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Équipe-Projet Select et Cadi Ayyad University

Rapport de recherche n° 6746 — December 2008 — 32 pages

Abstract: Variable selection in linear regression can be challenging, particularly in
situations where a large number of predictors is available with possibly high correla-
tions, such as gene expression data. In this paper we propose a new method called the
elastic corr-net to simultaneously select variables and encourage a grouping effect where
strongly correlated predictors tend to be in or out of the model together. The method
is based on penalized least squares with a penalty function that, like the Lasso penalty,
shrinks some coefficients to exactly zero. Additionally, this penalty contains a term
which explicitly links strength of penalization to the correlation between predictors. A
detailed simulation study in small and high dimensional settings is performed, which
illustrates the advantages of our approach in relation to several other possible methods.
Finally, we apply the methodology to three real data sets. The key contribution of the
elastic corr-net is the identification of setting where the elastic net fails to product good
results: in terms of prediction accuracy and estimation error, our empirical study sug-
gests that the elastic corr-net is more adapted than the elastic-net to situations where
p ≤ n (the number of variables is less or equal to the sample size). if p � n, our method
remains competitive and also allows the selection of more than n variables in a new way.
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correlation based penalty.
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La régression pénalisée

combinant la norme L1 et une pénalité tenant

compte des corrélations entre les variables

Résumé : La sélection de variables peut être difficile, en particulier dans les situations
où un grand nombre de variables explicatives est disponible, avec la présence possible
de corrélations élevées comme dans le cas des données d’expression génétique. Dans cet
article, nous proposons une nouvelle méthode de régression linéaire pénalisée, appelée
l’elastic corr-net, pour simultanément estimer les paramètres inconnus et sélectionner les
variables importantes. De plus, elle encourage un effet de groupe: les variables fortement
corrélées ont tendance à être toutes incluses ou toutes exclues du modèle. La méthode
est fondée sur les moindres carrés pénalisés avec une pénalité qui, comme la pénalité L1,
rétrécit certains coefficients exactement vers zéro. En outre, cette pénalité contient un
terme qui lie explicitement la force de pénalisation à la corrélation entre les variables
explicatives. Pour montrer les avantages de notre approche par rapport aux méthodes
les plus concurrentes, une étude détaillée de simulation est réalisée en moyenne et grande
dimension. Enfin, nous appliquons la méthodologie à trois ensembles de données réelles.
Le résultat principal de notre méthode est l’identification du cadre où l’elastic-net est
moins performante : en effet, en termes des erreurs de prédiction et d’estimation, notre
méthode parâıt plus adaptée aux situations du type p ≤ n (le nombre de variables est
inférieure à la taille de l’échantillon). Si p � n, notre méthode reste compétive et elle
permet aussi de sélectionner plus que n variables.

Mots-clés : Sélection de variables; grandes dimensions; elastic-net; effet groupement;
pénalité de corrélation.
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1 Introduction

We consider the standard linear regression model

y = β0 + xT β + ε, (1.1)

where x = (x1, ..., xp)
T is the vector of covariates and ε is a noise variable with E(ε) = 0.

The vector of predicted responses is given by

ŷ = β̂0 + β̂1x1 + ... + β̂pxp. (1.2)

Interest focuses on finding the vector β̂ = (β̂1, ..., β̂p) that is best under a given criterion,
such as prediction accuracy.

Ordinary least squares (OLS) computes β̂ by minimizing the residual sum of squares.
Despite its simplicity and unbiasedness, the OLS estimator is, however, not always
satisfactory in both prediction and interpretation.

Most of the alternatives can be categorized into one of two groups. The first set
of approaches uses some form of regularization on the regression coefficients to accept
a small increase of the bias for a possibly decrease in of the variance. Among these
there is the ridge regression (RR) (Hoerel and Kennard, 1970), which minimizes the
sum of residuals squares subject to a bound on the L2 norm of the coefficients, or more
recently the Correlation Penalty (CP) (Tutz and Ulbricht (2006)), which explicitly use
the correlation between predictors in the L2 norm penalty term. While these approaches
often produce improvements in prediction accuracy, the final fit may be difficult to
interpret because all p variables remain in the model. The second set of approaches
begins by performing variable selection, i.e. determining which β̂j = 0 for some j. By
implementing OLS on the reduced number of variables one can often gain increased
prediction accuracy as well as a more easily interpretable model.

In the last decade interest has focused on an alternative class of methods which
implement both the variable selection and the coefficient shrinkage in a single proce-
dure. The most well known of these procedures is the Lasso (Tibshirani, 1996; Chen
et al., 1998). The Lasso uses an L1 penalty on the coefficients, which has the effect of
automatically performing variable selection by setting certain coefficients to zero and
shrinking the remainder. This method was made particularly appealing by the advent
of the LARS algorithm (Efron et al., 2004) which provided a highly efficient mean to
simultaneously produce the set of Lasso fits for all values of the tuning parameter.

