N

N

FPG: A code generator for fast and certified geometric
predicates
Andreas Meyer, Sylvain Pion

» To cite this version:

Andreas Meyer, Sylvain Pion. FPG: A code generator for fast and certified geometric predicates. Real
Numbers and Computers, Jun 2008, Santiago de Compostela, Spain. pp.47-60. inria-00344297

HAL 1d: inria-00344297
https://inria.hal.science/inria-00344297
Submitted on 4 Dec 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00344297
https://hal.archives-ouvertes.fr

FPG: A code generator for fast and certified geometric
predicates

Andreas Meyer
INRIA Sophia-Antipolis
ameyer3000Qgooglemail.com

Sylvain Pion
INRIA Sophia-Antipolis
Sylvain.Pion@sophia.inria.fr

Abstract

We present a general purpose code analyzer and generator for filtered predicates, which
are critical for geometric algorithms. While there already exist such code generators, our
contribution is to generate "almost static filters”, a type of filter which could not be generated
previously. The generated and safe filtered predicates are almost as fast as their inexact floating
point counterparts, in most cases.

1 Motivation

Floating point arithmetic is not exact and suffers
from rounding and under/overflow effects. While

some applications are immune, some are very sensi-
tive [6] to these problems, especially algorithms that
manipulate combinatorial data structures, such as

float det2x2( float a00O, float aO1l,
float al0, float all )
{ return a0O*all - al0O*aO1; }

int orientationC2( float px, float py,

many geometric algorithms. For geometric algo-
rithms, the basic building blocks are geometric
predicates like the 2D orientation test which tells
if three points p, ¢, r in the plane form a left turn,
right turn or if they are collinear (Figure 1). The
vast majority of these predicates evaluate a homo-
geneous polynomial (such as the determinant) and
compute the sign of this polynomial, discarding its
actual value.

Ultimately, we are interested in robust and efficient algorithms. One solution is to imple-
ment predicates such that they always return the correct result for their given input, called
the Exact Geometric Computation Paradigm [10]. Of course, using only exact arithmetic is
a brute force approach, so floating point filters have been proposed to ”filter out” the easy
cases, where the floating point hardware is sufficiently precise, and only the hard cases (called
filter failures) are evaluated using exact arithmetic.

There are many different filtering schemes, ranging from fully dynamic to schemes where a
strong hypothesis on the input values is used to create specialized and fast predicates. Most
of them have in common, that writing such a filter manually is an error prone and tedious
task, making it an ideal candidate for automating.

float gx, float qy,
float rx, float ry )
{ return sign( det2x2( gx-px, qy-py,
rX-px, ry-py );

Figure 1: A prominent geomet-
ric predicate: the Cartesian 2D
orientation test.



1.1 Previous work

A very general solution is to use interval arithmetic [2], which solves the problem directly
at the number type level, minimizing per-predicate programming effort. Additionally, filtered
predicates which have as input constructed geometric objects (like the midpoint of two points)
are inherently easy to implement, if constructed objects are represented as intervals. Although
interval arithmetic is faster than exact arithmetic, it is still several times slower than plain
floating point arithmetic.

On the other hand, one can achieve better performance by preprocessing a given predicate
and performing error analysis, or even generate code for the exact evaluation, as in Fortune
and Van Wyk’s LN package [5]. However, LN only allows integer values as input, and the
user has to provide a bound on the bit-length, at predicate generation time. Later, Funke et
al. presented a tool EXPCOMP [3], which allows floating point values as input and generates
a two-phase filter: first exploit a global input bound (given at runtime) and if that fails, use
a more precise semi-static filter that adapts to the actual input. Furthermore, EXPCOMP
allows constructed values as predicate input. A very interesting tool from Nanevski et al. [8]
generates adaptive precision predicates in the spirit of Jonathan Shewchuk [9], where pred-
icates are cleverly divided into different stages of increasing precision. Intermediate results
from less precise stages are accumulated and reused until the correct sign is known.

While all these tools are of interest and each one has unique features, they generate either
static filters or semi-static filters. Static filters depend on global bounds of the input, which is
restrictive. Semi-static filters basically evaluate the formula twice: once for the actual value
and once for the error bound. Only a small amount of work can be precomputed.

An ”almost static filter” combining the advantages of static and semi-static filters has
been proposed by Pion and Devillers [4]. No bounds on the input are required, while the
overall running time in an algorithm is still close to the one achieved with plain floating point
arithmetic, at least for not-too-degenerate input configurations. Later, Pion and Melquiond [7]
also automatically certified the generated error bounds, for some handpicked predicates.

