HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

An optimally convergent adaptive mixed finite element method

Roland Becker 1, 2 Shipeng Mao 3
2 CONCHA - Complex Flow Simulation Codes based on High-order and Adaptive methods
Inria Bordeaux - Sud-Ouest, UPPA - Université de Pau et des Pays de l'Adour, CNRS - Centre National de la Recherche Scientifique : UMR5142
Abstract : We prove convergence and optimal complexity of an adaptive mixed finite element algorithm, based on the lowest-order Raviart–Thomas finite element space. In each step of the algorithm, the local refinement is either performed using simple edge residuals or a data oscillation term, depending on an adaptive marking strategy. The inexact solution of the discrete system is controlled by an adaptive stopping criterion related to the estimator.
Document type :
Journal articles
Complete list of metadata

Contributor : Roland Becker Connect in order to contact the contributor
Submitted on : Sunday, November 30, 2008 - 6:36:31 PM
Last modification on : Friday, February 4, 2022 - 3:08:54 AM

Links full text




Roland Becker, Shipeng Mao. An optimally convergent adaptive mixed finite element method. Numerische Mathematik, Springer Verlag, 2008, 111 (1), pp.35-54. ⟨10.1007/s00211-008-0180-8⟩. ⟨inria-00343204⟩



Record views