Although it is a highly successful technique, it has two drawbacks:

i) In p > n case, the Lasso can select at most n variables, this can be a limiting feature
for a variable selection method.

ii) When there are several highly correlated input variables in the data set, all relevant
to the output variable, the L1-norm penalty tends to pick only one or few of them
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4 El Anbari & Mkhadri

and shrinks the rest to 0. For example, in microarray analysis, expression levels
for genes that share a biological pathway are usually highly correlated, and these
genes all contribute to the biological process, but the L1-norm penalty usually
selects only one gene from the group and does not care which one is selected. An
ideal method should be able to eliminate trivial genes, and automatically include
the whole group of relevant genes.

Recently, Zou and Hastie (2005) proposed the elastic-net as an alternative procedure
which handles the deficiencies of Lasso and ridge regression by combining L1 and L2

penalties. The elastic-net has the ability to include group of variables which are highly
correlated. In the same spirit, Bondell and Reich (2007) proposed a new method called
Oscar to simultaneously select variables and perform supervised clustering in the context
of linear regression. The technique is based on the penalized least squares with a penalty
function combining the L1 and the pairwise L∞ norms. Moreover, the computation of
the Oscar estimates are based on a sequential quadratic programming algorithm which
can be slow for large p. While the elastic-net seems to be slightly less reliable in the
presence of positively and negatively correlated variables. However, it is remarked that
the elastic-net is particularly adapted to high dimensional setting (n << p)

On the other hand, the correlation based estimator CP does shrinkage but not vari-
able selection. In order to obtain the grouping effect of CP in combination with vari-
able selection, Tutz and Ulbricht (2006) proposed boosting procedure (called blockwise
boosting) which updates at each step the coefficient of more than one variable. But, in
practical implementation, the step length factor and the stopping number of iterations
have to be determined. This sometimes may be difficult, and can affect the sparsity of
the solution as well as the speed of convergence of the algorithm.

In this paper, we propose an alternative regularization procedure based on the pe-
nalized least squares for variable selection in linear regression problem, which combines
the L1 norm and CP penalties. We call it the elastic corr-net. Similar to the elastic-net
method, the elastic corr-net performs automatic variable selection and parameter esti-
mation where highly correlated variables are able to be selected (or removed) together.
Additionally, the CP penalty contains a term which explicitly links strength of penal-
ization to the correlation between variables. In contrast to the elastic-net, our approach
seems to be adapted to both small and high dimensional settings : p ≤ n and n << p.

The remainder of this paper is organized as follow. In Section 2, we formulate the
elastic corr-net as a constrained least squares problem using a novel elastic corr-net
penalty. We discuss the grouping effect that is caused by the elastic corr-net penalty.
Computational issues, including choosing the tuning parameters, are discussed in Sec-
tion 3. Section 4 is devoted to numerical experimentations on simulated data which
show, that the elastic corr-net compares favorably to the existing shrinkage and variable
selection techniques in terms of both prediction error and identification of relevant vari-
ables. Finally, the elastic corr-net is applied to the body fat, the NewsUS data and the

INRIA



Penalized regression combining the L1 norm and a correlation based penalty 5

Ionosphere data sets in Section 5. We end the paper with a brief discussion in section
6.

2 The elastic corr-net

In this section, we present the elements of the elastic corr-net algorithm.

2.1 The criterion

Suppose that the data set has n observations with p predictors. Let y = (y1, ..., yn)
T be

the response and X = (x1|...|xp) be the model matrix, where xj = (x1j , ..., xnj)
T , j =

1, ..., p, are the predictors. It is assumed that the response is centered and the predictors
are standardized,

n∑

i=1

yi = 0,
n∑

i=1

xij = 0 and
n∑

i=1

x2
ij = 1, for j = 1, ..., p. (2.3)

The elastic corr-net criterion solves

minβ

∑n
k=1(yk − xT

k β)2

subject to

{
‖β‖1 ≤ s1

Pc(β) ≤ s2
(2.4)

where

Pc(β) =

p−1
∑

j=1

∑

j>i

{
(βi − βj)

2

1 − ρij

+
(βi + βj)

2

1 + ρij

}

, (2.5)

‖β‖1 =
∑p

j=1 |βj|, s1 and s2 are nonnegative values.
The first penalty encourages sparsity in the coefficients. The term ρij denotes the

(empirical) correlation between the ith and the jth predictor. It is designed in a way so
that for strong positive correlation (ρij ≈ 1), the first term becomes dominant having the

effect that estimates for βi and βj are similar (β̂i ≈ β̂j). For strong negative correlation

(ρij ≈ −1), the second term becomes dominant and β̂i will be close −β̂j. The effect is

grouping; highly correlated variables lead to comparable values of estimates (|β̂i| ≈ |β̂j|).
The penalty Pc(β) was introduced by Tutz and Ulbricht (2006) as an alternative to

the L2 norm in ridge regression method, and it results on a correlation based penalty
method (CP hereafter).