1.2  Our Contribution

Our contribution is a tool that automatically generates almost static filters, which take into
account the actual input to adapt/scale a precomputed error bound. The tool is applicable
to a wide range of functions, i.e. those that compute signs of homogeneous polynomials. We
demonstrate the utility in the context of CGAL [1], the Computational Geometry Algorithms
Library.

Underflow and overflow are often regarded as esoteric, because on most platforms, it is
easy to test a posteriori if an under/overflow has occurred. However, some platforms lack this
ability (for example the Java Runtime Environment), hence another method [4] is needed to
prevent under/overflow. Our tool implements such a method.

2 Almost Static Filters

Although the approach itself has been described already [4], we try to give more insight for
how and why it works.

Roughly, the idea is to precompute a bound §(1) on the absolute error. Consider an
expression e in sign(e), and assume that for each variable v occurring in e it holds that



|v| < 1. This precomputation simply amounts to forward error analysis of the expression e,
starting with an absolute bound of 1 and the absolute error 0, propagating an ever-increasing
error term along the abstract syntax tree of e (see Appendix-B).

Then, during predicate execution and given an actual input bound b, §(1) is scaled to match
the actual input, using a scaling function « : x — R: §(b) = «(b)d(1). Now, it becomes feasible
to compare the computed value é with 6(b): if |é] > d(b), then sign(é) = sign(e).

Algebraically, the expression e is a homogeneous polynomial of degree d. Given known
input bounds at runtime: how can we reuse the precomputed §(1)?

For multilinear functions like determinants (which are in fact homogeneous polynomials)
we know that det(Ajai, Agaz ... \gag) = AiAa...\gdet(ar,az...aq) where a; is a vector of
dimension d. If a; to ag are assumed to be in [—1, 1]d, the individual \; just correspond to the
maximum absolute values of the vector’s coordinate components, which are easily computed
at runtime. Of course, it looks tempting to somehow reuse these \;. But, before going into
detail how the scaling function « is defined in this case, let us discuss polynomials where we
do not know that they are determinants and/or have the property ”multilinear”.

Consider a polynomial represented as p = Eiciﬂgllwivj where d is the degree, ¢; are coefficients
and x; ; denotes the (possibly equal) variables used throughout the polynomial. We can choose

a k such that p = )\kE,-ci“%: (H%&kxiﬁ where \;, = max;{z;;}. The choice is not completely
arbitrary, at least in some cases as we will see later. Repeatedly pulling out the Ag, we obtain a
polynomial p; where the input variables are artificially bounded by 1. Now, §(1) is applicable:

T

i > 5(1) = Sign of p; is correct
j

\Pl’ -

This is only a statement about the scaled polynomial. Now, we can easily obtain a statement
about the original, unscaled polynomial, by multiplying with Hgl)\i:

: ST\,
j)\] > () 7

d
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‘ () Sicmd =2

> 5(1)1’[?)\1- = Sign of (EiciH?xm) is correct

To account for second order rounding errors done in the multiplication §(1)II¢)\;, §(1) has to
be multiplied with a constant (1+ e)d, € being the machine epsilon and rounding the constant
towards 400, of course. To sum up: we can slightly overestimate the error for the actual
problem and replace its computation with a precomputed error for a bounded problem and a
series of multiplications/fabs-operations.

Translation Filter As mentioned by Devillers and Pion [4], a dynamic but still absolute
bound on the input might be too pessimistic. Consider a point-set with large coordinates,
where in some algorithm, mostly predicate invocations between neighboring points would be
required. In this case, it makes sense to translate points to the origin, before computing the
bound. Of course, this does not change the order of magnitude in the worst case, but since it
can be easily implemented and improves performance, we also support this in our tool.

The only difference is: instead of just setting A to the maximum value of all input variables,
we check if there are subtractions directly on input variables and mark those expressions as
to-be-used for computing the bound. This effectively halves the number of fabs operations,
in the best case. Similarly, the forward error analysis needs to be slightly adapted: the error



Columns=products Rows=sums of columns | \;

a b a a ¢ ¢ e e a a ¢ c e e | A\ =max{a,ce}

¢c d E+d& d d f f b b f f b b dd|r=max{bdf

e f e+ f? e f a b ¢ d ¢ d e f a b |A=max{a,bcde,f}
e f a b ¢ d ¢ d e f a b |3g=max{a,bcde, [}

Table 1: (a) 3 x 3 determinant with one column of squared lengths. (b) Polynomial
representation. Columns denote products.

is propagated as before, but for those expressions that have been marked, we reset the bound
to 1.

Note that we still have a homogeneous polynomial: in this case, the variables are represented
by the result of a subtraction and a precomputed relative error.

