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Politiques de remplacement sur les caches partég des
multi-coeurs symétriques

Résune : La présence de caches partagés dans les processeursaaults est
une source importante de variabilité de performance lesgiusieurs applications
s'exécutent simultanément. Pour le programmeur d’updiGation avec des objectifs
de qualité de service, cette variabilité de performareg ponduire a un dimensionne-
ment trés pessimiste de I'application. Afin de résoudrprobléme, on doit donner au
programmeur la possibilité de définir un objectif raisable en performance, et on doit
faire en sorte que la performance réelle soit supérieum@oche de cet objectif. Nous
proposons que l'objectif en performance soit défini commedrformance mesurée
lorsque chaque coeur exécute une copie de I'applicati@usMppelons cette mesure
l'auto-performance. Cette étude caractérise I'autdgumance et explique comment
la politique de remplacement des caches partagés peun@tifiee pour que l'auto-
performance soit un objectif atteignable.

Mots-clés : Processeur multi-coeur symétrique, qualité de sereigm-performance,
cache partagé, politique de remplacement, bande passénteire
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1 Introduction

There exists an implicit performance contract between thegssor and the program-
mer. When the programmer writes a program and measuresfitsiqpance by running
it, he assumes that the performance is approximately détistin, hence reproducible.
There can be some performance variations, some due to thatiogesystem (e.g., dif-
ferent physical page allocation that changes cache c@)flsime due to the microar-
chitecture (e.qg., different initial branch predictor et But, before the multicore era,
these variations were generally small.

With multicore processors able to execute several apitasimultaneously, per-
formance variations can have a much larger magnitude. $hisainly due to shared
microarchitectural resources, especially shared caddegending on workload char-
acteristics, the actual performance of a particular appba may be much smaller than
the performance measured by the programmer. For applisatidh quality-of-service
goals, this leads to very pessimistic tuning.

Previously proposed solutions to this problem involve tise of programmable
priorities or quotas [5, 3, 10, 1, 8, 2, 4]. With these solnsiopprogrammers who want
a performance guarantee must ask for resources they aréosabgain. In practice,
this requires either to partition shared resources evegtiyden cores or to keep some
cores unused.

We propose a new solution, which is to have an explicit cattoatween the mi-
croarchitecture and the programmer. The programmer mesisie application per-
formance by running simultaneously a copy of the applicatto each core. This
defines what we calelf-performanceThis study characterizes self-performance and
shows that, for self-performance to be meaningful, the osicchitecture must manage
shared resources carefully. In particular, we show thavewotional cache replace-
ment policies are not compatible with the self-performasaaract. We propose some
replacement policies that are compatible with self-penfamce. One of our replace-
ment policies, called B2, is simpler to implement in hardsian previously proposed
guota-based solutions.

The paper is organized as follows. Section 2 explains theeutrof self-performance
and the motivations behind it. We show in Section 3 that cotivaal cache replace-
ment policies are not compatible with self-performance aedprovide insights as
to why this is so. We also show that, even without considettiregself-performance
contract, conventional cache replacement policies letiietparadoxical situation that
increasing the memory bandwidth may decrease the perfasadrsome applications.
In Section 4, we propose sharing-aware replacement pglibet solve the problems
emphasized in the previous section. Section 5 discusses suoplications of our
proposition for throughput and for multi-threaded progsarfinally, Section 6 con-
cludes this work.

Simulations. The simulation results presented in this study correspora multi-
core with 4 identical cores, depicted in Figure 1. The 4 cetese a 4 MB 16-way
set-associative level-2 (L2) cache. The main characiesisf the simulated microar-
chitecture are summarized in Table 1. More details abousitmelator and about
benchmarks are provided in Appendix A. Unless stated otisepvgach simulated IPC
(instructions retired per cycle) reported in this studyresponds to the IPC of the
thread running on core #1 for 10 million CPU cycles while ottheeads run on cores
#2 #3 and #4.
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Figure 1:

Symmetric multicore simulated in this study.

multicore 4 dynamically-scheduled cores
core fetch 2 instructions per cycle (x86)
core retire 2 instructions per cycle (x86)

reorder buffer

64 instructions (x86)

branch predictor

YAGS, 12 Kbytes, 25-bit global history, 8-bit tags

branches 10-cycle misprediction penalty (minimum), solved at rtient
IL1 cache private, 32 Kbytes, 4-way set-associative, 64-byte blpckd)
latency 1 cycle, 1 block refill & 2 instructions read per cycle
DL1 cache private, 32 Kbytes, 4-way set associative, 64-byte blocks),
write-back write-allocate, latency 2 cycles,
1 block refill & 1 load/store per cycle
L2 cache shared, 4 Mbytes, 16-way set associative, 64-byte blodR, L
write-back write-allocate, latency 15 cycles,
bandwidth 1 block/cycle (refill or block read or block update
MRQ 20 pending L2 misses
memory bus 8 bytes per CPU cycle

memory latency

300 CPU cycles

hardware prefetch

disabled

Table 1:

Simulated microarchitecture : default configunati

INRIA
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2 Self-performance

In this study, we consider independent sequential tasksire@ily, most programs
executing on existing multicores are sequential programsough it is hoped that
more and more parallel applications will be developed, eatjal programming is still
very important. We explain in Section 5.3 what are the ingilans of our proposition
for multi-threaded programs.