A nice feature of the penalty (2.5) is that it may be written as a simple quadratic
form:

Pc(β) = βTWβ,
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6 El Anbari & Mkhadri

where W = (wij)1≤i,j≤p is a matrix with general term, assuming that ρ2
ij 6= 1 for i 6= j,

wij =

{
2
∑

s6=i
1

1−ρ2

is

, i = j

−2
ρij

1−ρ2

ij

, i 6= j

(for proof see Tutz and Ulbricht 2006).
The Lagrangian for the elastic corr-net is

L(λ1, λ2, β) = ‖y − Xβ‖2 + λ1‖β‖1 + λ2Pc(β), (2.6)

for any fixed non negative λ1 and λ2.
The criterion (2.6) can be viewed as a penalized least squares criterion. Let α =

λ1/(λ1 + λ2); then estimating β̂ is equivalent to the optimization problem

β̂ = arg min ‖y − Xβ‖2, s.t (1 − α)‖β‖1 + αPc(β) ≤ t for t ≥ 0. (2.7)

We call the function (1 − α)‖β‖1 + αPc(β) the elastic corr-net penalty, it is a convex
combination of the Lasso and correlation based penalty. The role of the L1-norm penalty
is to allow for variable selection, and the role of the Pc penalty is to get groups of
correlated variables selected together. The elastic-corr net penalty is singular at 0 and
it is strictly convex for all α ∈ [0, 1), thus having the characteristics of both the Lasso
and CP regression methods. Figure 1 shows the contour plots of the penalty for three
amounts of positive and negative correlations.

2.2 Estimation

We now develop a method to estimate the elastic corr-net model efficiently. It turns out
that minimizing criterion (2.6) is equivalent to a Lasso-type optimization problem. This
fact implies that the new method can enjoy the computational advantage of the Lasso.

Because W is a real symmetric positive-definite square matrix, it admits a Choleski
decomposition: it exists an upper triangular matrix L so that

W = LLT . (2.8)

The following Lemma is similar to the Lemma 1 in Zou and Hastie (2005), except that,
we use the Choleski decomposition L instead of the identity matrix in the augmented
covariates matrix X∗.

Lemma 1 Given (y,X), (λ1, λ2), and the Choleski factorization of W (2.8), define an
augmented data set (y∗,X∗) by

X∗
(n+p)×p = (1 + λ2)

−1/2

(
X√
λ2L

T

)

, y∗
(n+p) =

(
y
0

)

.
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Penalized regression combining the L1 norm and a correlation based penalty 7

Figure 1: Top panel: Two-dimensional contour plots of 0.5‖β‖1 + 0.5Pc(β) = 1 for
three amounts of positive correlation: ρ = 0.5, ρ = 0.8, and ρ = 0.99. Bottom panel:
Two-dimensional contour plots of 0.5‖β‖1 + 0.5Pc(β) = 1 for three amounts of negative
correlation: ρ = −0.5, ρ = −0.8, and ρ = −0.99.
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8 El Anbari & Mkhadri

Let γ = λ1/
√

1 + λ2 and β∗ =
√

1 + λ2β. Then criterion (2.6) can be written as

L(γ, β) = L(γ, β∗) = ‖y∗ − X∗β∗‖2
2 + γ‖β∗‖1.

Let

β̂∗ = arg min
β∗

L{(γ, β∗)},

then the elastic corr-net estimates defined in (2.6) verifies

β̂ =
1√

1 + λ2

β̂∗.

Proof. We have

‖y∗ − X∗β∗‖2
2 = y∗Ty∗ − 2y∗TX∗β∗ + β∗TX∗TX∗β∗.

From the identities

X∗TX∗ = (1 + λ2)
−1

[

XT
√

λ2L
] [

X√
λ2L

T

]

= (1 + λ2)
−1

(
XTX + λ2LLT

)

=

(
XTX + λ2W

1 + λ2

)

y∗TX∗ =
yTX√
1 + λ2

,

y∗Ty∗ = yTy,

γ‖β∗‖1 = λ1‖β‖1,

we get

β∗TX∗TX∗β∗ = βTXTXβ + λ2β
TWβ.

Finally we have:

‖y∗ − X∗β∗‖2
2 + γ‖β∗‖1 = y∗Ty∗ − 2y∗TX∗β∗ + β∗TX∗TX∗β∗ + γ‖β∗‖1

= yTy − 2yTXβ + βTXTXβ + λ2β
TWβ + λ1‖β‖1

= ‖y − Xβ‖2
2 + λ1‖β‖1 + λ2β

TWβ

= L(λ1, λ2, β).

This completes the proof
Lemma 1 says that we can transform the elastic corr-net into an equivalent Lasso

problem on augmented data. Note that the sample size in the augmented data is n + p
and X∗ has rank p, which means that the new method can potentially select all p
predictors in all situations. Lemma 1 also shows that the new criterion can perform
variable selection in a fashion similar to the Lasso.

INRIA
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β

β̂

Figure 2: Exact solutions for the Ols ( ), the Lasso ( ), CP ( ) and the

elastic corr-net ( ) in an orthogonal design: the shrinkage parameters are λ1 = 2,
λ2 = 1 and p = 2.

