Skip to Main content Skip to Navigation
Journal articles

An optimally convergent adaptive mixed finite element method

Roland Becker 1, 2 Shipeng Mao 3
2 CONCHA - Complex Flow Simulation Codes based on High-order and Adaptive methods
CNRS - Centre National de la Recherche Scientifique : UMR5142, UPPA - Université de Pau et des Pays de l'Adour, Inria Bordeaux - Sud-Ouest
Abstract : We prove convergence and optimal complexity of an adaptive mixed finite element algorithm, based on the lowest-order Raviart–Thomas finite element space. In each step of the algorithm, the local refinement is either performed using simple edge residuals or a data oscillation term, depending on an adaptive marking strategy. The inexact solution of the discrete system is controlled by an adaptive stopping criterion related to the estimator.
Document type :
Journal articles
Complete list of metadata
Contributor : Roland Becker <>
Submitted on : Sunday, November 30, 2008 - 6:36:31 PM
Last modification on : Friday, February 12, 2021 - 3:24:56 AM

Links full text




Roland Becker, Shipeng Mao. An optimally convergent adaptive mixed finite element method. Numerische Mathematik, Springer Verlag, 2008, 111 (1), pp.35-54. ⟨10.1007/s00211-008-0180-8⟩. ⟨inria-00343204⟩



Record views