2.1 The problem

For applications with quality-of-service (QoS) goals,stimportant that the perfor-
mance measured at programming time be deterministic, @appo be so. In a multi-
core, several resources are shared : physical memory,s;dukses, power supply, etc.
Because of resource sharing, when several independentatppis run concurrently
on different cores, the performance of each applicatioreddp on the characteristics
of the other applications. On a single CPU, the operatingeayg$OS) can control the
amount of physical memory and CPU time allotted to each tesparticular tasks
with QoS goals. On a multicore, the OS can decide which agidios to run simulta-
neously and for how long, but it has no control on microaesttitral resource sharing.
The notion of CPU time is not accurate, as the quantity of wawke during a fixed
period of time may vary drastically depending on resourcaisl. What we need
is a way for the programmer to specify a performance targeteamicroarchitecture
that minimizes the possibility for the actual performareéal significantly below the
performance target. An obvious solution would be to assuraethe application runs
alone on the multicore. But the multicore would be underused

The solution that has been proposed so far is to let the OS ddiree control
of shared microarchitectural resources [5, 3, 10, 1, 8, 2 E#ch shared resource is
associated with priorities or quotas that are programmddgeexample, the program-
mer defines his microarchitectural needs, i.e., the ressure wants (cache size, bus
bandwidth, etc.), and the OS tries to give to each applindtie resources it asks for.
However, this raises a question : what if the sum of resoussked by applications
running concurrently exceeds the processor’s resourceg?pdégrammable quotas,
each application is given a share of resources that is aiumat but is not necessarily
equal to what the application asks for [10]. This implied tha applications for which
it is important to obtain a performance guarantee must asfffotas that they are sure
to obtain. In practice, this means that when a resource redhey up to N threads, the
programmer must ask fay N (or less) of the resource in order to obtain a performance
guarantee.

Based on this observation, we propose a viable alternatigeoigrammable quotas
L. We call it self-performance Self-performance is less flexible than programmable
guotas but is simpler to implement.

2.2 Self-performance

Obtaining a performance guarantee is a two-stage problem :

* We need a way to define a performance target.

1To our knowledge, programmable quotas have not been adbptir industry yet.
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* We must minimize the possibility for the actual performarna fall below the
targeted performance.

On the one hand, we do not want the performance target to bpassimistic. On

the other hand, the performance target must be a value tpbatsible to enforce. If
it is too optimistic, it may be impossible to reach the pariance targets of all the
applications running simultaneously. If we measure thdiegion performance when
it runs simultaneously with some other random applicatisresmay obtain a perfor-
mance target that is too optimistic. If we choose misbelgeipplications to stress
shared resources, we may obtain a performance target ttoat essimistic. Instead,
we propose to define the performance target of an applichjieanning copies of this
application on all cores. More precisely, we define sledf-performanceontract as

follows :

The self-performance of a sequential program on a symmetulticore
processor is the performance measured for one instance@jplication
onasymmetric run, i.e., when running simultaneously and synchronously
copies of that program on all cores, using the same inputs.atual per-
formance must be greater than or close to the self-perfonaawhatever
the applications running on the other cores.

The rationale is as follows. If the application uses few weses, its self-performance
is very close to the performance when it runs alone. But ifapplication asks for
a lot of resources, it competes with copies of itself and getbare that is equal to
the resource size divide by the number of cores. The perfocmtarget defined this
way is neither too optimistic nor too pessimistic. Selffpemance can be measured
by the programmer without requiring any knowledge of thergacchitecture internal
details (e.g., which resources are shared, how the resatbiteation works, etc.). The
programmer does not even need to know the number of coresoriiip¢hing that the
programmer must be aware of is the self-performance cdnfacthe convenience of
the programmer, the OS should providesdfperfutility for launching symmetric runs.
Programmers who do not need a performance guarantee canna@asformance as
usual, without using theelfperfutility. But it is an optimistic performance in this case.

System resources. In this study we focus on shared microarchitectural resesjrand
more particularly shared caches. We do not address thegonatifl system resources,
like physical memory. For example, if the programmer has Qs and wants a high
self-performance, he should prevent the application mgrdemand from exceeding
the memory size divided by the number of cores. We assumé&ih&s is always able
to give this amount of memory to the application.

3 Shared caches and self-performance

Unlike for system resources, the operating system hags titthtrol on shared microar-
chitectural resources. It is possible to have some conyrabefully choosing which
application to run simultaneously (provided such choidstex But existing proces-
sors do not allow the OS to control microarchitectural reses more finely.