2.3 Orthogonal design case

In the case of an orthogonal design, it is straightforward to show that with parameters
(λ1, λ2) the elastic corr-net solution is

β̂j(elastic corr-net) =
(|β̂j(ols)| − λ1/2)+

1 + 2λ2(p − 1)
sign{β̂j(ols)} (2.9)

where β̂(ols) = XTy and z+ denotes the positive part of z, which is z if z > 0 and 0
otherwise. The naive elastic-net solution is

β̂j(naive elastic-net) =
(|β̂j(ols)| − λ1/2)+

1 + λ2

sign{β̂j(ols)}.

The solution of CP regression with parameter λ2 is given by

β̂(CP) =
β̂(ols)

1 + 2λ2(p − 1)
,

which is equal to the ridge regression solution with tuning parameter 2λ2(p−1) and the
Lasso solution with parameter λ1 is

β̂j(Lasso) = (|β̂j(ols)| − λ1/2)+sign{β̂j(ols)}.

RR n° 6746



10 El Anbari & Mkhadri

It is easy to see that β̂j(elastic corr-net) ≤ β̂j(näıve elastic-net) for all j and all p strictly
greater than one.

Fig 2 shows the operational characteristics of the three penalization methods in
orthogonal design, where the elastic corr-net is an elastic-net procedure with tuning
parameters λ1 and 2λ2(p − 1).

2.4 The grouping effect

Qualitatively speaking, a regression method exhibits the grouping effect if the regression
coefficients of a group of highly correlated variables tend to be equal (up to a change
of sign if negatively correlated). It is too difficult to give in a general case an upper
bound, of the absolute difference between any pair (i, j) of the components of β̂ (the
elastic corr-net estimates) as in Zou and Hastie (2005). The following Lemma gives an
upper bound of this quantity in the identical correlation case.

Lemma 2.1 (The identical correlation case) Given data (y,X), where X = (x1|...|xp)
and parameters (λ1, λ2), the response is centered and the predictors X standardized.
Let β̂(λ1, λ2) be the elastic corr-net estimate. If β̂i(λ1, λ2)β̂j(λ1, λ2) > 0 and ρkl =
ρ, for all (k, l) , then

1

‖y‖2

∣
∣
∣β̂j − β̂i

∣
∣
∣ ≤ 1 − ρ2

2(p + ρ − 1)λ2

√

2(1 − ρ).

The proof is differed to an appendix.
Remark 1. In the identical correlation case, the upper bound of the naive elastic-net

is
1

λ2

√

2(1 − ρ)

(Theorem 1 in Zou and Hastie (2005)) which is always greater than the later upper
bound of the elastic corr-net. So our method can have potentially a stronger grouping
effect in some settings.

For the illustration of the grouping effect we use the idealized example given by
Zou and Hastie (2005). With Z1 and Z2 being two independent U(0, 20) variables, the
response y is generated as N(Z1 + 0.1Z2, 1). Suppose that we observe only

x1 = Z1 + ε1,x2 = −Z1 + ε2,x3 = Z1 + ε3

x4 = Z2 + ε4,x5 = −Z2 + ε1,x6 = Z2 + ε6

where εi are independent identically distributed N(0, 1/16). 100 observations were gen-
erated from this model. The variables x1, x2 and x3 may be considered as forming one
group and x4, x5, x6 as forming a second group. Fig. 3 compares the solution paths of

INRIA
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the Lasso and the elastic corr-net.
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Figure 3: (a) Lasso and (b) elastic corr-net (λ2 = 0.5) and (c) elastic corr-net (λ2 = 1000)
solution paths: the elastic corr-net shows the ”grouped selection” x1,x2 and x3 are in
one ”significant” group and x4,x5 and x6 are in the other ”trivial” group.

3 Computation and tuning parameters selection

3.1 Computation

By Lemma 1, for each fixed λ2 the elastic corr-net problem is equivalent to a Lasso
problem on augmented data set. LARS (Least Angle Regression, Efron et al. 2004) is
an efficient algorithm to accelerate the computations of penalized regression parameters
as Lasso and related methods. So we use the algorithm LARS to create the entire elastic
corr-net solution path efficiently with computational efforts of a single OLS fit.

3.2 Tuning parameters selection

In practice, it is important to select appropriate tuning parameters λ1 and λ2 in order
to obtain a good prediction precision. Choosing the tuning parameters can be done
via minimizing an estimate of the out-of-sample prediction error. If a validation set is
available, this can be estimated directly. Lacking a validation set one can use ten-fold
cross validation. Note that there are two tuning parameters in the elastic corr-net, so we
need to cross-validate on a two dimensional surface. Typically we first pick a (relatively

RR n° 6746



12 El Anbari & Mkhadri

small) grid values for λ2, say (0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 1, 10, 100). Then, for
each λ2, LARS algorithm produces the entire solution path of the elastic corr-net. The
other tuning parameter is selected by tenfold CV. The chosen λ2 is the one giving the
smallest CV error.

An alternative is to use the uniform design approach of Fang and Wang (1994) to
generate candidate points of (λ1, λ2). This method actually works for a tuning parameter
with arbitrary dimension (cf. Wang et al. 2006). In our experimentations on simulated
and real data we use the first approach as in Zou and Hastie (2005).

