N

HAL

open science

Recent progress in exact geometric computation
Chen Li, Sylvain Pion, Chee Yap

» To cite this version:

Chen Li, Sylvain Pion, Chee Yap. Recent progress in exact geometric computation. Journal of Logic
and Algebraic Programming, 2005, Practical development of exact real number computation, 64 (1),
pp.85-111. 10.1016/j.jlap.2004.07.006 . inria-00344355

HAL 1d: inria-00344355
https://inria.hal.science/inria-00344355
Submitted on 4 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00344355
https://hal.archives-ouvertes.fr

Recent Progress in

Exact Geometric Computation *

C. Li

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012, USA.

S. Pion

Maz Planck Institut fir Informatik
Saarbricken, Germany.

C. K. Yap

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012, USA.

Abstract

Computational geometry has produced an impressive wealth of efficient algorithms.
The robust implementation of these algorithms remains a major issue. Among the
many proposed approaches for solving numerical non-robustness, Exact Geometric
Computation (EGC) is one of the most promising. This survey describes recent
progress in EGC research. We specifically focus on the problems of constructive
root bounds, precision-driven computation and numerical filters.

Key words: Exact Geometric Computation, Constructive Root Bounds,
Arithmetic Filters, Interval Arithmetic, C4++ Libraries.

* This paper is based on a talk presented at the DIMACS Workshop on Algorithmic
and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Com-
puter Science, March 12 — 16, 2001. The work is supported by NSF/ITR Grant
#CCR-0082056 and by the IST Programme of the EU as a Shared-cost RTD (FET
Open) Project under Contract No IST-2000-26473 (ECG - Effective Computational
Geometry for Curves and Surfaces).
Email addresses: chenli@cs.nyu.edu (C. Li), Sylvain.Pion@mpi-sb.mpg.de

(S. Pion), yap@cs.nyu.edu (C. K. Yap).

Preprint submitted to Elsevier Science 31 January 2003

1 Introduction

Numerical non-robustness represents a major challenge in the implementa-
tion of geometric algorithms. By its nature, geometric computation has two
components, a numerical part and a combinatorial part. Numerical computa-
tion is involved in both the construction of new geometric objects and in the
evaluation of geometric predicates. An example of the former is computing
intersection points and an example of the latter is deciding whether a point
is on a hyperplane. Geometric predicates are especially critical, as they deter-
mine the combinatorial relations among objects. Incorrect evaluation of such
predicates can lead to inconsistencies. In general, computational geometry al-
gorithms are designed under a Real RAM model of computation where all
numerical computations are exact. As machine arithmetic is widely used as
substitute for this assumed exact arithmetic, numerical errors are inevitable
in implementation. Today, machine arithmetic has converged to the IEEE
standard [89,31]. But more generally, machine arithmetic is an example of
fixed-precision arithmetic. Although numerical errors can sometimes be toler-
ated and interpreted as small perturbations in inputs, serious problems arise
when such errors lead to invalid combinatorial structures or inconsistent state
during a program execution.

The numerical non-robustness problem has received much attention in the
computational geometry community in the last 15 years ([25,41,88,53,18,26]).
The next section will briefly review some approaches to non-robustness, we
refer the reader to the current surveys ([93,74,68]) for more details. In [93],
robustness literature was classified along two lines: the papers that aim to
make fixed-precision algorithms computation robust, and those that aim to
make the exact computation approach efficient. Call these the inexact and
exact approaches, respectively, and the corresponding algorithms Type I and
Type II algorithms. Our review below will classify the literature into those
that try to make the arithmetic more robust, and those that achieve robust-
ness by ensuring certain geometric (which subsumes topological) properties of
problem at hand. Call these the arithmetic and the geometric approaches,
respectively, and the corresponding algorithms Type A and Type B algo-
rithms. The I-versus-IT taxonomy is orthogonal to the A-versus-B taxonomy.
For instance, both Type I and Type II algorithms can benefit from Type A
development: an example of this is the use of machine arithmetic with scalar
product primitive, as proposed by Ottmann et al [66]. Similarly, the introduc-
tion of low-degree predicates [54] in the development of Type II algorithms can
be useful for Type I as well as Type Il algorithms. On the other hand, there
is a strong correlation between Type I algorithms and Type B algorithms: if
an algorithm computes in the fixed-precision model, then it is very likely that
it has to investigate the geometric properties of the computational problem.

Paper Outline. In Section 2, we review the arithmetic and geometric ap-
proaches to non-robustness. Then we focus on some issues in Exact Geometric
Computation (EGC). In Section 3, we discuss in detail the constructive root
bound problem which is a key problem in EGC. We treat the techniques of
precision-driven computation and numerical filtering in Sections 4 and 5, re-
spectively. We conclude in Section 6.

2 Literature Review

We review some robustness techniques developed under the Arithmetic and
Geometric Approaches. We also single out the Exact Geometric Computation
approach which is the focus of this paper.

2.1 Arithmetic Approaches

This is a natural first place to look for a solution since we know that the root
cause of numerical non-robustness is errors from approximate arithmetic. The
“naive” arithmetic solution says that we just have to compute exactly, without
any errors. This requires the use of multi-precision (i.e., unbounded precision)
arithmetic. Such arithmetic is implemented in software libraries called “big
number packages” (big integers, big rationals, big floats, big complex, etc).
For a survey of multi-precision number packages, see [96]. All big number
packages support the four basic arithmetic operations (+, —, X, +). Within the
domain of rational numbers, it is clear that these operations can be performed
without errors. However, if we need irrational numbers (for example when we
take square roots), then simple big number packages will still be insufficient.
The usual understanding of “number representation” is that it is some form
of positional number system (basically, strings of digits to some base). In this
sense, the algebraic number /2 cannot be represented exactly. However, it is
well-known (e.g., in the computer algebra community) that we can represent
and perform all the usual arithmetic operations on algebraic quantities as
well. Furthermore, by appeal to a general result that goes back to Tarski, any
problem that is algebraic [94] can be computed without errors. This general
result forms the backdrop for the development of type I.

The problem with the above naive view of exact arithmetic is the inefficiency
of algebraic computations. The complexity of each operation depends on the
bit length of operands. In cascaded computations, the bit length of numbers
increases quickly. Even for rational operations, the worst-case complexity is
exponential in the number of operations. For an instance, Yu [97] concluded
that exact rational arithmetic for 3-D polyhedral modeling is impracticable.