Among shared microarchitectural resources, caches éxth#éimost chaotic and
difficult-to-predictbehavior. For example, on a set-ag#ie@ cache witheast-recently-
used(LRU) replacement, a small decrease of the number of cactreeemllotted

INRIA
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to a thread may result in the miss ratio suddenly going from @G0%. The most
obvious way to avoid the erratic behaviors due to sharedesachto avoid shared
caches. Nevertheless, shared caches have some advaf@agesnulticore with pri-
vate caches, whenever a single thread is running, the caglexity of idle cores is
generally wasted. When a cache is shared between sevees| toe whole cache ca-
pacity is accessible to a single running thread. This isiqdarly interesting for the
last on-chip cache level, as off-chip accesses are costigreTare other advantages
when several threads from the same application communigéteeach other. With
private caches, several copies of the same data may beateplicNot only does this
decrease the effective cache capacity, but this meanstjatgn cache miss for each
copy. For these reasons, several recent multicores havedskezel-2 (L2) or level-3
(L3) caches. However, to our knowledge, there is no mechamighese multicores
to control the way the cache capacity is partitioned betwbfarent threads running
concurrently. The partitioning is simply the result of tleehe replacement policy, that
is why we call itnatural partitioningin this study.

3.1 Under natural cache partitioning, the self-performane can ex-
ceed the actual performance

The model of cache partitioning proposed in [12], thouglciaate in practice, is
useful for understanding some qualitative aspects of ahtiache partitioning. We
present a simplified version of the model, which we will uséé&dp understand our
simulation results.

Let us consider threads numbered frorh to n running simultaneously, and a
fully-associative shared cache with a capacitytdoblocks. The number of cached
blocks belonging to threadis w;. It is assumed that the cache capacity is saturated,
ie.,,C = Z:':l w;. The miss rate of threai in misses per cycle, is:;. The total
miss rate isn = .-, m;. The model assumes that, on a miss from any thread, the
probability that the victim block belongs to threas proportional to the total number
of cached blocks belonging to thread.e., it isw; /C. DuringT cycles,m;T blocks
from thread are inserted in the cache and” x w; /C blocks from thread are evicted
from the cache. It is assumed that an equilibrium is evelytuahched, such that; is
stable. It means that, for each thread, the number of blasekiions equals the number
of block evictions. Hence we have; T = mT x w;/C, that s,

m; m

v C 1)
This quantityyn; /w;, was not identified in [12]. We call it theache pressuref thread
1. Equation (1) means that the equilibrium partitioning iststhat all threads have
equal cache pressure. Figure 2 shows on an example how tbeptard cache pressure
is useful for finding the equilibrium cache partition fronetthreads miss rate curves
(misses per cycle as a function of the number of cached blo€ksthis example, the
cache is shared between 2 threads. Thread 1 needs less thtée lcache capacity to
have a null miss rate. However, because it shares the cathéwead 2, thread 1 has
a non-null miss rate. The example of Figure 2 explains whyna&tache partitioning
cannot guarantee that the actual performance will reaclselfgperformance target.
In particular, the performance of a thread may be severatyedsed when the other
threads have high miss rates.

RR n° 6734
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miss rate
isobar p
M2 |- ‘
ML ‘
‘ i ‘ i
0 wl o W2 c  cached block

Figure 2: Example with 2 threads. The miss ratgof threadi (in misses per cycle) is
assumed to be a function of the numhbegrof cached blocks. The equilibrium partition
(w1, ws) is such that the two threads have equal cache pregsura, /w, = ma/wo,
hence the pointéw;, m1) and(wz, m2) lie on the samésobar, which is represented
by a straight line whose slope is the presguro find the equilibrium partition, rotate
the isobar around the origin until; + wy = C.

Experiment on a real multicore. We did a simple experiment on a MacBook Pro
featuring an Intel Core 2 Duo processor and 2 GB of memorys phocessor has 2
cores and a 4 MB shared L2 cache. We ran benchwarkom the SPEC CPU2000.
The measured execution time was approximately 51 secortten We measured the
self-performance ofpr by running simultaneously two instances/f. The execution
time of vprwas 53 seconds, which means that the self-performanga o close to its
performance when it runs alone. Then we vansimultaneously with benchmarkcf
from the SPEC CPU2000. The execution time/pf was 73 seconds, i.e., 38% worse
than the self-performance. Then we ngor simultaneously with a microbenchmark
that we wrote and which we dend@89. Microbenchmarl99is provided in Figure 3.

It has a very high miss rate (1 miss every 4 instructions) atctsecache blocks very
aggressively. The execution timewgrwas 101 seconds, i.e., 90% worse than the self-
performance. We used the Apple t@blarkto access the performance counters of the
Core 2 Duo and we checked that the decrease of performanasdoom an increase
of L2 cache misses. This experiment shows that, under naiache partitioning, the
actual performance may be significantly smaller than thepeeformance.

3.2 Self-performance is not necessarily defined under nataf cache
partitioning

In our definition of self-performance, we made the implisisamption that, on a sym-
metric run, performance is the same on all cores. With idahtiores, this is indeed the
case most of the time. According to the cache pressure modéligure 2), if threads

have the same miss rate curve, they get the same share ottreecapacity. Therefore,
a symmetric run on 4 cores should result in each thread gaitie fourth of the cache

INRIA
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int a[SIZE];
main ()
int i,n;
int x = 0;
for (n=0; n<1000000; n++){
for (i=0; i<SIZE; i+=STEP) {
x += al[i];
¥

}
printf ("%d\n",x);

Figure 3: Microbenchmarl®99 (compiled with gcc -O3 -DSIZE=160000000 -
DSTEP=16

capacity. However, the cache pressure model is only an gjppation of reality. From
our experiments and simulations, the LRU replacement pddicnlikely to generate
strange performance variations on symmetric runs. Buighist necessarily true with
other replacement policies. Though we present resultsfonlyRU in this study, we
also did simulations with the DIP replacement policy.