Groups Consider some polynomial expression p=abc-def+ghi, where a...i are input vari-
ables. How can we automatically choose where to pull out the \; values, in each summand?
Does the choice make a difference, in the first place? Ultimately, the goal is to obtain a
maximal number of different minimal variable sets for A;. These sets need not be disjoint,
but disjoint sets are preferred because it improves the precision of our filter. In the context of
geometric predicates, a separation along dimensions of input coordinates seems natural: one
Az for the x-coordinate, one for y and one for z. Then, for a 3 x 3 determinant computation,
the scaling function a that is used to scale 6(1) is AzAy A, (ignoring second order rounding
errors).

But, the tool does not know about x and y coordinates. It only knows variables, which are
not necessarily named p, or ¢,. A straightforward solution is to explicitly group variables,
which is what we do in our tool. One might ask, if it is really important, that the \; par-
tition variables according to the coordinate axis. And indeed, for multilinear functions like
determinants, there are many ways along which the variables could be partitioned into groups.

Problems arise for more complicated cases: consider a 3 x 3 determinant, where each row
consists of a 2-dimensional vector and its squared length as third component (Table 1 (a)).
Table 1 (b) should be read like this: each column denotes one product of the polynomial. Each
row contains one set of variables, that are used to compute the bound A;. Observe that the way
to write down the individual sums and products occurring in each polynomial has an influence
on the variable set for each );: in the worst case, we only get one big A\ = max{a,b,c,d,e, f},
which is just the uniform bound of all input variables we wanted to avoid.

It is not completely obvious, how to automatically arrange individual columns in the above
table, to obtain good variable sets for A;. Therefore, we resort to group annotations for input
variables. In the above example, a, ¢, e should be declared as one group, and b, d, f as another
one. Based upon these declarations, our tool computes the sets, as above.

Higher Degree Numbers Geometric predicates are often dealing with distances. Some-
times, an approximate distance is computed and supplied as an argument to a predicate.
When using an almost static filter, there are interactions with two concepts.

(1). Consider ab+ c: usually, this would be recognized as a non-homogeneous polynomial. If,
however, c is the result of multiplying two numbers which are homogeneous to a and b,
then the result can still be regarded as a homogeneous polynomial. Whether the multi-



plication is performed inside or outside the predicate, the result should be (conceptually)
the same. This means our tool needs to have a special notion of homogeneity: the user
has to declare, if an input number is supposed to be the result of a multiplication, and he
or she has to tell the degree of that number (see Appendix-A). Note that user mistakes
are not dramatic and will only lead to more filter failures.

(2). Assume a naive computation of A\ = max{a, b, c}. This A\ might be used in A\25(1), which
is wrong, because the already squared value c is squared again. Instead, the computation
should be max{max{a, b}2, c}d(1). Therefore, our tool considers this special case when
performing symbolic group computation.

Group computation Algebra on groups is defined using inductive rules on a recursive
data type. There are three types of nodes: leaf, product, and alternatives. A leaf represents
one group (as declared by the user) and the degree of its variables. Internally, groups are
identified as integers, starting with 1. Additionally, leafs maintain a list of variables. At the
beginning of symbolic group computation, all input variables are ” abstracted” with a symbolic
leaf node, containing only this variable. Products and alternatives maintain a list of nodes. As
expected, a product represents a product of groups. An alternative contains a list of nodes,
whose ”concrete values” have to be compared at runtime to compute one \; (required for
higher degree numbers).

Enumerating all individual rules would go beyond the scope of this paper. Instead, we only
describe them informally. The two base cases are:

add (Leaf index degree varsl), (Leaf index degree vars2)
add (Leaf indexl degree varsl), (Leaf index2 degree vars2)

Leaf index degree merge(varsl, vars2)
Leaf 0 degree merge(varsl, vars2)

which means that adding two leaves merges the variable set, and if indices differ, we set the
result group index to 0, representing ”don’t know”. Beyond that, addition and multiplication
are defined recursively in a rather straightforward way: adding two products results in a
product with individual nodes being added, where nodes have similar structure. For remaining
nodes, an alternative is appended to the product’s result list. Adding two group nodes of
different degree is not defined.

For example, ab + cd would be represented as Prod(Leaf 1 1 {a,c}, Leaf 2 1 {b,d},
given that all variables have degree 1, a and c are in group 1 and b and d are in group 2.

Another example: ¢ has degree 2, is in group 3, a, b have degree 1 and group indices 1 and
2, respectively. Then ab + ¢ would be represented as Alt(Prod(Leaf 1 1 {a}, Leaf 2 1
{b}), Leaf 3 2 {c}),

Finally, the group computation result is used to generate the scaling function « in our tool,
exploiting the recursive definition of the data type.

Under/Overflow Protection There are two options to prevent underflow and overflow:
(1) After computation, check floating point flags to see if such an event did really occur. (2)
Compare \; with some global bounds, to prevent underflow and overflow.

