEE Micro, March/April 2005.

[7] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Janapa Reddi, and K. Hazelwood. Pin : building customizedprogram anal-
ysis tools with dynamic instrumentation. InProceedings of the ACM SIGPLAN
conference on Programming Language Design and Implementation, 2005.

[8] K.J. Nesbit, J. Laudon, and J.E. Smith. Virtual private caches. InProceedings of
the 34th International Symposium on Computer Architecture, 2007.

[9] M. Qureshi, A. Jaleel, Y.N. Patt, S.C. Steely Jr, and J. Emer. Adaptive inser-
tion policies for high performance caching. InProceedings of the 34th Annual
International Symposium on Computer Architecture, 2007.

RR n° 6734

22 Michaud

[10] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural support for operating
system-driven CMP cache management. InProceedings ot the 15th International
Conference on Parallel Archietctures and Compilation Techniques, 2006.

[11] A. Snavely, D.M. Tullsen, and G. Voelker. Symbiotic jobscheduling with pri-
orities for a simultaneous multithreading processor. InProceedings of the ACM
SIGMETRICS International Conference on Measurement and Modeling of Com-
puter Systems, 2002.

[12] H.S. Stone, J. Turek, and J.L. Wolf. Optimal partitioning of cache memory.IEEE
Transactions on Computers, 41(4):1054–1068, September 1992.

INRIA

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