Karasick et al [49] reported that the naive use of rational arithmetic in the
divide-and-conquer algorithm for 2-D Delaunay triangulation costs a perfor-
mance penalty of 10% over the corresponding floating-point implementation.

Approximate arithmetic. Approximate arithmetic is used by all Type
I approaches, mostly in the form of machine arithmetic. But it is increas-
ingly used in Type II approaches as well. An early example of Type II algo-
rithm based on approximate arithmetic is [23] where it is applied to Fortune’s
sweepline algorithm using big floats, combined with root bounds. Approximate
arithmetic for Type II algorithms requires multi-precision packages, typically
some form of big float. This also opens up the possibility of adaptive preci-
sion arithmetic. Here, it is helpful to have arithmetic systems that is equipped
with the ability to track errors, and to increase precision on demand [96]. Er-
ror tracking amounts to forward error analysis; it is also a form of significance
arithmetic [2,58]. More generally, significance arithmetic can be viewed as a
form of interval arithmetic [62,1].

It is important to see how approximate arithmetic solves the kind of efficiency
bottleneck noted under the naive use of exact arithmetic. The latter ultimately
reduces to big rational computation. Rational computations tend to be very
slow for various reasons, including the phenomenon of exponential growth of
bit sizes and the presence of non-trivial content in fractions (which requires
the GCD computation to remove). On the other hand, big floats arithmetic
has complexity that is intermediate between big rationals and big integers
(we may take big integer arithmetic as the base reference for multi-precision
arithmetic). In fact, big float arithmetic is basically big integer arithmetic, plus
overhead. In addition to these, there is the possibility of adaptive precision
computation.

Other ideas to improve robustness at the arithmetic level (without necessarily
completely eliminating non-robustness) are to improve the accuracy or range of
fixed precision arithmetic [19,56]. More low level techniques here include pro-
viding accurate scalar products [66] and machine architectures that provide
a “fused multiplication and add” (FMA) primitive. Programming language
support for robustness can be valuable for programmers. For instance, spe-
cial facilities for robust arithmetic has been incorporated into programming
languages (e.g., Numerical Turing [47], Pascal-SC [7]).

2.2 Geometric Approaches

The geometric approach lends itself to considerably more diverse forms than
the arithmetic approach. Hence our review here only touches on some major

representatives. The general idea is to ensure that certain geometric properties
are preserved by our algorithms. This is often enough to ensure no inconsis-
tent states in the algorithm (hence robust). For instance, if we are computing
the Voronoi diagram of a planar point set, we want to ensure that the output
is a planar graph [84]. We stress that in our classification, purely topological
approaches is subsumed under geometric approaches (see below for a more
formal expression of this). The first decision facing the robust algorithm de-
signer is the choice of which properties to preserve, and this is dictated by
efficiency considerations and the needs of the application; as a corollary, the
algorithm gives up some other properties.

Finite Resolution Geometry. If we compute in fixed precision arithmetic,
then one approach is to invent novel “finite resolution geometries” [35] as a
substitute for the standard Euclidean geometry. This ersatz geometry can only
preserve a few of the properties found in Euclidean geometry. A very natural
and popular finite precision geometry is the grid (usually regular, but this is
not essential). Greene and Yao [35] investigated line arrangement computation
in this geometry. See also [38,36]. Here, line segment may become polygonal
lines so that their intersections preserve properties such as non-braiding and
connected intersection. But we give up the properties such as the intersection
of two lines is a single point.

Approximate Predicates and Fat Geometry. Another approach to ro-
bustness is to focus on the imprecise nature of predicate evaluations. In Epsilon
Geometry [37], Guibas et al introduced “epsilon-predicates” which return a
real number instead of the usual —1,0,+1. A return value of € > 0 means that
there is a perturbation of the input by at most € such that the exact predi-
cate becomes true. If € < 0, this means that any perturbation of the input up
to e will still satisfy the exact predicate. Designing robust algorithms in this
setting is difficult.

In terms of geometry, we can think of the imprecise predicates as inducing
“fat objects” (so a point becomes a ball, and a line becomes a cylinder, etc).
Indeed, this is basically what happens in the widespread programming trick
called epsilon tweaking [94]. See also [77] for another example. Milenkovic [61]
proposed to perturb objects so as to guarantee a minimum separation distance
(“well separated”). This ensures that approximate predicates actually yield
correct decisions.

Consistency and Topological Approach. The question “what is geom-
etry?” has been asked many times throughout the history of mathematics. In
geometric computing, the formula “Geometry = Combinatorics + Numerics”

is particularly suggestive (combinatorics here can be identified with topology).
For example, in representing the convex hull of a set of points, the combina-
torics comprises the set of faces (of each dimension) and their incidence rela-
tions, and the numerics comprises the point sets determined by the faces, given
in some suitable form (say the equations of affine subspace spanned by the
faces). There is an implicit consistency relation that must hold between the
combinatorics and the numerics. The consistency approach to robustness
says that our main goal is to ensure that the combinatorics we compute must
be part of some consistent geometric object. This amounts to saying that the
decisions we make in evaluating predicates during a computation must never
be inconsistent. Below we give a slightly more formal version of the consistency
approach.

Fortune [27] points out that in principle it is possible to make many algorithms
“parsimonious” (meaning that we only perform conditional tests which are
independent of the results of previous tests). The basis for this observation is
that, assuming all predicates are polynomial sign evaluations, the question of
whether the result of current predicate evaluation is a logical consequence of
previous evaluations can be phrased as a statement of the existential theory of
the reals. This question is at least NP-hard but decidable in polynomial space
[17]. Using such a decision procedure, we simply avoid all redundant predicate
evaluations.

In practice, of course, we want more than just consistency. Otherwise, we can
give the non-redundant predicates any answer we like! In any case, strictly
parsimonious algorithms are infeasible. But we can often minimize the depen-
dency between the combinatorial part and numerical part of an algorithm. This
is the gist of the Topology-Oriented Approach advocated in a series of papers
by Sugihara and Iri [86,85,82,83,81,87|. In making decisions, the combinatorial
part is given primacy over the numerical part. As a result, the combinatorial
structures is guaranteed to be valid (in the sense of satisfying certain selected
properties such as planarity). Somewhat similar ideas are advocated by Schorn
[75], but phrased in terms of ensuring properties of primitive operations. For
instance, these properties ensure topological properties.