Each option has its advantages: the first is easy to implement, precise and fast (given that
there is no function call overhead). However, it may not be supported on all platforms. On
the other hand, the second option requires additional runtime computations: min;{);} and
max;{\;}, whose results are then compared with two precomputed constant numbers A
and Amax. Because it is not clear which option is better, we support both.

min



How to determine the global bounds for under/overflow? First, we need to prevent the
actual computation of e from overflowing. Consider a function over(e,\) — bool that sym-
bolically evaluates e using floating point arithmetic and all input variables set to A. During
evaluation, we maintain bounds for each value, conservatively approximating to +oco. If during
such an evaluation, an overflow event occurred (i.e., over(e, \) = true), it might also happen
during the evaluation of the actual function, using round-to-nearest mode. On the other hand,
if no overflow occurred during the symbolic evaluation, an overflow event is not possible for a
concrete evaluation, where values are bounded by A\. We claim that the function over(e, A) is
monotonous, that is, there is a certain upper bound Amax, where the function result changes
from false to true. This upper bound can be safely approximated by a simple dichotomy over
the range of floating point values. An overflow in the computation of §(1)II¢); is safe and
directly leads to a filter failure.

An underflow in §(1)II¢\; would decrease the error-bound and in turn, would lead to false
positives (i.e., filter failures would be reported as filter "success”). To prevent this, consider
the following inequalities:

mindouble < 5(1))\?mn
,/mindouble <
3(1) > Amin
If all A\; > A, no underflow can occur here.

An underflow in e could either increase or decrease the value of e, but the effect is very
small and negligible. Predicates with input of different degree need special treatment by the
tool.

3 Implementation

Input Language Our input language is a minimal subset of the C language, with support
for basic arithmetic (+,-,%), assignments, function calls, conditional statements/expressions
and Boolean operators (see Figure 2). Arrays, pointers or structs would only complicate the
interface and are not supported. Possible data types are int and float, where float arithmetic
automatically triggers error analysis. Two special functions sign and abs are recognized.
Occurrences of sign expressions are automatically rewritten, if they involve derived floating
point values. Groups of variables (like z-coordinates, y-coordinates) have to be declared
explicitly, using the group declaration. They should be chosen such that the polynomials
occurring in the predicate can be split according to these groups.

External functions can be defined (for example, CGAL _assertion or CGAL max) which may
accept integer or non-derived floating point values and are otherwise ignored during analysis.

Generated functions are declared inline, to avoid function calling overhead.

Implementation Details Internally, the input is represented as an abstract syntax tree.
This tree can be traversed by visitors. There are visitors to transform the tree or add state-
ments, visitors to derive and propagate properties like ”contains floating point comparison
on derived values”, or abstract interpretation visitors that evaluate functions, using abstract
values. Important abstract values are the bound estimation value, or the group computation
value. In total, there are 9000 lines of code.



float det2x2( inline int orientationC2( double px, double py, double gx,

float a00, float a0l , double qy, double rx, double ry )
float al0, float aill ) { double a00 = gx - px, a0l = qy - py;
{ double al0 = rx - px, all = ry - py;
return a0O*all - al0*a0l1l; int int_tmp_result;
} double d = a00 * all - al0 * aO1;
double maxl = std::fabs(al1);
int orientationC2( double max2 = std::fabs(al0);
float px, float py , if ( maxl < std::fabs(all) ) maxl = std::fabs(all);
float gx, float qy , if ( max2 < std::fabs(a00) ) max2 = std::fabs(a00);
float rx, float ry ) double lower_bound = maxl, upper_bound = maxl;
group px gx rX; if ( max2 < lower_bound )
group py qy Iy; lower_bound = max2;
else if( max2 > upper_bound )
return sign( upper_bound = max2;
det2x2( gx-px, qQy-py » if ( lower_bound < 5.00368081960964690982e-147 ) {
rX-px, ry-py ) if ( lower_bound == 0.0 )
) int_tmp_result = 0;
} else
return FPG_UNCERTAIN_VALUE;
} else {

if ( upper_bound > 1.67597599124282407923e+153 )
return -999;

double eps = 8.88720573725927976811e-16 * max2 * maxl;

if( d > eps )

int_tmp_result = 1;
else if( d < -eps )

int_tmp_result = -1;
else

return FPG_UNCERTAIN_VALUE;
}
return int_tmp_result;

}

Figure 2: Example input and FPG result for orientationC2. p,q,r are exact input
points. Note that det2x2 has been directly inlined.

