Classroom examples of robustness problems in geometric computations

Abstract : The algorithms of computational geometry are designed for a machine model with exact real arithmetic. Substituting floating-point arithmetic for the assumed real arithmetic may cause implementations to fail. Although this is well known, there are no concrete examples with a comprehensive documentation of what can go wrong and why. In this paper, we provide a case study of what can go wrong and why. For our study, we have chosen two simple algorithms which are often taught, an algorithm for computing convex hulls in the plane and an algorithm for computing Delaunay triangulations in space. We give examples that make the algorithms fail in many different ways. We also show how to construct such examples systematically and discuss the geometry of the floating-point implementation of the orientation predicate. We hope that our work will be useful for teaching computational geometry.
Type de document :
Article dans une revue
Computational Geometry, Elsevier, 2008, 40 (1), pp.61-78. 〈10.1016/j.comgeo.2007.06.003〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00344310
Contributeur : Sylvain Pion <>
Soumis le : lundi 15 décembre 2008 - 22:08:10
Dernière modification le : vendredi 23 février 2018 - 10:40:02
Document(s) archivé(s) le : lundi 7 juin 2010 - 23:44:22

Fichier

RevisedClassroomExamples.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, Chee Yap. Classroom examples of robustness problems in geometric computations. Computational Geometry, Elsevier, 2008, 40 (1), pp.61-78. 〈10.1016/j.comgeo.2007.06.003〉. 〈inria-00344310〉

Partager

Métriques

Consultations de la notice

646

Téléchargements de fichiers

270