For any particular problem, the topology-oriented approach leaves open as
to which topological properties the algorithm designer should pick. A general
and systematic theory is possible using the idea of “realizable” combinatorial
structure. This is first advocated by Hoffmann, Hopcroft and Karasick [40].
Assume that the algorithm has to compute a geometric object D, which we
view as combinatorial structure G together with associated numerical data :
D = (G, \). Without much loss of generality, we can assume G = (V, E) is a
directed graph and A : VU E — R" is a labeling function. Note that this is
just a formalized of the “geometry=combinatorics+numerics” formula above;
see [93] for further details. While A may be regarded as arbitrarily specified,

certain choices of A are defined to be “consistent”. We say G is valid if there
is a A which is consistent. In this setting, we can classify an algorithm A to be
geometrically exact if for any input I, the output A(I) = (G, A1) is such
that G is the correct structure. For our current purposes, we will not require
A; to be consistent. We say that A is consistent if G} is valid. Realistically, we
would like consistent algorithms to satisfy additional properties: for instance,
G ought to be the correct structure for some small perturbation I’ of I.
Hoffmann et all [40] pointed out that designing consistent algorithms may lead
to answering hard questions equivalent to theorem proving (akin to Fortune’s
parsimonious algorithm).

2.8 FEzxact Geometric Computation

We now describe an approach that, strictly speaking, ought to be classified un-
der arithmetic approaches. In [94], we call this the Exact Geometric Com-
putation (EGC for short) to emphasize that the “exactness” is in the geom-
etry, not in the arithmetic. This is precisely what we defined as geometrically
exact in the previous paragraph.

But if EGC is basically an arithmetic approach, how does it ensure anything
about geometry? This is a simple but critical point, so we will elaborate on
it. As above, assume that our algorithm A on input I computes a geometric
object Dy = (Gr, A\;). We had already stated above that combinatorics (i.e.,
Gr) is completely determined by the predicate evaluations in the algorithm
A(I). To see this, view each computational step of A as either a construction
step or a conditional step. The former computes new values, and the latter
causes the program to branch. Different computational paths lead to different
combinatorial outputs. Next, assume that each conditional step evaluates a
real predicate and branches depending on the sign of the predicate evaluation
(—1,0,+1). Thus to ensure exact combinatorics, it suffices to ensure that all
predicates are evaluated correctly.

In short EGC simply amounts to ensuring that we never err in predicate eval-
uations. Two important computational consequences flow out of this simple
assertion:

(1) EGC is computationally feasible. EGC represents a significant relaxation
from the naive concept of numerical exactness. We only need to compute
to sufficient precision to make the correct predicate evaluation. This has led
to development of techniques such as precision-driven computation [96], lazy
evaluation [4,3], adaptive computation [80] and floating-point filters [29]. Thus
the pessimistic bounds [97] of exact rational arithmetic are unnecessary. Let
us expand on this remark, using the example of floating-point filters. Two

preliminary remarks are in order: first, the gold standard of efficiency in scien-
tific computation is machine floating-point arithmetic. Second, this standard
works reasonably well for many applications, with non-robustness arising rel-
atively infrequently. Floating-point filters exploit these two remarks, and seek
to achieve robustness at the cost of having only a small constant factor over-
head over the gold standard. Basically, one maintains some upper bound on
the error in the machine floating-point arithmetic. We evaluate predicates us-
ing machine arithmetic, using the error bound to determine whether we can
trust the result (this is the “filter test”). Only if the filter test fails, we fall back
to some other expensive but foolproof evaluation of the same predicate. The
cost of this filtered arithmetic has a fixed overhead and a variable overhead:
the former is a small constant factor and the latter can be a large overhead.
Under the assumption that the filter fails infrequently, the average cost of
the variable overhead is also a small constant. In section 4, we treat filters in
detail.

(2) It is possible to create a software library whereby programmers can write
robust programs just by calling the library to perform their arithmetic. In other
words, EGC can provide a general and purely arithmetic solution for a large
class of problems. By “general solution” we mean that the EGC solution need
not! be problem-specific or algorithm-specific. This contrasts with the ge-
ometric approaches where solutions invented for one problem often do not
extend to closely related problems. By “purely arithmetic solution” we mean
that the user only has to use the right “number type” in their programs (in
place of the standard number types such as double found in programming
languages such as C or Java). The class of problems which is amenable to
such a treatment are the algebraic problems [94]. In the following, we use the
term EGC library to refer to any software library that supports for exact
comparisons.

The algebraic problems constitute the overwhelming majority ? of problems
treated in contemporary computational geometry. Early studies in EGC as-
sume that the number type is some form of big integer or big rational (e.g.,
[28]). This suffices for the class of bounded-depth rational problems [94], which
already cover all the problems that other approaches have successfully treated.
But for a EGC library to reach the algebraic class, we need an additional
sophistication not found in big number packages, or computer algebra sys-
tems for that matter, that is the ability to guarantee exact comparisons. Such
a capability® was first demonstrated in the Real/Expr Package [96]. What

1 But see [23] for algorithm-specific or [10] for problem-specific EGC analysis.

2 The problems found in standard references [71,24,65,8,63,20,33] are all algebraic.
In fact it is not easy to find non-algebraic examples, but they arise in special kinds
of Voronoi diagrams, in the form of the logarithmic spiral, and in non-holonomic
motion planning.

3 Although this was only implemented for +, —, x, = and /-, the basic technique

Real/Expr offers is the ability to guarantee any number of correct bits when
computing a number. These bits can be either relative or absolute bits; in
floating-point number representation, relative (resp., absolute) bits means we
count the bits from the most significant bit (resp., the radix point). This is
generalization of exact comparisons, because the exact comparison of o and
amounts to computing o — 8 to guarantee 1 relative bit. The Core Library is a
second generation version of Real/Expr with two visible changes: it adopts a
standard programming semantics for assignments, and provides a natural and
simple “numerical accuracy” model (API) [91].

Geometric exactness is a solution to the non-robustness problem because the
root cause is numerical errors that lead to wrong predicate evaluations and
ultimately inconsistent geometry. By definition, exact geometry is consistent.
For many applications, consistent geometry is sufficient. This is especially true
in situations where we know the input is approximate anyway. Why bother
with eract geometry? The reason can be found in a previous remark that
ensuring consistency may be as hard as geometry theorem proving [40]. In
short, geometric exactness is often the best way to ensure consistency.