DIP was recently proposed as a substitute for LRU in L2 andaches [9]. DIP
is a very attractive proposition that may be implementeduiture processors. All
our observations and conclusions with LRU are the same wil) &cept that natu-
ral cache partitioning under the DIP policy can lead to sirparformance asymmetry
on symmetric runs. The DIP policy was originally proposeddavate caches, but
it can be adapted easily to shared caches. Instead of hadimgl® PSEL counter
for the cache, we have one PSEL counter for each core. Figshews the result of
running 4 instances of microbenchm&%9 compiled withSIZE = 2'° (cf. Figure
3) when the L2 replacement policy is DIP and the memory badthws 4 bytes per
cycle. The plot shows the number of retired instruction ochezore as a function of
time. Despite cores being identical, this example exhdigrong performance asym-
metry, the performance of core #3 being higher than the atbers. Our simulator
uses a pseudo-random number generator (RNG), which is ngbd DIP policy and
in the bus arbitration policy. Actually, the leading coreiga with the RNG seed. This
phenomenon can be understood as follows. Going back to tfegqaessure model,
we expect threads with identical miss rate curves (in paercidentical threads) to
converge to a state where the shared cache is equally paetitbetween threads. The
reason is that there is a negative feedback : the more cadbekstbelong to a given
thread, the higher the probability for that thread to haseblbcks evicted. Though
we have no formal proof, a negative feedback seems to be &twithr the LRU pol-
icy as well. Under LRU, we did not encounter a single exampla symmetric run
leading to significant performance asymmetry. DIP may hagerapletely different
behavior. When the BIP policy generates fewer misses thas itRs selected by the
PSEL counter as the best policy. Under BIP replacement,cklihserted in the cache
recently has a high probability to be the next victim. It viié the next victim if it is
not re-referenced before the next cache miss (from anydhrda such case, the BIP
policy has a tendency to evict blocks belonging to the threituthe highest miss rate,
i.e., on a symmetric run, the thread with the smallest nurobeached blocks. Hence
we have a positive feedback where small divergences getifiedphith time. This is
a case of sensitivity to initial conditions : before the digence occurs, we are unable
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Figure 4: Symmetric run of microbenchm&®@9with S1ZE = 2! (Figure 3). Mem-
ory bandwidth is 4 bytes/cycle and the L2 replacement paidyIP. The plot shows
the number of retired instructions on each core as a fundfidime.

to predict the future evolution. Such chaotic behavior is@ifrse incompatible with
providing a performance guarantee. The SAR policies pregosSection 4 solve this
problem.

3.3 A symmetric run is not equivalent to a static partitioning of
shared resources

One of our counter-intuitive findings is that self-perfomma is not exactly the perfor-
mance one would measure with programmable quotas by paititj each resource
statically and equally between cores. Actually, when megnb@ndwidth limits per-
formance, self-performance exceeds the performance aighesiun with statically
partitioned resources.

Figure 5 shows the IPC (instructions retired per cycle) feubset of our bench-
marks whose performance is limited by memory bandwidth. demh benchmark we
show results for 4 configurations, where SGL denotes singls (i.e., there are 3 idle
cores) and SYM denotes symmetric runs. SGL-1 is for a memangtidth of 1 byte
per CPU cycle and a 1 MB shared cache. SYM-4 is for a bandwidthtytes/cycle
and a 4 MB cache. SGL-2 is for a memory bandwidth of 2 byte pdd Cfle and
a 1 MB shared cache. SYM-8 is for a bandwidth of 8 bytes/cyntta4 MB cache.
The shared-cache associativity remains constant and em@él As can be seen the
performance of SYM-4 is higher than the performance of SGh#ld the difference
is not negligible (23% fort29.mcf. A similar conclusions holds for SYM-8 versus
SGL-2, but the difference is less pronounced. The explanaif these counterintu-
itive results lies in memory bandwidth sharing. It is illieged by Figure 6 with an
artificial example. In our definition of a symmetric run, cepiof the same program
are run synchronously, meaning that they are launched aaime time. However
in practice, the execution on the different cores is not #xaynchronous. In fact,
perfect synchronization would be very difficult to obtairdamould actually decrease
self-performance. Perfect synchronizationimplies thatilaunch the program copies
exactly at the same cycle, they should finish exactly at theesgycle. But even when
all cores have exactly the same microarchitectural stateeabeginning of the sym-

INRIA
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0,6

0,5

SGL-1
W SYM-4
SGL-2
SYM-8

401 410 429 433 437 450 470 471 473 482 483
benchmark

Figure 5: IPC for a subset of our benchmarks. For each benthrte IPC of 4
different configurations is shown. Configuration SGL-1 isdosingle run (i.e., there
are 3 idle cores) with a memory bandwidth of 1 byte per CPUecgald a 1 MB shared
cache. Configuration SYM-4 is for a symmetric run with a baiutiwvof 4 bytes/cycle
and a 4 MB cache. SGL-2 is for a single run with a bandwidth of@&/cycle and a
1 MB cache. SYM-8 is for a symmetric run with a bandwidth of &s/cycle and a 4
MB cache.

metric run, and assuming the microarchitecture behavideisrministic, the program
copies do not finish exactly at the same time because cetianed resources cannot
be accessed by all threads simultaneously. Consequértg is a slight desynchro-
nization of cores on a symmetric run. Because cache missasten bursty, a slight
desynchronization permits obtaining a more uniform wtii@an of the bus bandwidth.
This is what Figure 6 illustrates.

