An optimally convergent adaptive mixed finite element method

Roland Becker 1, 2 Shipeng Mao 3
2 CONCHA - Complex Flow Simulation Codes based on High-order and Adaptive methods
Inria Bordeaux - Sud-Ouest, UPPA - Université de Pau et des Pays de l'Adour, CNRS - Centre National de la Recherche Scientifique : UMR5142
Abstract : We prove convergence and optimal complexity of an adaptive mixed finite element algorithm, based on the lowest-order Raviart–Thomas finite element space. In each step of the algorithm, the local refinement is either performed using simple edge residuals or a data oscillation term, depending on an adaptive marking strategy. The inexact solution of the discrete system is controlled by an adaptive stopping criterion related to the estimator.
Type de document :
Article dans une revue
Numerische Mathematik, Springer Verlag, 2008, 111 (1), pp.35-54. 〈10.1007/s00211-008-0180-8〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00343204
Contributeur : Roland Becker <>
Soumis le : dimanche 30 novembre 2008 - 18:36:31
Dernière modification le : jeudi 11 janvier 2018 - 06:22:11

Identifiants

Collections

Citation

Roland Becker, Shipeng Mao. An optimally convergent adaptive mixed finite element method. Numerische Mathematik, Springer Verlag, 2008, 111 (1), pp.35-54. 〈10.1007/s00211-008-0180-8〉. 〈inria-00343204〉

Partager

Métriques

Consultations de la notice

140