EGC is now in the midst of a development that seemed quite remote 10
years ago: it is now possible for any programmer to routinely write completely
robust and reasonably efficient geometric code for a large class of important
problems. There are basically two* EGC libraries currently: LEDA [11,45] and
the Core Library [48,44]. The CGAL library [43] also provides robust algorithms
based on EGC principles. The major challenge of EGC is efficiency, both in
practical terms as well as theoretically.

At the practical level, users of EGC libraries often find surprising efficiency
penalties for innocuous decisions. These typically involve the use of divisions
and square-roots in expressions. For instance, in going around the vertices of
a polygon (P, Py, ..., P,) where Py, = P,, one might have a while loop condi-
tioned on the test P; # P, (for i = 1,2,...n) where P, is the first point of the
polygon. In an actual example, where the P;’s are computed points on the unit
2-sphere (with coordinates that is a fraction with a square-root in the denom-
inator), this slowed the computation to a halt. In this case, one should simply
perform the check for i = n. Another example, if there are common subexpres-
sions involving square-roots, the difference between writing code that shares

extends to all algebraic computation. Moreover, the addition of /- captures the
most important subclass of the algebraic problems beyond the rational problems.
4 LEDA is a very large library that offers many services, including a large suite
of data structures and algorithms. We are only referring to a specific facility here,
namely the number type called LEDA real. Core Library is based on the Real/Expr
Package [96] which has the basic EGC capability but without the efficient techniques
developed in recent years.

these subexpressions and code that does not share can be huge. But this phe-
nomenon should not surprise us — it happens in any high level programming
language that is not implemented correctly with the right compiler technology.
Thus, all modern compilers are knowledgeable about common subexpressions,
loop constants, and a host of other tricks. There is no reason why similar
technology should not be developed for EGC to take these concerns out of the
minds of programmers. For that matter, using machine floating-point arith-
metic is not without its pitfalls for the unwary user. EGC arithmetic is no
different.

An area of surprise for users of EGC is numerical input and output. Recall
that in EGC, inputs must be assumed to be exact. But if we input a value like
1.23 in conventional languages, this will be converted to the closest machine
representation. This can be surprising. In EGC, we represent numbers like /2
exactly, but during the computation, some approximation to v/2 is computed.
If we want to output this value to, say, 100 digits, we may not see® this
many digits because the currently computed approximation has fewer than
100 correct digits. We refer to [92] for a discussion of many of these issues in
the context of the Core Library.

The theoretical challenges of efficiency for EGC libraries relates to high degree
algebraic computation. While EGC enables provable robust implementations
of a wide range of geometric problems (basically subsuming those problems
that other approaches can solve), high degree algebraic computations such as
found in CAD applications remain a severe challenge. In this paper, we will
address three important areas in which there is significant recent development:
constructive root bounds, adaptive precision computation and floating-point
filters.

We note two important problem areas, one practical and the other theoreti-
cal, that are central to EGC. At present, we have little experience with EGC
solutions as embedded in large software systems, such as in a CAD or mesh
generation system. Here, we need to cascade the output of one algorithm into
the input of another algorithm. The geometric output of an EGC algorithm
may be in high precision, and we would like to reduce this precision in the
cascade. The geometric rounding problem is this: given a consistent ge-
ometric object 7T in high precision, to round it to a consistent object T" at
a lower precision. For instance, suppose 7 is a triangulation (in the plane or
higher dimensions). Note that we do not assume that 7" is combinatorially
equivalent to 7" — only consistency is required. Otherwise, it is easy to run
into N P-hardness, as seen in [60]. In particular, we expect topology to change
in 7" (e.g., if two close points in 7" may collapse to a single point in 7”). In

5 Worst, if the EGC system is incorrectly implemented, we may see 100 digits
though many of these may be wrong without the user realizing this.

10

the robustness literature, “rounding problems” are often a composition of two
problems: a construction problem followed by a bona-fide rounding problem.
For instance, the problem of snap rounding [39] for intersecting line segments
is such a composite problem. In EGC, we prefer to reduce such composite
problems to two distinct steps: first compute some geometric object 7', and
then rounding 7" to a lower precision version 7”. The first step is considered
solved using EGC. The second step is what we call the rounding problem. See
also [34].

The central theoretical problems relate to the constant zero problem for
a set () of algebraic operators over an appropriate algebraic domain: given a
(constant) expression E over €, is E = 07 The qualification “constant” means
that Q (or E) does not contain any variables. The open questions here relates
to non-algebraic expressions. If €2 includes the rational operations and one
transcendental function (such as sin(z) or log(z)), is this problem decidable?
The reason for our interest in non-algebraic functions is because, without such
a decidability result, we do not even know whether there exists EGC solutions
for non-algebraic problems.

3 Constructive Root Bounds

The fundamental decision problem in EGC computation is determining the
sign of a constant algebraic expression. Comparison between two algebraic ex-
pressions is easily reduced to this problem. Although it is possible to solve this
problem by purely algebraic and symbolic means, the current EGC libraries
follow a numerical approach first used in Real/Expr based on root bounds.
The numerical approach seems to be inherently more efficient and depends on
the notion of a root bound. Although there are many forms of “root bounds”,
our definition below makes it plain that we are interested in bounding roots
away from 0.

In this paper, an expression E refers to a syntactic object constructed from
a given set) of operators over the reals R. Each operator in €2 either has a
fixed arity (which is a natural number) or is “anadic” (taking any number of
arguments). Let £(€2) denote the set of expressions over 2. For instance, if 2 =
{0,1,z,4, —, X, /-}, then £(Q) is the set of division-free radical expressions
over the single variable x. For our purposes, {2 is not allowed to have variables;
so each operator of zero arity denotes a real constant. Thus E € £(£2) denotes a
real value val(E), defined inductively in the natural way. Since some algebraic
operators are partial, this value may be undefined (written val(E) =1). Our
expressions are basically straightline programs (cf. [90]), which are basically as
rooted, labeled directed acyclic graph (DAG). Thus, sharing of subexpressions
is allowed. We will need the sign function, sign(E) € {—1,0,+1}. But since

11

val(E) is partial, the sign function is also partial: sign(E) =1 iff val(E) =1.
Below, we follow the usual abuse of notation by writing “E” instead of val(E).