3.4 Increasing the memory bandwidth may decrease performase.

Once there is an agreement between the programmer and theancititect that self-
performance represents the minimum performance, the archdect must try to min-
imize the possibility of this not being the case. For the wacchitect, this means a
special attention to each shared resource. In our simaigtionly two resources are
shared : the L2 cache and the bus bandwidth. The focus of tilnity $s the cache
replacement policy. But for our results to be meaningful wd to be careful with the
cache indexing and with the bus arbitration policy.

L2 and L3 caches are generally indexed with physical addses®n a symmet-
ric run, physical indexing utilizes cache sets more unifigrthan virtual indexing,
so self-performance is likely to be higher than what wouldvi®asured by partition-
ing the cache statically and equally between cores. Wedrebserved an analogue
phenomenon with memory bandwidth in Section 3.3. Howevads, difficult to ex-
ploit this phenomenon in the cache without sacrificing thquenance guarantee. The
self-performance would be too optimistic. Instead, the @&ukd implement a page
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misses/cycle

time

double bandwidth
symmetric run, slightly desynchronize

Figure 6: Example for explaining why self-performance caoceed the performance
of a single run with memory bandwidth statically partitidnd his example assumes 2
cores.

coloring scheme such that the cache indexing is equivadarging the virtual address.
2 Our simulations in this study assume a virtual indexing.

As for the bus arbitration policy, we initially implementadsimpleleast-recently-
selectedLRS) scheme, which we thought would be sufficient. The LRf&arselects,
among non-empty request queues, the least recently stlente LRS arbitration
is commonly used for arbitrating resource conflicts betwdéeaads in some multi-
threaded processors like the Sun UltraSPARC T1 [6]. But wadahat, when LRS is
used for the bus, we cannot guarantee self-performance€la/By, consider the case
of an application with a low average miss rate but whose raieseur in bursts. On a
symmetric run, the desynchronization of cores permitsdimgimost bus conflicts (cf.
Figure 6). But when the application is run simultaneouslihwiireads having a high
average miss rate, it is granted bus access again only afteioéthe competing threads
has accessed the bus once. Thus the application suffersbiaociwidth saturation
despite having a low average miss rate. To solve this problenhave implemented a
different bus arbitration policy. We associate a 4-bit \vd saturating counter with
each request queue. This counter represestoe To select which queue should
access the bus, the arbiter chooses, among non-empty gtleeiese with the lowest
score. If a selection occurs (at least one queue is not efrthgyscore of the selected
gueue is incremented h¥, where X is the number of running threads minus one
(X = 3 in this study), and the score eichnon-selected queue is decremented by
1. Moreover, to facilitate desynchronization on symmaetuias, we introduced a little
randomness by not updating the scores once every 1000isekeon average. With
this arbitration policy, an application with a low averagissrate has a low score and
its requests can access the bus quickly even if the otheadbigave a high miss rate.

2For avoiding having too many constraints on page allocatiaye coloring may be active only when
measuring performance with theelfperfutility. But for a stronger performance guarantee, pagerou
should be the default behavior (some operating-systerag-ligeBSD already use page coloring).
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Figure 7: IPC for a subset of our benchmarks. The benchmauhnisn core #1. Two
workloads are considered for the 3 remaining cores : wotki®¥M runs a copy of
the benchmark on each core (symmetric run) and workload @89 a copy of mi-
crobenchmark 999 on each core. For both workloads, we sheWrth when memory
bandwidth is 4 bytes/cycle (SYM-4 and 999-4) and when it is/&¥&/cycle (SYM-8
and 999-8).

Figure 7 shows the IPC on core #1 when the 3 other cores runyaotdipe bench-
mark (symmetric run) and when they run instances of microberark 999. In both
cases, we show the IPC when memory bandwidth is 4 bytes/($¥E1-4 and 999-4)
and when it is 8 bytes/cycle (SYM-8 and 999-8). We show resaity for benchmarks
whose performance suffers from running simultaneoush witcrobenchmark 999.
As can be seen, the actual performance can be much smakehthaelf-performance.
This is particularly striking fo#03.gccand435.gromacsFor403.gc¢ the actual per-
formance can be 6 times worse than the self-performance.