Main loop First, all function calls are substituted, until each function definition only con-
tains function calls, whose function definitions do not contain floating point comparisons on
derived values. Then, for each function definition that has floating point comparisons on de-
rived values, the following is done: (1) determine lower and upper bound (2) find values used
to compute A; (either plain input values, or the result of subtracting two input values) (3) for
all \; expressions: eliminate duplicate binary expressions (4) compute floating point errors
(5) compute groups (6) replace sign expressions, using gathered knowledge.

Replacing sign(e) expressions triggers most of the code generation: the runtime A; have to
be computed, they have to be compared against the precomputed A, ;;; and Amax, and finally
the scaled 611¢)\; is compared with the actual value é.

Example In Figure 2, one can see the code FPG generates, for the orientationC2 function.
Most ”features” are present: input bound computation, comparison with precomputed lower
and upper bound and comparison with the scaled error. The variables a00 are an artifact of
substituting a function call. Temporary int variables are required to support sign expression
multiplications. This function is almost the same as the one hand-coded in [7], modulo
assignments to useless temporary variables, which can easily be optimized away by a compiler.
Another example is listed in Appendix-A.



Full Name

02-3p | 2D Orientation

03-4p | 3D Orientation
pt2-4p | 2D Power test

pt3-5p | 3D Power test

sbs-5p | Side of bounded sphere
-5p .. on 5 points

Figure 3: Time to evaluate different important predicates 10e6 times in a loop, ignoring
the exact evaluation stage. Average of 10 runs. Logarithmic scale.

4 Results

Integration into CGAL CGAL has different layers for geometry and arithmetic. This
layered design made it particularly easy, to almost automatically generate statically filtered
predicates from existing CGAL source code. Additionally, the output of FPG needs to be
integrated in CGAL - a task which we also automated. The order of predicate evaluation has
3 stages: first, the generated almost static filters are used. If they fail, interval arithmetic is
used, as previously done in CGAL. Only if this should fail, exact arithmetic is used.

Going a step further, we also automatically generated a test-suite that cross-checks the
runtime behavior of each generated predicate with the already existing interval arithmetic
predicates (which is assumed to be correct), using degenerate random input.

Benchmarks We compared the runtime of several filtering methods (see Figure 3): floating
point arithmetic (double), almost static filters (static) and interval arithmetic (interval)
using CGAL’s interval numbertype (setting rounding mode once, before predicate evaluation).

Semi-static filters (semistatic) are also supported by FPG, as a by-product, although the
translation trick is not yet supported. Thus, FPG’s semi-static filters are less precise and need
more operations per predicate. To work around this limitation, four important semi-static
predicates have been hand-optimized (semistatic2).

We only measured the speed of the filter stage itself: if it fails, we simply ignore it, and no
exact evaluation is performed. As input, we used an array of random numbers. Before each
of the 10 million predicate invocations, input data was shuffled to prevent the compiler from
optimizing away the function call or doing something too clever. A-posteriori under/overflow
checks were implemented as inline functions, to avoid function call overhead. All benchmarks
were performed on an Intel Core 2 Duo with 2.33 GHz, using g++-4.3.0 -03 -DNDEBUG
-march=pentium-m -msse2 -mfpmath=sse.

Interval arithmetic performs quite poorly in this synthetic benchmark, as it needs many
conditional branches and up to 4 times the number of floating point operations a plain floating
point evaluation would require.



2D orientation 3D orientation Side of oriented sphere

+ * x| < + * ] < + * x| <
semistatic | 10(5) 5(3) 7 2 | 28(14) 18(9) 13 2 | 74(37) 80(40) 16 2
semistatic2 | 6(1) 3(1) 3 2| 19(5) 13(4) 10 2 |60(23) 57(17) 16 2
static 50) 4(2) 4 8| 14(0) 12(3) 15 14| 37(0) 45(5) 12 16

Table 2: Total number of operations (bound computation overhead in braces).

Levels of ”Degenerateness” Different Scales
size —1— le-70 1le-50 1 le+50 1le+70
€ le-04 1e-08 1le-12 1le-16 1le-20 «— sizexle-10 —

interval 3.17 318 322 383 470 |687 312 313 3.14 24.9
semistatic | 0.69 0.1 082 1.60 240 |689 072 071 0.74 23.0
semistatic2 | 0.61 0.61 0.61 136 2.27 | 688 0.62 0.61 0.62 23.3

static 0.64 064 063 139 224 |70.7 066 063 0.66 23.3
static2 0.60 0.60 0.60 137 227 |70.1 060 0.60 0.59 23.1
double 0.57 0.57 057 — — — 0.57 0.57 0.57 —

Table 3: Average time to construct a 3D regular triangulation, in seconds. Input: 200000
cube grid points in [—size, size] perturbed by e. The double implementation often crashed.