Definition 1 We call b > 0 a root bound for an expression E if the follow-
ing holds: if E #1 and E # 0 then |E| > b. We also say (—log,b) is a root
bit-bound for E.

To determine the sign of E from a root bound, we compute a numerical ap-
proximation F such that if E =1 then E' =7; otherwise, |[E — E| < % Then

sien(E) if |[E| > b or E =
sign(E) — gn(E) if [E] = 5 T (1)
0 otherwise

Following [52], we classify the algebraic expressions into five categories as
follows:

o (= {£, x} UZ (where Z are the integers). Thus y-expressions are poly-
nomials.

e O = QU {+}. Thus Q;-expressions are rational expressions.

o Oy =0y U{ :n >2}. Thus Qs-expressions are radical expressions.

o (3 = Oy U{Root(P,i) : P € Z[z]}. Here Root(P, i) means the i-th real root
of the polynomial P, which is assumed to be presented by its sequence of
n + 1 integer coefficients if deg(P) = n.

o Oy = Qy U{Root(P,i) : P € Qq[x]}. Thus Q4 expressions include general
algebraic expressions.

We can see from (1) that root bounds determine the worst-case complexity
in exact sign determination. Thus, a main problem here is to find tight root
bounds, and the efficient ways to compute them.

3.1 Review of Constructive Root Bounds

The problem of root bounds has been extensively studied (e.g., [55] or [59,
chap. 2]). However, from an algorithmic point of view, many classical results
are not constructive. Here the notion of “constructive” depends on the repre-
sentation of expressions. Directed acyclic graphs (DAGs) are common forms
of representation. In such cases, constructive bounds could mean those that
can be computed inductively on the DAG structure. Thus, the constructive
root, bound problem is stated as: given a set £ of expressions (e.g., the radi-
cal expressions), give a set of inductive rules for computing a root bound for
each expression in £. Typically, the inductive rules are based on some prop-
erties about the generation polynomials (of which the expression concerned is

12

E d 12 h
rational § | 1 Va2 +1? max{|al, |b|}
E, + B, dydy £(1i2£(2112d1d2+min{d1,d2} (h121+d1)dg(h2m)dl
Ey x By | dids e e (hivTI+di)® (hov/T + dz)h
Ei+ By, | didy i (hivV1+ d7)% (hay/T + do)®™
YE, kdy 0 hy
Table 1

Rules for degree-length and degree-height bounds

a root). A number of constructive root bounds have been proposed.

Canny’s bound. Canny [16] shows that given a zero-dimensional system
Y. of n polynomial equations with n unknowns, if (a4,...,qy,) is a solution,
then |a;| > (3dc)™?" for all non-zero component «;. Here ¢ (resp., d) is an
upper bound on the absolute value of coefficients (resp., the degree) of any
polynomial in the system. An important proviso in Canny’s bound is that the
homogenized system S has a non-vanishing U-resultant. Equivalently, S has
finitely many roots at infinity. Yap [95, p. 350] gives the treatment for the gen-
eral case, based on the notion of “generalized U-resultant”. Such multivariate

root bounds are easily translated into a bound on expressions, as discussed in
[12].

Degree-length and degree-height bounds. The degree-length bound
[95] is a bound for general algebraic expressions, based on Landau’s root
bound. For an expression E, the algorithm computes the upper bounds on
the degree d and on length (|| - ||,) ¢ of the minimal polynomial of E. If E # 0,
then from Landau’s bound we know |E| > ;. The extended Hadamard bound
on polynomial matrix [32] is used to compute an upper bound of £. A simi-
lar degree-height bound based on Cauchy’s root bound is found in [96]. Here
“length” and “height” refer to the 2-norm and co-norm of a polynomial, re-
spectively. Both results are based on the resultant calculus. The bounds are
maintained inductively on the structure of the expression DAG using the re-
cursive rules found in Table 1, where the parameters d, £, h denote the upper
bounds for the degree, length and height, respectively.

Degree-measure bound. It is known that if a # 0, we have

@ < Ja] < m(a). 2)

13

1. | integer a lal 1
2. | E1+ Ey ’u,(El)l(Ez) + l(El)U(EQ) l(El)l(EQ)
3. E1 X E2 u(El)u(EQ) l(El)l(EQ)
4. | Fh1 + Ey U(El)l(Ez) Z(El)’u(Eg)
Table 2
BFMS Rules

Here, the measure m(«) is defined as |a,| - [T7*; max{1, |o;|}, where a,, is the
leading coefficient of a’s minimal polynomial, and «;’s are the conjugates of
Q.

Let o and (8 be two nonzero algebraic numbers of degrees m and n respectively.
The following relations on measures are given in [59],

m(a +) <2™m(a) m(5)™
m(a x B) <m(a)"m(B)™
m(a + B) <m(a)"m(B)"
m(a'/*) <m(a)
m(af) <m(a)*

Based on Mignotte’s work, Burnikel et al [12] develop recursive rules to main-
tain the upper bounds for degrees and measures of radical expressions and call
it the degree-measure bound. The degree-measure bound turns out to be al-
ways better than the degree-length bound [12]. Improvements over the original
degree-measure bound are reported in [52,78].

BFMS bound. One of the best constructive root bounds for the class of
radical expressions is from Burnikel et al [12] (hereafter called the “BFMS
bound”). For division-free expressions, it is an improvement over previously
known bounds and is essentially tight. But in presence of divisions, the BFMS
bound is not necessarily an improvement of the degree-measure bound. Con-
ceptually the BFMS approach first transforms a radical expression F to a
quotient of two division-free expressions U(E) and L(E). Two parameters
u(FE) and [(E), the upper bounds on the conjugates of U(F) and L(F), re-
spectively, are maintained by the recursive rules in Table 2. Clearly, if E is
division-free, then L(E) = 1 and val(F) is an algebraic integer (i.e., a root of
some monic integer polynomial).

For an expression E having r radical nodes with indices ki, ko, ..., k,, the

14

BFMS bound is given by

val(E) # 0 = (uw(E)"®’-1(E))~" < |val(E)| < w(BE)I(E)®7=1 (3)

where D(E) =[];_, ki, and u(FE) and [(E) are (respectively) upper bounds on
the absolute values of algebraic conjugates of val(U(E)) and val(L(E)).