Another striking observation is that increasing the mentanydwidth can decrease
the performance of an application. For example, when runwiith microbenchmark
999,435.gromacgxperiences a 16% performance drop when memory bandwidth go
from 4 to 8 bytes/cycle. By limiting the rate at which bloclkandoe evicted from the
cache, a smaller bandwidth offers a better protection ajaggressive cache evictions,
but only to a certain extent. The cache pressure model conthiia observation. On
Figure 8, we consider a thread #1 with a working setiaf blocks and a miss rate
curve that drops suddenly whév; blocks are cached. The bandwidttBY{maximum
number of misses per cycle). If the other threads are abkttwate the bandwidth, the
miss rate of threads #1i8; = %B . If we increase the bandwidi, we increase the
performance of the threads for which bandwidth is a botti&nbut we also increase
the miss rate of thread #1, hence decreasing its performance

This situation where an obvious structural improvementkinmthe bus wider
or faster) may decrease the performance of an applicationtia healthy situation.
The microarchitect does not expect an application to egped a slowdown when the
memory bandwidth is increased.
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Figure 8: Cache pressure model applied for a shared cactapatityC, assuming a
bandwidthB (maximum number of misses per cycle). On this example, th#dahas
a working set of sizél; and a miss rate curve that drops suddenly whénblocks
are cached. If the other threads are able to saturate thevithdthe miss raten; of
thread #1 is%B. Thus an increase of bandwidth decreases the performatizesafl
#1.

4 Sharing-aware replacement (SAR) policies

Sharing-aware replacement (SAR) is intended to solve thiel@ms we highlighted in
Section 3. SAR can be applied to any replacement policy, ERlJ, pseudo-LRU,
DIP, etc. But the details of the implementation depend orutigerlying replacement
policy. In this study, we use LRU SAR policies and we descebémplementation
corresponding to this case. The basic idea of SAR is to takeadocount the cache
space occupied by each thread. This requires thahtiead identifie(TID) be stored
along with each block in the cache. With 4 cores, each TID st2vide. We say
that a TID isinactiveif there are fewer running threads than cores and the TID does
not correspond to a thread currently running on a core. (aative TID typically
corresponds to a thread that has finished execution of theditgg for an event or a
system resource). A SAR policy selects a victim block afed :

» Each TID proposes a potential victim block in the cache set

« If there is at least one invalid block in the set, we take asalid block as the
victim.

« Otherwise, the SAR policy selectyv&tim TID and the actual victim block is the
victim block proposed by the victim TID.

« If the cache set contains some blocks belonging to an v&€tD, such inactive
TID is chosen as the victim TID. This is for being able to explbe full cache
capacity when there are fewer running threads than cores.

For a LRU SAR policy, we must first describe how the LRU stadkiglemented. The
LRU stack consists of the blocks in the cache set ordered Féth) (most-recently-
used) to LRU. There are several possible ways to implemeRAdtack in hardware.
A solution consuming no storage at all would be to maintaimsgral order among
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blocks, from MRU to LRU. Promoting a block to the MRU state sists in moving the
block to the MRU position and shifting the other blocks aciogly. However, such
implementation would consume a lot of cache bandwidth amd aflenergy. Instead,
it is possible to use short pointers to the blocks and to mioggbinters instead of the
blocks themselves. For an associativity of 16, this reguird-bit pointer per block,
pointing to a location in the cache set. Pointers are storadseparate table, which we
call the R-table.2 There is one R-table entry for each cache set. Each R-tabig en
contains sixteen 4-bit pointers, ordered from MRU to LRU.rstaver, we assume that
the 2-bit TIDs are stored in the R-table. So each block in thtab®e is represented
by 4 + 2 = 6 bits. Updating the LRU stack requires an associative searatng the
16 pointers and moving the matching block to the MRU positidhe victim block
proposed by a given TID is the block belonging to that threése position in the
stack is closest to the LRU position. To obtain the victimgmsed by a given TID,
sixteen 2-bit comparators provide a 16-bit vector wherddmicindicates whether or
not the corresponding block belongs to the thread. Theroaityrencoder finds, in the
16-bit vector, the "1” closest to the LRU positioh.

4.1 The SAR SB policy

A possible solution for ensuring that a thread gets the caplaee it would get on a
symmetric run is to give the same amount of cache space totkeedd. This can be
done by choosing as victim TID the TID with the largest numbfcached blocks.
In case of equality, we choose the TID whose proposed vidigidsest to the LRU
position. Such policy should progressively converge toguildgrium partition where
all threads get an equal share. There are two possible gptidre number of blocks
may be computed either for the whole cache or just for theeaeh We denote the
first policy global-bigges{GB), and the second orset-bigges{SB). The GB policy
chooses as victim TID the TID with the largest number of blotkthe whole cache,
while the SB policy chooses as victim TID the TID with the lesynumber of blocks
in the cache set where the missing block goes. The GB polinybeaimplemented
by maintaining 4 counters giving the total number of blockkhging to each thread.
On a miss, one or two counters are updated. The SB policy camfiemented by
counting blocks on-the-fly while the miss request is beiragpssed®

Simulation results for the SB policy are shown in Figure 9e BB policy is suc-
cessful at making worst-case performance close to sefépwance. This was ex-
pected, as the SB policy converges relentlessly to a statéeardach cache setis evenly
divided between competing threads. Actually, we found thatGB policy is not safe
and we do not show results for it. We have mentioned it justripleasize the necessity
of working at the set level. The main reason why the GB policpat safe is that it
does not guarantee that each cache set is evenly divideébetiweads. Indeed, some
applications do not use cache sets uniformly. For exampesimulated benchmark
429.mcf with 3 instances of microbenchmark 999 compiledh it EP = 32, i.e.,
using only even cache sets. With a GB policy, the performaric&9.mcf is 22%
lower than the self-performance. The fact that one must abtke set level to obtain
a strong performance guarantee has already been obselfa®q.in

3These pointers are not part of the SAR hardware cost, theleimgnt the LRU policy.