4 Simulation study

A simulation study was run to examine the performance of the Elastic corr-net, under
various conditions with Lasso, Ridge Regression (Ridge), Elastic-net (Enet) and Block-
wise boosting (BlockBoost). The simulation setting is similar to the setting used in the
original Lasso paper (Tibshirani, 1996) and the elastic-net paper (Zou and Hastie 2005).
For each example, the data are simulated from the regression model

y = Xβ + ε, ε ∼ N(0, σ2In).

For each example, 50 data sets were generated. Each data set consisted of a training set
of size n, on which the model was fitted, an independent validation set of size n is used
to select the tuning parameters and a test set is used for evaluation of the performance.
In simulations, we centered all variables based on the training data set. Let x̄train =
(x̄1,train, ..., x̄p,train)

T denote the vector of means of the training data, ntest the number
of observations in the test data set and ȳtrain the mean over the training data.

We use two measures of performance, the test error (mean squared error)

MSEy =
1

ntest
rT
simrsim,

estimated on the test data set and the mean squared error for the estimation of β,

MSEβ = ‖β̂ − β‖2
2,

where
ri,sim = xT

i β − (ȳtrain + (xi − x̄train)
T β̂).

The four scenarios, considered in Zou and Hastie (2005) and Tutz and Ulbricht
(2006), are given by:

1. In Example one, n = 20 and there are p = 8 predictors. The true parameters
are β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and σ = 3. with the correlation matrix given by
ρ(xi,xj) = 0.7|i−j|. This example contains only positively correlated variables.

INRIA



Penalized regression combining the L1 norm and a correlation based penalty 13

2. With p = 9, β is specified by β = (1, 2, 3, 4, 0, 1, 2, 3, 4)T and σ = 3, ρ(xi,xj) =
1 − 0.25|i − j|, the same sample size as in (1). In this example variables are
positively and negatively correlated.

3. Example 3 is the same as Example 1, except that βj = 0.85 for all j, creating a
non-sparse underlying model.

4. In Example 4, n = 100 for each of the training and validation sets and there are
40 predictors. The true parameters are

β = (0, ..., 0
︸ ︷︷ ︸

10

, 2, ..., 2
︸ ︷︷ ︸

10

, 0, ..., 0
︸ ︷︷ ︸

10

, 2, ..., 2
︸ ︷︷ ︸

10

)T

and σ = 15, with the correlation matrix given by ρ(xi,xj) = 0.5 for i 6= j.

Table 1 and Figure 4 summarize both mean squared error of the estimation for the
response y (MSEy) and the mean squared error for the estimation of β (MSEβ). In
Table 1 the best performance is given in boldface. In the four cases, the elastic corr-net
outperforms all competitors in both MSEy and MSEβ followed by the ENET and the
RIDGE respectively. The LASSO and BB perform poorly. LASSO is best than BB in
examples 1 and 4, while BB is best in examples 2 and 3.

5 High-dimensional experiments

In this section, we give more clarification on the differences between our approach,
the Lasso and the elastic net through simulations data in high dimensional setting.
Moreover, we examine the performance of the two methods for the identification of
relevant variables.

5.1 Predictive power and estimation of effects

In the following, the same notations is used as in the simulations in Section 4. We use
the following three high dimensional simulation scenarios correlated groups of variables.

(H1) In this Example the true parameters are

β = (3, ..., 3
︸ ︷︷ ︸

15

, 0, ..., 0
︸ ︷︷ ︸

25

)T

and σ = 15. The predictors were generated as:

xi = Z1 + εx
i , Z1 ∼ N(0, 1), i = 1, ..., 5
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14 El Anbari & Mkhadri

Example MSEy MSEβ

RIDGE 2.99(0.20) 4.38(0.42)
LASSO 2.60(0.34) 3.80(0.35)

1 ENET 2.19(0.16) 3.43(0.32)
BB 3.53(0.31) 5.36(0.53)
CNET 2.14(0.16) 3.29(0.35)
RIDGE 3.90(0.31) 9.29(0.84)
LASSO 5.34(0.46) 14.23(2.27)

2 ENET 3.53(0.27) 8.18(0.56)
BB 4.07(0.46) 14.59(1.64)
CNET 3.23(0.31) 7.39(0.97)
RIDGE 2.19(0.30) 1.87(0.27)
LASSO 4.02(0.52) 5.50(0.28)

3 ENET 1.88(0.25) 1.43(0.12)
BB 3.35(0.29) 3.42(0.36)
CNET 1.43(0.26) 0.80(0.13)
RIDGE 26.33(1.23) 40.99(1.67)
LASSO 46.55(2.33) 79.32(2.83)