For division-free expressions, the BFMS bound improves to

val(E) # 0 = |val(E)| > (u(E)P®-1)~L, (4)

Improved and generalized BFMS bound. Note that the root bit-bound
in (3) is quadratic in D(F), while in (4), it is linear in D(E). This quadratic
factor can be a serious efficiency issue. Consider a simple example: E = (\/z +
V) —4/T +y + 2,/7y where z,y are L-bit integers. Of course, this expression
is identically 0 for any z,y. The BFMS bound yields a root bit-bound of
7.5L + O(1) bits. But in case, z and y are viewed as rational numbers (with
denominator 1), the bit-bound becomes 127.5L + O(1). This example shows
that introducing rational numbers at the leaves of expressions has a major
impact on the original BFMS bound.

Recently, Mehlhorn et al [57] have extended the BFMS bound to support
general algebraic expressions (the 4 expressions). Their new root bit-bound
depends on D(E) linearly for most algebraic expressions. The significant im-
provement is obtained from a trick to avoid the doubling of the degree in
transforming F into a division of two algebraic integer expressions. For radi-
cal expressions, it can be shown that this new bound is always an improvement
over the original one, and depends on D(FE) linearly.

Scheinerman bound. This bound adopts an interesting approach based
on matrix eigenvalues [73]. Let A(n,b) denote the set of eigenvalues of n x n
matrices with integer entries with absolute value at most b. It is easy to see
that A(n,b) is a finite set of algebraic integers. Moreover, if a € A(n,b) is
non-zero then |a| > (nb)' ™. Scheinerman gives a constructive root bound for
division-free radical expressions F by maintaining two parameters, n(F) and
b(E), satisfying the property that the value of E is in A(n(E),b(FE)). These
recursive rules are given by Table 3.

Note that the rule for \/c__d is rather special, but it can be extremely useful. In
Rule 6, the polynomial P(z) is given by Y% |a;|z* when P(z) = ¥¢ , a;2".
This rule is not explicitly stated in [73], but can be deduced from an example

he gave. An example given in [73] is to test whether a = v/241/5 — 2/6—/3

15

1. | integer a 1 |al

2. Ved 2 | max{|c|, |d|}
3. | E1+ Ey || ning b1 + bo

4. | E1 X Ey || ning b1bo

5. YE, kny by

6. | P(E)) n P(ny1by)

Table 3
Scheinerman’s Rules

is zero. Scheinerman’s bound requires calculating o to 39 digits while the
BFMS bound says 12 digits are enough.

Li-Yap bound. In [52], we give a new constructive root bound that is ap-
plicable to a general class of algebraic expressions (£23). Our basic idea is to
bound the leading and tail coefficients, and the conjugates of the algebraic ex-
pression with the help of resultant calculus. The new bound gives significantly
better performance in many important computations involving divisions and
root extractions. For any algebraic number «, we will exploit the following
relation:

a# 0= lal > (p(a)* @ ead(a)) ", (5)

where p(a) = max{|£| : £ is a conjugate of a}, deg(a) is the degree of the
minimal polynomial Irr(«) of o and lead(«) is the leading coefficient of Irr(«).
A similar relation was also used in [12] for bounds on algebraic integers. Our
bound requires the computation of three upper bounds

D(E), 1cE, u(E)

on the corresponding parameters deg(E),lead(E) and p(E). Suppose that E
has k radical nodes or root-of-polynomial nodes {ry,rs,...,7:}. We choose
D(E) = [I¥_, k; where k; is either the index of r; if 7; is a radical node, or the
degree of the polynomial if r; is a polynomial-root node. Due to the admission
of division, we also need to maintain upper bounds tc(E), M(E) on tail(E)
and m(E) in bounding lead(E). Here the tail coefficient tail(E) is defined as
the constant term of Irr(E).

Table 4 gives the recursive rules to maintain lc(E), tc(E) and M (E).

The upper bounds on conjugates, 7i(FE), are obtained through resultant cal-
culus and standard interval arithmetic techniques. It turns out that it is nec-

16

E 1c(E) tc(E) M(E)
1. | rational § |b| |al max{|al, |b|}
2. | Root(P) | [lead(P)| |tail(P)| P,
3. | By £ By | 1cP2cl | MP>MmPr2P®E) | pPr ol)
4. | By x By || P21 et MP> P
5. | By + Ey lcP> e tcP21c0 MP2 M
6. | VE, Icq tcq My
7. | EF 1ck tck MF

Table 4
Recursive rules for 1c(E) (and associated tc(E) and M (E))

essary to maintain a lower bound v(FE) on the conjugates at the same time.
The recursive rules to maintain these two bounds are given in Table 5.

E a(E) v(E)
1. | rational ¢ | %] 15|
2. | Root(P) 1+ [|Pllso (14 || Poo) ™
3. | Ev£ By | B(E1) + E(E2) | max{M(E)~*, (a(E)PE)~te(E)) 1}
4. | By x By B(EL)R (E) v(E1)v(Ey)
5. | By + Es B(E1) /v(Es) v(E1)/R(E?)
6. | VE1 Vi(Er) Vv(Er)
7. | EF fi(En)k v(E)*
Table 5

Recursive rules for bounds on conjugates

Finally, we obtain the new root bound as follows: Given an {23-expression F,
if E'# 0, then

E| > (@(E)PEVie(E) . (6)

We implemented the new bound in our Core Library and experiments show
that it can achieve remarkable speedup over previous bounds in the pres-
ence of division [52]. Although we have described our bounds for the class of
Q23-expressions, it should be clear that our method extends to more general
expressions.

17

3.2 Comparisons of Constructive Root Bounds

Comparisons between various constructive root bounds can be found in [12,52].
In general, a direct comparison of the above root bounds is a difficult task
because of the different choice of parameters and bounding functions used.
Therefore, following the tact in [52], we compare their performance on various
special subclasses of algebraic expressions.

1. For division-free radical expressions, the BFMS bound is never worse than
all the other bounds. Moreover, for this special class of expressions, Li-Yap
bound is identical to the BFMS bound.

2. For general algebraic expressions, in terms of root bit-bound, Li-Yap bound
is at most D - M where D is the degree bound, and M is the root bit-bound
from the degree-measure bound.

3. Considering the sum of square roots of rational numbers (a common problem
in solving the shortest Euclidean path problem), it can be shown that each
of Li-Yap bound and the degree-measure bound can be better than the other
depending on different parameters about the expressions. But both of them
are always better than the BFMS bound.