For simple predicates like 2D orientation, semi-static predicates are clearly faster. Almost-
static predicates are competetive only for larger predicates, involving more arithmetic where
the initial overhead of computing the \; (which needs comparisons) is compensated by a greatly
reduced number of additions and multiplications (Table 2). On the other hand, small hand-
optimized semistatic2-predicates have very little overhead (see Appendix-C). In general, the
overhead of almost-static predicates depends on the number of input variables and the degree
of the polynomial, whereas semi-static predicates depend on the overall amount of arithmetic.

Although the total number of operations for larger static predicates is much less than for
their semi-static counterparts, the synthetic benchmarks suggest that static predicates are still
slower. Semi-static predicates seem to better profit from SSE2 instructions and/or multiple
functional units, processing more than one operation at each processor cycle.

Ultimately, we are interested in real-world applications.

Therefore, we used CGAL’s 3D regular triangulation and interval 1.13
compared different filtering approaches (see Table 3). Most semistatic2 | 0.26

time is spent in the 3D orientation test, and also the 3D static?2 0.24
power test is used. For filters, speed and precision are equally double 0.22
important. To demonstrate their resilience to degenerate in-

put, we used a range of increasingly degenerate input config- Table 4: Time to compute
urations. Different scales show that our predicates properly a 3D delaunay triangulation
detect under/overflow situations. As expected, preventing of 20000 cube grid points

under/overflow (which needs more comparisons) is slightly

slower than just testing the respective floating point flag (as done in static2), contrary to
the synthetic benchmarks, where static and static2 perform almost similarly (not shown
here). Moreover, contrary to the synthetic benchmarks, static2 is marginally faster than
semistatic2, when used in CGAL’s 3D regular triangulation. This is also true for the 3D
delaunay triangulation (Table 4), where 3D orientation tests and side-of-sphere tests are called



equally often.
5 Future Work

The most important improvement would be support for constructions. It is not clear how
to do it, but maybe one can inject another (1) into the called function, to account for an
increased error. The first translation/subtraction step does not work in such a scenario.

Automatically deducing the variable groups would probably be a challenging optimization
problem, reducing manual annotation to a minimum.

It would be interesting to see, if our almost static filter can be combined with an adaptive
precision exact evaluation phase, for example the one generated by Nanevski’s tool [8].

Pion and Melquiond [7] used a tool to formally prove the value of §(1). The input for this
tool was written manually, but due to the structure of this input (that mostly resembles the
input predicate) it is natural to assume that this can be automated, too. Even more, it would
be very interesting to also verify if the result of our group computation is valid, maybe using
FPG’s intermediate steps during group computation as proof hints for a theorem prover.

Supporting the square root operation would be relatively easy to implement.

References

[1] CaaL, Computational Geometry Algorithms Library. URL http://www.cgal.org/.

[2] H. Bronnimann, C. Burnikel and S. Pion. Interval arithmetic yields efficient dynamic
filters for computational geometry. Discrete Applied Mathematics, volume 109:25-47
(2001).

[3] Christoph Burnikel, Stefan Funke and Michael Seel. Ezxact geometric predicates using
cascaded computation. In Symposium on Computational Geometry, 175-183 (1998).

[4] Olivier Devillers and Sylvain Pion. Efficient exact geometric predicates for Delaunay
triangulations. In ALENEX, 37-44 (2003).

[5] Steven Fortune and Christopher J. Van Wyk. Static analysis yields efficient exact inte-
ger arithmetic for computational geometry. ACM Trans. Graph., volume 15(3):223-248
(1996). ISSN 0730-0301.

[6] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra and Chee-Keng Yap. Class-
room examples of robustness problems in geometric computations. In ESA, 702-713
(2004).

[7] Guillaume Melquiond and Sylvain Pion. Formal certification of arithmetic filters for
geometric predicates. In Proc. 17th IMACS World Congress on Scientific , Applied Math-
ematics and Simulation (2005).

[8] Aleksandar Nanevski, Guy E. Blelloch and Robert Harper. Automatic generation of
staged geometric predicates. In International Conference on Functional Programming,
217-228 (2001).

[9] Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates. Discrete & Computational Geometry, volume 18(3):305—
363 (1997).

[10] C. Yap and T. Dubé. The exact computation paradigm. In Computing in Euclidian
Geometry. World Scientific Press (1994).



A Another Input/Output Example

To also demonstrate support for ”higher degree numbers”, we append input and output
code for the 3D power test predicate. Basically, 3D points are augmented with a weight field.
The predicate itself is similar to the more common ”side of oriented sphere” predicate.