4The hardware we have described so far is not more complexthatwould be necessary to implement
programmable quotas. But papers describing quota-baseiibas sometimes skip these details.

5Actually, when counting blocks, we consider the 17 blockssisting of the 16 blocks in the cache set
plus the missing block.
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Figure 9. The SB policy makes the worst-case performanc8)(8fbse to self-
performance (SYM). The B2 policy, simpler than SB, is almasseffective.

4.2 The SAR B2 policy

The SB policy requires to find the TID that has the most blooks $et. With 4 cores,
this requires 3 comparisons. We propose a simpler SAR padfiaywe calbiggest-of-
two, or B2 for short. Like the SB policy, the B2 policy counts thgllocks in the cache
set concerned by the miss (16 cached blocks plus the miskink)bWhile processing
the cache miss, the B2 policy chooses a random block in th&ketTID of this block
is denoted theandom TID The TID of the missing block is denoted thessing TID
The B2 policy chooses the victim TID between the missing Thd ¢he random TID,
choosing the one that has the largest number of blocks antentjz blocks. In case
of equality, the random TID is chosen as victim TID. In otherds, the victim is the
random TID unless the missing TID has more blocks in the &é#tike the SB policy,
on a 4-core processor, the B2 policy requires a single cosgar Counting blocks
is not necessary if we have a circuit that compares two 1vdaitors and tells which
one contains the most 1's. As can be seen in Figure 9, the B@ypslpractically as
efficient as the SB policy.

It should be noted that the B2 policy is simpler to implemdsatrt programmable
guotas. With programmable quotas, the per-set shareaglltdta thread depends on
the number of contenders in that set (which may be less tleamtmber of threads). In
[10], computing the per-set share for the SQVP policy respiitetermining the number
of contenders (i.e., threads that have at least one blotleisét) and doing a division.
The hardware for computing per-set shares is not descnibidd].
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400 429 437

401 433 444

403 434 445

410 435 447

416 436 450

429 437 453

433 444 454

434 445 456

435 447 458

436 450 459

437 453 462

444 454 464

445 456 465

447 458 470

450459471

453 462 473

454 464 482

456 465 483

458 470 400

459471401

462 473 403

464 482 410

465 483 416

470400 429

471401 433

473 403 434

482 410435

483 416 436

Table 2: 28 workloads running on cores #2, #3 and #4 res#gtiv

5 Implications of our proposition

5.1 Programmable TIDs

Although our proposition is less flexible than programmafletas, it is possible to

have some control on the shared cache (and more generallyapadsmicroarchitec-

tural resources). Until now, we have assumed that threadsng simultaneously had
different TIDs. But if the TIDs are programmable, we are nohstrained to using

different TIDs. For example, if we know that the applicasaanning have no QoS re-
guirements, it is not necessary to guarantee self-perfocman this case, if we want
the cache to behave like a conventional shared cache (faewdraeason), we can give
the same TID to all threads. As another example, considecabe where we have 4
threads and, for whatever reason, we want to give half ofhlaeesl cache capacity to
one of the threads. To do this, we use one TID for the thread ar& vo advantage,

and a second TID that is shared by the 3 other threads.

5.2 Impact on average performance

We have mentioned in Section 5.1 that having programmalids permits emulating
a conventional shared cache. The machine owner may prégerdhfiguration if ap-
plications have no explicit performance targets, if theeraore jobs than cores, and
if he wants to take advantage of symbiotic jobschedulingagimize throughput[11].
On the other hand, if some applications have QoS requiresyeifferent TIDs should
be given to different threads. Yet, the machine owner st@hts a high throughput.
Until now, we have focused exclusively on making the worstgenance as close as
possible to the self-performance, so that self-perforraaran serve as a measure of
performance when the multicore workload is unknown at paogning time. How-
ever, for maximizing throughput, what is important is thermge performance. The
average IPC of an application can be estimated by computm@iithmetic mean of
the application IPC when the application runs with varioeskioads. There is a direct
relation between average performance and throughpute lifthilticore is time-shared
between a given set of applications and if each applicateis the same fraction of
CPU time, the average throughput is equal to the number esdones the arithmetic
mean of the average IPCs of applications.

Compared with natural cache partitioning, the SB and B2cpedishould increase
the performance of applications with a low miss rate and allswaking set, but
should decrease the performance of applications with ainigh rate and a working
set whose size is larger than the equal-partition sharenaiter than the cache (cf. the
cache pressure model). To measure the average IPC, we tabe&achmark on core
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Figure 10: Average IPC for each benchmark. The average ipotad over the 28
workloads of Table 2, under natural partitioning (AVG-LRI$AR SB (AVG-SB) and
SAR B2 (AVG-B2).

#1 and obtained its IPC when the 3 other cores run the 28 diffevorkloads given in

Table 2 (with 28 benchmarks, this requidsx 28 = 784 simulations). The average
IPC of each benchmark is the arithmetic mean of the 28 difteifRCs measured for
this benchmark on the 28 workloads. Results are given inrBi§Q. As expected, the
SAR SB and B2 policies decrease the average IPC on a few bemkf(d01,429,450)
and increase it on a few others (434,435,456). Overall, &R Solicies do not have a
significant impact on the average performance. They justigeaa different trade-off.