4. Given a radical expression F with rational values at the leaves, if E has no
divisions and shared radical nodes, Li-Yap bound for F is never worse than
the BFMS bound, and can be better in many cases.

5. A critical test in Fortune’s sweepline algorithm is to determine the sign
of the expression E = “+‘[% where a’s, b’s and d’s are 3L-, 6L- and
2L-bit integers, respectlvely The BFMS bound requires (79L + 30) bits and
the degree-measure (D-M) bound needs (64L~+12) bits. Li-Yap root bit-bound
improves them to (19L + 9) bits. We generate some random inputs with dif-
ferent L values which always make E' = 0, and put the timings (in seconds)
of the tests in Table 6. The experiments are performed on a Sun UltraSPARC
with a 440 MHz CPU and 512MB main memory.

L 10 20 50 100 200
NEW | 0.01 | 0.03 | 0.12 | 0.69 | 3.90
BFMS || 0.03 | 0.24 | 1.63 | 11.69 | 79.43

D-M || 0.03 | 0.22 | 1.62 | 10.99 | 84.54

Table 6
Timings for Fortune’s expression

18

3.8 Treatment of Special Cases

Root separation bounds. In both the Core Library and LEDA, the com-
parison of two expressions o and (is obtained by computing the root bound
of o — 5. However, we can use root separation bounds [95] for any polyno-
mial P that has « and § as roots. If P(X) € C[X] is a non-zero polynomial
polynomial, sep(P) denotes the minimum |o; — «;| where o; # o range over
all pairs of complex roots of P. When P has less than two distinct roots, de-
fine sep(P) = oo. The following general bound of Rump [72] (as rectified by
Schwartz [76]) is

-1
sep(P) > [2- ™2 2(|[Pos +1)"]

where m is the degree of P. Suppose A(X) and B(X) are the minimal poly-
nomials for @ and 3, then |a— 3| > sep(AB). Therefore, if we maintain upper
bounds d, d’ on the degrees of A and B, and upper bounds A, b’ on the heights
of A and B, we obtain

@ = B = [AH'(1 +n)] " (20) (7)

where n = max{d, d'} (see [95, p.173]). The advantage of using equation (7) is
that the root bit bound does not have a dd’ term, as would be the case if we
use resultant calculus. Note that using this bound does not nicely fit into our
recursive root bound framework (in particular, it does not generate bounds for
a new minimal polynomial). On the other hand, it is unnecessary to maintain
parameters for the minimal polynomial of @ — 8 since this is not an actual
expression that the user constructed.

Zero test. Zero testing is the special case of sign determination in which
we want to know whether an expression is zero or not. Many predicates in
computational geometry programs are really zero tests (e.g. detection of de-
generacy, checking if a point lies on a hyperplane). In other applications, even
though we need general sign determination, the zero outcome is very common.
For instance, in the application of EGC to theorem proving [90], true conjec-
tures are equivalent to the zero outcome. In our numerical approach based on
root bounds, the complexity of sign determination is determined by the root
bound when the outcome is zero. Since root bounds can be overly pessimistic,
such tests can be extremely slow. Hence it is desirable to have an independent
method of testing if an expression is zero. Such a zero test can be used as
a filter for the sign determination algorithm. Only when the filter detects a
non-zero do we call the iterative precision numerical method.

Yap and Blomer [6] noted that for the case of sum of square roots of integers,

19

zero testing is deterministic polynomial time while the sign determination
problem is not known to be polynomial time. Blémer [5] gave a probabilistic
algorithm for un-nested real radical expressions. When the radicals are nested,
we can apply denesting algorithms [46,50]. Note that these methods are non-
numerical methods.

4 Precision-Driven Computation

The idea of adaptive precision computation has many manifestations in EGC.
Here, we want to describe the approach called precision-driven computa-
tion [96], i.e. we wish to approximate the value of an expression F to some
user-specified precision p. We will propagate the precision p to all the nodes
in E using suitable inductive rules. In the simplest case, this propagation
may proceed only in one direction from the root down to the leaves. Then,
we evaluate the approximate values at the leaves and recursively apply the
operations at each node from the bottom up. In our implementations, the
approximate values at each node is a big float number. Complications arise
when the propagation of precision requires bounds on the magnitude of the
values at some nodes. This is where the root bounds from the previous section
become essential.

In the literature, a technique called “lazy evaluation” (e.g, [4]) has superfi-
cial similarities to our method. However, lazy evaluation typically “pumps”
increasingly precise values from the leaves to the root, and simply tracks the
forward error. If this error is larger than the desired precision at the root, the
process is iterated. Note that this is insufficient to guarantee the sign of an
expression (in particular, it cannot detect a zero value in a finite number of
iterations).

In the following, we will describe some improved methods for precision-driven
evaluation of radical expressions (usually represented as DAGs internally). It
is assumed that the leaves of these expressions are rational constants.

4.1 Guaranteed Precision Approximation

We use a notion of numerical precision from [96] which combines both absolute
and relative precisions in one framework: given a real number X, and extended
reals a,7 € R U +00, we say that a real number X is an approzimation of
another real X to (composite) precision [r,a], denoted X ~ X [r,a|, provided
either

X-X[<27 x| or |[X-X|<2

20

When ¢ = 400 (resp., 7 = +00), then [r, a] is simply a relative (resp., absolute)
precision bound. In practice, r and a will be integers. Note that under the
above definition, when X = 0, the relative precision condition actually requires
an exact evaluation.

As we discussed in Section 3, expressions are usually constructed as a DAG.
Along with this construction, we first compute the root bounds from bottom-
up. The next step is to approximate the expression to some specified absolute
or relative precision. For example, a special case, sign determination, can be
solved by approximating the expression to an absolute precision determined
by root bounds.

In the precision driven approach, the approximation process starts with prop-
agating precision requirements down the DAG. An algorithm to propagate
composite precision bounds is described in [67, chapter 7]. Here, we describe
a simpler and more accurate method. First we translate the composite bound
[r,a] to an absolute error bound ag such that if [X — X| < ap then
X ~ X [r,a]. It is not hard to see that it is sufficient to set

ap =max{27" |E|,27}.

Note that although here we may use the value |E| (actually only needed when
r is finite), in practice, we use its lower bound to avoid the exact evaluation
of E. We will discuss how to compute such bounds in the following sections.

