. Cgal, Computational Geometry Algorithms Library

H. Brönnimann, C. Burnikel, and S. Pion, Interval arithmetic yields efficient dynamic filters for computational geometry, Discrete Applied Mathematics, vol.109, issue.1-2, pp.25-47, 2001.
DOI : 10.1016/S0166-218X(00)00231-6

C. Burnikel, S. Funke, and M. Seel, Exact geometric predicates using cascaded computation, Proceedings of the fourteenth annual symposium on Computational geometry , SCG '98, pp.175-183, 1998.
DOI : 10.1145/276884.276904

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Devillers and S. Pion, Efficient exact geometric predicates for Delaunay triangulations, ALENEX, pp.37-44, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00344517

S. Fortune and C. J. Van-wyk, Static analysis yields efficient exact integer arithmetic for computational geometry, ACM Transactions on Graphics, vol.15, issue.3, pp.223-248, 1996.
DOI : 10.1145/231731.231735

L. Kettner, K. Mehlhorn, and S. Pion, Stefan Schirra and Chee-Keng Yap. Classroom examples of robustness problems in geometric computations, ESA, pp.702-713, 2004.

G. Melquiond and S. Pion, Formal certification of arithmetic filters for geometric predicates, Proc. 17th IMACS World Congress on Scientific, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00344518

A. Nanevski, G. E. Blelloch, and R. Harper, Automatic generation of staged geometric predicates, International Conference on Functional Programming, pp.217-228, 2001.

J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, Discrete & Computational Geometry, vol.18, issue.3, pp.305-363, 1997.
DOI : 10.1007/PL00009321

C. Yap and T. Dubé, THE EXACT COMPUTATION PARADIGM, Computing in Euclidian Geometry, 1994.
DOI : 10.1142/9789812831699_0011