4 ENET 24.80(1.22) 37.07 (1.52)
BB 65.64(2.36) 116.27(5.80)
CNET 23.52(1.16) 36.89(1.47)

Table 1: Median mean-squared errors for the simulated examples of five methods based
on 50 replications with into parentheses standard errors estimated by using the bootstrap
with B = 500 resamplings on the 50 mean-squared errors.
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Figure 4: Comparing the accuracy of prediction MSEy and MSEβ of the Ridge (RR),
the Lasso, the elastic-net (Enet), the BlockBoost (BB) and the elastic corr-net (C-net)
for examples 1 − 4.
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16 El Anbari & Mkhadri

xi = Z2 + εx
i , Z2 ∼ N(0, 1), i = 6, ..., 10

xi = Z3 + εx
i , Z3 ∼ N(0, 1), i = 11, ..., 15

xi ∼ N(0, 1), i = 16, ..., 40

where εx
i are independent identically distributed N(0, 1), i = 1, ..., 15. In this

model the three equally important groups have pairwise correlations ρ ≈ 0.95, and
there are 25 pure noise features. The simulation data has 20/20/40 observations
for training set, independent validation set and test set respectively.

(H2) We set σ = 6 and the true coefficients

β = (3, ..., 3
︸ ︷︷ ︸

15

, 0, ..., 0
︸ ︷︷ ︸

25

)T .

The predictor were generated as:

xi = Z1 + εx
i , Z1 ∼ N(0, 1), i = 1, ..., 15

xi ∼ N(0, 1), i = 16, ..., 40

where εx
i are independent identically distributed N(0, 1), i = 1, ..., 15. The simu-

lation data has 20/20/40 observations for training set, independent validation set
and test set respectively.

We add a third example considered recently by Whitten and Tishirani (2008),

(H3) Each data set consists of 50/50/400 observations and 50 predictors; βi = 2 for
i < 9 and βi = 0 for i ≥ 9. σ = 2 and ρij = 0.9 × 1i,j≤9.

We again measure the performances using the prediction MSEy and the mean squared
error for the estimator of β, MSEβ.

Method Simulation H1 Simulation H2 Simulation H3
median median median median median median
MSEy MSEβ MSEy MSEβ

Lasso 358.09(32.83) 181.98(16.64) 17.75(1.58) 321.86(24.06) 0.27(0.02) 1.34(0.19)
Enet 151.44(9.86) 74.46(4.07) 10.90(1.31) 52.88(7.78) 0.24(0.01) 0.94(0.09)

Corr-net 138.00(11.05) 64.37(4.26) 11.97(1.34) 7.20(1.35) 0.22(0.02) 0.53(0.05)

Table 2: Median mean-squared errors for the simulated examples and three methods
based on 50 replications with standard errors estimated by using the bootstrap with
B = 500 resamplings on the 50 mean-squared errors.

The simulations show that the elastic corr-net is highly competitive in prediction.
Its mean squared error MSEy is either best or second best in all three examples, while
its mean squared error in estimating β (MSEβ) is the best in all examples.
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Figure 5: Comparing the accuracy of prediction MSEy and MSEβ of the the Lasso
(LASSO), the elastic-net (ENET) and the elastic corr-net (CNET).

5.2 Identification of relevant variables

There are two fundamental goals in statistical learning: ensuring high prediction ac-
curacy and discovering relevant predictive variables. So the variables included into the
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18 El Anbari & Mkhadri

final model are of special interest to practitioners. We want to have a final model as par-
simonious as possible but all relevant variables must be present in this model. We can
measure the performances of the different methods by the hits (the number of selected
nonzero components) and the false positives (FP : the number of zero components incor-
rectly selected into the final model). From the results recorded in Table 3, the Lasso is

Method Example H1 Example H2 Example H3

Hits FP hits FP hits FP
Lasso 7 5.5 6 3 8 6
Enet 15 16 14 3.5 8 6

Corr-net 15 16 15 4 8 7

Table 3: Median Number of Selected Variables for examples H1, H2 and H3.

not a good variable selection method under collinearity because it eliminates some rele-
vant variables. The elastic corr-net identifies all relevant variables, while the elastic-net
has eliminated some one in the second example.

6 Real data sets Experiments

Here we examine the performance of the elastic corr-net for three real world data sets:
the body fat data of diemsnsion size p = 13, USNews data p = 13 and Ionosphere data
p = 33.

6.1 Analysis the body fat data

The body fat data set has been used by Penrose, Nelson and Fisher (1985). The study
aims at the estimation of the percentage of body fat by various body circumference
measurements for 252 men. The thirteen regressors are age (1), weight (lbs) (2), height
(inches) (3), neck circumference (4), chest circumference (5), abdomen 2 circumference
(6), hip circumference (7), thigh circumference (8), knee circumference (9), ankle cir-
cumference (10), biceps (extended) circumference (11), forearm circumference (12), and
wrist circumference (13). All circumferences are measured in cm. The percent body fat
has been calculated from the equation by Siri (1956) using the body density determined
by underwater weighting. Figure 6 shows that there are some highly correlated predic-
tors. Some of the pairwise absolute correlation between these covariates are as high as
0.9: weight and hip circumference, chest circumference and abdomen 2 circumference.
Seven variables are highly correlated with weight, these variables are: hip circumference,
neck circumference, chest circumference, abdomen 2 circumference, thigh circumference,
knee circumference and biceps (extended) circumference.
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Figure 6: Graphical representation of the correlation matrix of the 13 predictors for the
body fat data. The magnitude of each pairwise correlation is represented by a block in
the grayscale image.