This means that, from the point of view of throughput, SARigiek are practically

equivalent to conventional replacement policies.

5.3 Multi-threaded programs

In this study, we have focused on sequential applicationg pBoviding the means
to obtain a performance guarantee for multi-threaded jrogiis also very important.
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Indeed, multi-thread programming is difficult, and the peogmer is willing to invest
effort in multi-thread programming provided the level offsemance he has striven to
obtain can be reproduced. Performance may be difficult tackpe when the applica-
tion has fewer threads than cores. If the number of threaadilgsor of the number of
cores, the concept of self-performance applies and pediecamcan be measured with
theselfperfutility. If the number of threads is not a divisor of the numbécores, the
concept of self-performance does not apply, and the onlytavaytain a performance
guarantee is to reserve all the cores.

It should be noted that programmable TIDs offer some fleijbib the program-
mer. If the programmer is more comfortable (performancewgth a shared cache,
the same TID can be given to all the threads. On the other htig programmer
wants to optimize the cache locality of each thread sedsy&te may prefer to give a
different TID to each thread to emulate a partitioned cache.

6 Conclusion

We introduced the concept of self-performance, which isrgreat between the pro-
grammer and the microarchitecture. The programmer meag@rormance by run-
ning a copy of the application on each core, and the micrdt@atire guarantees this
level of performance independently of the characterisifcthe applications running
on the other cores. For the programmer, the advantage epsdiirmance is that it
is conceptually simple and does not require any knowledgetefnal microarchitec-
tural details. For the microarchitect, respecting the-pefformance contract means
paying attention to each microarchitectural resourceithsttared between threads. In
this context, shared caches are critical. We have shownutiraanaged sharing is in-
compatible with the self-performance contract. We havpgpsed sharing-aware cache
replacement (SAR) policies that are compatible with selffgrmance. The SAR B2
policy is simpler to implement than solutions based on prognable quotas. This
simplification of the hardware was obtained by sacrificingnedlexibility. Neverthe-
less, with programmable thread-IDs, our solution allowes phogrammer and the OS
to have some control on the cache behavior.

The performance guarantee offered by SAR policies is nablates in the sense
that it is very difficult to prove the guarantee mathemalycalithout getting rid of
resource sharing (this is the case also for quota-basetlas@y Nevertheless, our
experiments and simulations have shown that the situaianuch better with our
proposition than without it.

A Simulation methodology and benchmarks

Our simulator is trace-driven, using traces generated Rith[7]. We have one trace
per benchmark listed in Table 3. To obtain each trace, wehrerapplication without
any instrumentation for several seconds, then we send aldhat triggers instrumen-
tation.

We simulate 4 identical cores, each with dedicated L1 cachike L2 cache is 4
MB, 16-way set-associative and is shared between the 4.cbhesnext level after the
L2 cache is the off-chip DRAM. The main characteristics af gimulated microar-
chitecture are summarized in Table 1. The simulator doesnoakel all details of the
execution core. In particular, we do not model data depetidsivetween instructions.
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| benchmark | input skip |
400.perlbench checkspam.pl 30s
401.bzip2 liberty.jpg 30s
403.gcc 166.i 30s
410.bwaves 30s
416.gamess cytosine.2.config 30s
429.mcf 30s
433.milc 30s
434.zeusmp 30s
435.gromacs 30s
436.cactusADM 30s
437 leslie3d 30s
444 .namd 30s
445.gobmk 13x13.tst 30s
447 .dealll 30s
450.soplex pds-50.mps 20s
453.povray 30s
454 .calculix 30s
456.hmmer 30s
458.sjeng 30s
459.GemsFDTD 30s
462.libquantum 30s
464.h264ref foremanref_encoderbaseline.cfg| 30 s
465.tonto 30s
470.lbm 30s
471.omnetpp 30s
473.astar BigLakes2048.cfg 30s
482.sphinx3 30s
483xalancbmk 30s

Table 3: One trace was obtained for each SPEC CPU2006 berkhrarcept 481.wrf
that we could not compile. For each benchmark, we startingnting after a certain
execution time has elapsed.
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But the memory hierarchy is simulated with a lot of detaitsphrticular, we simulate
contention for the L2 cache, contention for the memory bod verite-back traffic. All
caches are non blocking, i.e., they continue to be accessadifea previous request
generated a miss. All misses are fully pipelined. Unlededtatherwise, the bus band-
width to DRAM is 8 bytes per CPU cycle. There is a separate nmgmamuest queues
(MRQs) for each core. Each MRQ has room for 20 pending reguéxice a request
is selected by the arbiter and is sent on the bus, there isackabf 300 cycles for
getting the requested block. The request is removed frorvifR® after the block has
returned from memory. Blocks evicted from write-back cachee buffered in write-
back queues. When arbitrating for a resource (cache or trejs have priority over
writes. Cache refills are blocked when the associated Wetd queue is full. A miss
requestis not schedulable if it cannot get a cache refill gesry (i.e., the cache refill
queue is full).
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