Weights are squared distances, and therefore of degree 2 which has to be declared using
group [degree=2].

int

power_testC3( double px, double py, double pz, double pwt,
double gx, double qy, double gz, double qwt,
double rx, double ry, double rz, double rwt,
double sx, double sy, double sz, double swt,
double tx, double ty, double tz, double twt )

group px gx rx sx tx;

group py Qy ry sy ty;

group pz 9z rz sz tz;

group[degree=2] pwt qwt rwt swt twt;

{
double dpx = px - tx;
double dpy = py - ty;
double dpz = pz - tz;
double dpt = square(dpx) + square(dpy) + square(dpz) + (twt- pwt);
double dgx = gx - tx;
double dqy = qy - ty;
double dqz = gz - tz;
double dqt = square(dgx) + square(dqy) + square(dqz) + (twt - qut);
double drx = rx - tx;
double dry = ry - ty;
double drz = rz - tz;
double drt = square(drx) + square(dry) + square(drz) + (twt- rwt);
double dsx = sx - tx;
double dsy = sy - ty;
double dsz = sz - tz;
double dst = square(dsx) + square(dsy) +
square(dsz) + (twt -swt);
return - sign(det4x4_by_formula(dpx, dpy, dpz, dpt,
dgx, dqy, dqz, dqt,
drx, dry, drz, drt,
dsx, dsy, dsz, dst));
}

Our tool successfully propagates the degree 2 attribute to max5, and therefore compares it to
the square of max1, which is related to the sum of squares square (dpx)+square(dpy) ... in
line 10.



inline int power_testC3( double px, double py, double pz, double pwt,
double gx, double qy, double gz, double quwt,
double rx, double ry, double rz, double rwt,
double sx, double sy, double sz, double swt,
double tx, double ty, double tz, double twt )
{ double dpx = px - tx;
double dpy = py - ty;
double dpz = pz - tz;
double twt_pwt = twt - pwt;
double dpt = square( dpx ) + square( dpy ) + square( dpz ) + twt_pwt;
double dgx = gx - tx;
double dqy = qy - ty;
double dgz = qz - tz;
double twt_qwt = twt - qut;
double dqt = square( dgx ) + square( dqy ) + square( dgz ) + twt_quwt;
double drx = rx - tx;
double dry = ry - ty;
double drz = rz - tz;
double twt_rwt = twt - rwt;
double drt = square( drx ) + square( dry ) + square( drz ) + twt_rwt;
double dsx = sx - tx;
double dsy = sy - ty;
double dsz = sz - tz;
double twt_swt = twt - swt;
double dst = square( dsx ) + square( dsy ) + square( dsz ) + twt_swt;
int int_tmp_result;
double max2 = std::fabs(dpx);
if ( max2 < std::fabs(dgx) ) max2 = std::fabs(dgx);
if ( max2 < std::fabs(drx) ) max2 = std::fabs(drx);
if( max2 < std::fabs(dsx) ) max2 = std::fabs(dsx);
double max3 = std::fabs(dpy);
if ( max3 < std::fabs(dqy) ) max3 = std::fabs(dqy);
if ( max3 < std::fabs(dry) ) max3 = std::fabs(dry);
if ( max3 < std::fabs(dsy) ) max3 = std::fabs(dsy);
double max4 = std::fabs(dpz);
if( max4 < std::fabs(dqz) ) max4 = std::fabs(dqz);
if ( max4 < std::fabs(drz) ) max4 = std::fabs(drz);
if ( max4 < std::fabs(dsz) ) max4 = std::fabs(dsz);
double maxl = max2;
if ( maxl < max3 ) maxl = max3;
if( maxl < max4 ) maxl = max4;
double maxb = std::fabs(twt_qut);
if ( maxb < std::fabs(twt_pwt) ) maxb
if ( max5 < std::fabs(twt_rwt) ) maxb5 = std::fabs(twt_rwt);
if ( max5 < std::fabs(twt_swt) ) maxb std::fabs(twt_swt);
double lower_bound_1 = max4, upper_bound_1 = max4;
if ( max3 < lower_bound_1 )
lower_bound_1 = max3;
if ( maxl < lower_bound_1 )
lower_bound_1 = maxl;
else if ( maxl > upper_bound_1 )
upper_bound_1 = maxi;
if ( max2 < lower_bound_1 )
lower_bound_1 = max2;
if ( lower_bound_1 < 1.05893684636333750596e-59 || max5 < 1.12134724458593082308e-118
|| upper_bound_1 > 3.21387608851798055108e+60 || max5 > 1.03289995123476343586e+121 )
return FPG_UNCERTAIN_VALUE;
double eps = 1.67106803095990471147e-13 * max2 * max3 * max4 * std::max( maxl * maxl, max5 );
double det = det4x4_by_formula( dpx, dpy, dpz, dpt,
dgx, dqy, dqz, dqt,
drx, dry, drz, drt,
dsx, dsy, dsz, dst );

std::fabs(twt_pwt);

if ( det > eps ) int_tmp_result = 1;
else if( det < -eps ) int_tmp_result = -1;
else return FPG_UNCERTAIN_VALUE;

return -int_tmp_result;



B

For completeness, we present the two main functions that are used to compute error bounds
in our implementation. Static filter error is abbreviated with Sfe. Our function definition of
ulp also accounts for double rounding errors that occur in the extended precision implemen-

Static Filter Error

tation of Intel’s floating point unit used in x86 processors.