Age weit heig neck ches abd hip thi kne ank bic for. wri

A
ge

w
ei

t
he

ig
ne

ck
ch

es
ab

d
hi

p
th

i
kn

e
an

k
bi

c
fo

r.
w

ri

Image Plot of Correlations (Bodyfat Data)

RR n° 6746



20 El Anbari & Mkhadri

Table 4: Body fat data - median test mean squared error over 20 random splits for
different methods.

Method median median no. of
MSEy selected variables

Ridge regression 21.02(0.67) 13
Lasso 20.70(1.60) 9.5
Enet 20.23(1.61) 7

BlockBoost 22.01(1.39) 6
Corr-net 19.77(1.79) 10

Figure 7: Boxplots of test mean squared errors for 20 random splits of body fat data
set into a training set of 151 observations and a test set of 101 observations.
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Table 5: Body fat data - tuning parameters and estimated parameters for the whole
data set.

Variables Ridge Lasso Elastic-net Elastic corr-net
Tuning λ = 148.41 s = 0.79 λ = 0.05 λ = 0.05
parameters: s = 0.77 s = 0.75
1 0.07 0.06 0.09 0.06
2 −0.03 −0.05 0.00 −0.02
3 −0.16 −0.11 −0.19 −0.16
4 −0.43 −0.40 −0.24 −0.46
5 0.05 0 0.06 0.00
6 0.77 0.86 0.62 0.86
7 −0.16 −0.11 0.00 −0.18
8 0.19 0.12 0.09 0.08
9 0.10 0 0.00 0.00
10 0.02 0.02 0.00 0.00
11 −0.04 0.10 0.03 0.1
12 0.01 0.37 0.26 0.30
13 −0.39 −1.53 −1.60 −1.61

In order to investigate the performances of the elastic corr-net, the data set has been
split 20 times into a training set of 151 observations and a test set of 101 observations.
Tuning parameter have been chosen by tenfold cross validation. The performance in
term of median mean squared error is given in Table 4, the corresponding boxplots are
shown in Figure 7. It is seen that the elastic corr-net has the best performance in term
of mean squared error. While the elastic net seems to miss the relevant variable hip
circumference (7),as can be seen from the column of parameter estimation in Table 5.

6.2 USNews data

Our second data set we examine is a subset of USNews data used for the ASA 1995
Data Analysis Exposition. A subset of this data was considered recently by Radchenko
and James (2008) (page 16) for styding the performance of their VISA algorithm. The
data contains measurements on 18 variables from 777 colleges around the United States.
The response of interest is the cost of room and board at each institution. This data
contains positively and negatively correlated variables with an average absolute pairwise
correlation among the 17 predictors equal to 0.32. We first randomly divide the data
into a test data set of 100 observations, with the remainder making up the training data.
As for the Body fat data, we have repeated this procedure 20 times. The results are
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Figure 8: Boxplots of different methods for 20 random splits of USNews data set into a
training set of 100 observations and a test set of 677 observations.
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given in Table 6 and Figure 8. The elastic corr-net has the best performances in terms
of prediction accuracy.

Table 6: USNews data - median test mean squared error over 20 random splits for
different methods.

Method median median no. of
MSEy selected variables

Ridge regression 708345.9 18
Lasso 726761.5 8
Enet 725595.0 9
BlockBoost 799844.3 7
Corr-net 668088.9 8.5
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6.3 Analysis of the Ionosphere data

The Ionosphere data collected by a system in Goose Bay Labrador is considered. The
complete data set is of size 351. In this data set, the targets are free electrons in the
ionosphere. ”Good” radar returns are those showing evidence of some type of structure
in the ionosphere. ”Bad” returns are those that do not and their signals pass through
the ionosphere (Sigillito et al. 1989). There are 34 continuous predictor variables and
the response attribute is either ”good” or ”bad” radar returns. We exclude the second
predictor variable since it takes a constant value 0 for all the observations and we use
the remaining 33 to predict the response attribute. This data set was recently used
by (Liu and Wu 2007) to illustrate the performance of their regularization regression
method based on the combination of the L0 and L1 norms.

To explore the performance of different procedures, we randomly divide the data set
into three sets of equal sizes for training, tuning, and testing. We repeat this procedure
25 times; the results of variable selection by the Lasso, the elastic-net and the elastic
corr-net are given in Figure 9. As shown in the plot, the first, the twentieth and
the twenty fifth variables are frequently selected by the three methods. The average
rates testing error are 0.0958, 0.0923 and 0.0894 respectively (with their corresponding
standard errors 0.0024, 0.0020, and 0.0018 respectively).