Error propagation starts with an error of 0 and an absolute bound of 1, unless there was a
translation on fresh input values, where the error is set to ulp(1) /2.

double ulp () {

}

FPU_round_to_plus_infty();
return ulp(1);

double ulp (double d) {

Sfe

Sfe

// You are supposed to call this function with rounding towards
// +infinity, and on a positive number.

d = CGAL_IA_FORCE_TO_DOUBLE(d); // stop constant propagation.
CGAL_assertion(d>=0);

double u;

if (d == 1) // I need to special case to prevent infinite recursion.
u = (d + CGAL_IA_MIN_DOUBLE) - d;

else {

// We need to use the d*ulp formula, in order for the formal proof
// of homogeneisation to work.
// u = (d + CGAL_IA_MIN_DOUBLE) - d;
u=d * ulpQ;
}

// Then add extra bonus, because of Intel’s extended precision feature.
// (ulp can be 2°-53 + 2°-64)
return u + u / (1<<11);

operator+ (Sfe f1, Sfe f2) {
FPU_round_to_plus_infty();

double bound = f1.bound + f2.bound;
double u = ulp(bound) / 2;

bound += u;

double error = u + fl.error + f2.error;
return Sfe(bound, error);

operator* (Sfe f1, Sfe f2) {
FPU_round_to_plus_infty();

double bound = f1.bound * f2.bound;
double u = ulp(b) / 2;

bound += u;

double error = u + fl.error * f2.error + fl.error * f2.bound + f1.bound * £f2

return Sfe(bound, error);

.error;



C Hand-optimized Semi-Static Filters

inline int orientationC2( double px, double py, double gx, double qy, double rx, double ry) {
double gpx = gx-pxX;
double rpy = ry-py;
double rpx = rx-px;
double qpy = qy-Py;
double detleft = qpx*rpy;
double detright = rpx*qpy;
double det = detleft - detright;
if( std::fabs(det) > (std::fabs(detleft) + std::fabs(detright)) * 8.88178419700125232339¢-16
&& fetestexcept( FE_UNDERFLOW | FE_OVERFLOW ) == 0 )

{
return det < 0.0 7 -1 : 1;

}

else

{
::CGAL: :feclearexcept ( FE_DIVBYZERO | FE_UNDERFLOW | FE_OVERFLOW | FE_INVALID );
return FPG_UNCERTAIN_VALUE;

}

inline int orientationC3( double px, double py, double pz,
double gx, double qy, double gz,
double rx, double ry, double rz,
double sx, double sy, double sz )

double gx_px = Qx-pX;
double qy_py = qy-Py;
double rx_px = rx-px;
double ry_py = ry-py;
double tmp_a = gx_px * ry_py;
double tmp_b = qy_py * rx_px;
double mO1_bound = std::fabs(tmp_a) + std::fabs(tmp_b);
double mO1 = tmp_a - tmp_b;
double rz_pz = rz-pz;
double qz_pz = qz-pz;
tmp_a = Qx_px*rz_pz;
tmp_b = qz_pz*rx_px;
double m02_bound = std::fabs(tmp_a) + std::fabs(tmp_b);
double m02 = tmp_a - tmp_b;
tmp_a = qy_py*rz_pz;
tmp_b = qz_pz*ry_py;
double m12_bound = std::fabs(tmp_a) + std::fabs(tmp_b);
double m12 = tmp_a - tmp_b;
double sx_px = sX-pX;
double sy_py = sy-py;
double sz_pz = sz-pz;
double m012_bound = mO1_bound*std::fabs(sz_pz)
+ m02_bound*std: :fabs (sy_py)
+ ml12_bound*std: :fabs(sx_px) ;
double m012 = mOl*sz_pz - m02*sy_py + ml2*sx_px;
if ( std::fabs(m012) > m012_bound * 1.77635683940025046468e-15 &&
fetestexcept( FE_UNDERFLOW | FE_OVERFLOW ) == 0 )
return (m012 < 0.0) ? -1 : 1;
else {
feclearexcept( FE_UNDERFLOW | FE_OVERFLOW );
return FPG_UNCERTAIN_VALUE;