7 Discussion

In this paper we have proposed the elastic corr-net for simultaneous estimation and
variable selection in linear regression problem. It is a regularization procedure based on
the penalized least squares with a mixture of L1 norm and a weighted L2 norm penalties.
Similar to the elastic-net method, the elastic corr-net encourages a grouping effect, where
strongly correlated predictors tend to be in or out of the model together. Additionally,
the weighted L2 penalty explicitly links strength of penalization to the correlation be-
tween predictors. Due to the efficient path algorithm (LARS), our procedure enjoys the
computational advantage of the elastic-net. Our simulations and empirical results have
shown good performance of our method and its superiority over its competitors in term
of prediction accuracy, identification of relevant variables while encouraging a grouping
effect.

The key contribution of the elastic corr-net is the identification of setting where the
elastic net fails to product good results. In fact, our empirical results in term of pre-
diction accuracy show that two setting between the sample size n and the dimension p
must be distinguished. First if p ≤ n, even in small and high dimension settings, the
elastic corr-net has shown impressive empirical performance in simulations and world
problems. However, in the case of large dimension setting, i. e. p >> n, simulations re-
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Figure 9: Plot of proportions of the 32 variables selected corresponding to the Lasso,
elastic-net and elastic corr-net based on 25 random training samples.
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sults suggest very similar performance between the two methods, with a little advantage
to the elastic-net.

As the elastic-net, the elastic corr-net can be used in classification problem with the
L2 loss function or the hinge loss function of support vector machine. Its performance
with the L2 loss function seems to be good as shown in section 6.3 with the Ionosphere
data. The extension of the elastic corr-net to SVM will be subject to future work.

A Appendix A

A.1 Proof of Lemma 2.1

Proof. Let β̂(λ1, λ2) = arg minβ{L(λ1, λ2, β)}. If β̂i(λ1, λ2)β̂j(λ1, λ2) > 0, then both

β̂i(λ1, λ2) and β̂j(λ1, λ2) are non-zero, and we have sign(β̂i(λ1, λ2)) = sign(β̂j(λ1, λ2)).

Then β̂(λ1, λ2) must satisfies

∂L(λ1, λ2, β)

∂β
|β=β̂(λ1,λ2) = 0. (A.10)

Hence we have

− 2xT
i {y − Xβ̂(λ1, λ2)} + λ1sign{β̂i(λ1, λ2)} + 2λ2

p
∑

k=1

ωikβ̂k(λ1, λ2) = 0, (A.11)

− 2xT
j {y − Xβ̂(λ1, λ2)} + λ1sign{β̂j(λ1, λ2)} + 2λ2

p
∑

k=1

ωjkβ̂k(λ1, λ2) = 0, (A.12)

Subtracting equation (A.11) from (A.12) gives

(xT
j − xT

i ){y − Xβ̂(λ1, λ2)} + λ2

p∑

k=1

(ωik − ωjk)β̂k(λ1, λ2) = 0,

which is equivalent to

p
∑

k=1

(ωik − ωjk)β̂k(λ1, λ2) =
1

λ2
(xT

i − xT
j )r̂(λ1, λ2), (A.13)

where r̂(λ1, λ2) = y − Xβ̂(λ1, λ2) is the residual vector. Since X is standardized, then

‖xi − xj‖2
2 = 2(1 − ρij).

Because β̂(λ1, λ2) is the minimizer we must have

L{λ1, λ2, β̂(λ1, λ2)} ≤ L{λ1, λ2, β = 0},
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i.e.

‖r̂(λ1, λ2)‖2 + λ2β̂
T (λ1, λ2)Wβ̂(λ1, λ2) + λ1‖β̂(λ1, λ2)‖1 ≤ ‖y‖2

2.

So ‖r̂(λ1, λ2)‖2 ≤ ‖y‖2. Then the equation (A.13) implies that

1

‖y‖2
|

p∑

k=1

(ωik − ωjk)β̂k(λ1, λ2) |≤
1

λ2‖y‖2
‖r̂(λ1, λ2)‖‖x1 − x2‖ ≤ 1

λ2

√

2(1 − ρij).(A.14)

We have:

ωii = −
∑

s6=i

ωis

ρis
and ωjj = −

∑

s6=j

ωjs

ρjs
. (A.15)

Then

p
∑

k=1

(ωik − ωjk)β̂k(λ1, λ2) =
−2

1 − ρij
[β̂j(λ1, λ2) − β̂i(λ1, λ2)] + 2SN (A.16)

where

SN =
∑

k 6=i,j

1

1 − ρ2
ki

[β̂i(λ1, λ2) − ρkiβ̂k(λ1, λ2)] +
1

1 − ρ2
kj

[ρkjβ̂k(λ1, λ2) − β̂j(λ1, λ2)].

if
ρki = ρkj = ρ, ∀k = 1, ..., p,

we have

SN =
p − 2

1 − ρ2
(β̂i(λ1, λ2) − β̂j(λ1, λ2)).

So using (A.14) we have:

1

‖y‖2

∣
∣
∣β̂j − β̂i

∣
∣
∣ ≤ 1 − ρ2

2(p + ρ − 1)λ2

√

2(1 − ρ)

≤ 1

λ2

√

2(1 − ρ).

This completes the proof
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