The rules to propagate ag to the children of E are presented in the second
column of Table 7. If Ey, Ey are the children of E, we want to define ag,
(1 = 1,2) in such a way that if E; satisfies |E; — E;| < ag, then E satisfies
|E — E | < ag. For simplicity, we write ag, for a;. Here, F is obtained by
applying the operator at E to E, Fy, computed to some specified precision.
The rule for computing this approximation is given in column 3 of Table 7. A
notation used in column 3 is that, for any real X and o > 0, (X), refers to
any approximation X for X that satisfies the bound X — X| <a.

In summary, column 2 tells us how to propagate absolute precision bounds
downward towards the leaves, and column 3 tells us how to compute approx-
imations from the leaves upward to the root. At the leaves, we assume an
ability to generate numerical approximations to the within the desired error
bounds. At each node F, our rules guarantee that the approximate value at
I satisfies the required absolute precision bound ap.

Note that for the addition, subtraction and multiplication operations, the
computation of E can be performed exactly (as in [51]). But the present rules
no longer require exact computation. The new rule is clearly never worse than
the old rule (at the cost of at most one extra bit), but is sensitive to the actual
precision needed. In fact, for all operations, we now allow an absolute error

21

of %, Let us briefly justify the rule for £y x E5 in Table 7. It is sufficient to
ensure that |E — Elevg| < ag/2. But |E — EE\ < | Eo| 4+ ao| By | + ajan <
SE 4 08 4 o;—z? So it is sufficient to ensure that ®Z4-%£ 4 0;—‘22? < ag/2. Solving for
¢, we obtain ¢ > 2 + /4 + 2ag. See [51] for justifications of the other entries.

E Downward Rules Upward Rules
E1:|:E2 041:042:%0@ E:(E’;iﬁg)"‘_f?
2
E) x Ey | If ag > |E| then E = (E1 x E3)en
~ 2
return to parent node with £ = 0.
else

let ¢ > 2+ /4 + 2ag, and
o) = O‘TEmin{l,l/|E2|},
ag = 22 min{1,1/|E|}.

E| + B, a1 = ap|Bs|/4, as = 4“;E‘|+E2§JE E=(E 0 E)aTE
YET o1 = agYVEF1)2 E = ({/E)ex
2
Table 7

Rules for (1) Propagating absolute precision ag and (2) Approximation E

Actually, column 2 is not exactly the rule one uses in implementation. We give
formulas for o; (i = 1, 2) in terms of |E}| and |Ey| to make the formulas easier
to understand. But it is generally not possible nor desirable to compute |E;|
exactly. Instead, we compute tight upper and lower bounds on the logarithms
of the expressions given for ar; and as, respectively.

It is obvious that if the ag at the root is 0, the rules in Table 7 basically say that
it requires an exact evaluation for each underlying node. The system may reject
some of such numerical approximation requests because that cannot always
be finished within finite time and space, particularly when the expression is
nonrational.

4.2 Bounds on the Magnitude of Fxpressions

In Real/Expr and Core Library, the evaluation begins by computing bounds
on the absolute value of each node (see [67]). Such bounds are needed for two
purposes: 1) propagating absolute precision bounds using the rules in Table 7,
and 2) translating a finite relative precision bound at root into an equivalent
absolute one.

We now review this magnitude bounds computation. For any expression FE,
we define MSB(F) to be |1g(|E|)]|. Intuitively, the MSB of FE tells us about
the location of the most significant bit of E. By definition, the MSB(0) =
—o0. For efficiency purpose in practice, we will compute a bounding interval

22

[u;;, ,ujg] that contains MSB(FE), instead of computing its true value. The rules
in Table 8 are used to maintain this interval.

E 1w Hg
rational ¢ [lg(4)] 1e($)]
E £ By, | max{ug,up}+1]| (B
By x B Wy + 1, Bg, + g,
Ey + Ey Ly — B, Hp, — B,
B |t /%] |15, /k |

Table 8
Rules for upper and lower bounds on MSB(E)

The main subtlety in this table is the entry for yz when E = E; + Ey. We call
this the special entry of this table because, due to potential cancellation,
we cannot derive a lower bound on MSB(E) in terms of the bounds on F;
and E5 only. If the MSB bounds cannot be obtained from the fast floating-
point filtering techniques, there are two possible ways to determine this entry
in practice. First, we could approximate E numerically to obtain its most
significant bit, or to reach the root bound in case £ = 0. Thus, this method
really determines the true value of MSB(F), and provides the entry shown in
the above table. This numerical approximation process can be conducted in
a progressive and adaptive way (e.g., doubling the absolute precision in each
iteration, until it finds out the exact MSB, or reaches the root bit-bound). The
second method is applicable only under certain conditions: either when F; and
E, have the same (resp., opposite) sign in the addition (resp., subtraction)
case, or their magnitudes are quite different (by looking at their MSB’s).
In either case, we can deduce the pg from the bounds on E’s children. For
instance, if pg, > pf, +1 then py —1is a lower bound for yuz. This approach
could give better performance if the signs of both operands are relatively easier
to be obtained.

Remark: In the implementation, one often assumes that uz and pf are ma-
chine integers. But it may be better to allow these to be machine floats,
since this can yield sharper bounds. Furthermore, we can re-interprete uy
and p}; to be upper and lower bounds on Ig|E| (and not |lg|E||). Note that
|k — uy| < 2™+ where m is the number of operations in E.

4.8 The Approrimation and MSB Algorithms

There are two important algorithms which we derive from the above tables:
one is APPROX(FE, ai) which computes an approximation of E to within the
absolute precision ag. The other algorithm is ComputeMSB(F, needUMSB,

23

needLMSB), which computes upper and/or lower bounds for MSB(E), follow-
ing the rules in Table 8. Another algorithm of interest is the sign determina-
tion, which can be reduced to an approximation to appropriate root bounds.

The algorithms APPROX and ComputeMSB form the basis of guaranteed pre-
cision computation in our Core Library. It should be noted that APPROX and
ComputeMSB are mutually recursive algorithms: this is because ComputeMSB
will need to call APPROX to compute the special entry (for py, 4 p,) in Table
8. Clearly, APPROX needs ComputeMSB for the downward rules (except for
addition or subtraction) in Table 7. It is not hard to verify that this mutual
recursion will not lead to infinite loops based on two facts: 1) the under-
lying graph of E is a DAG, and 2) for the addition/subtraction node, the
ComputeMSB may need to call APPROX, while the APPROX will not call
ComputeMSB at the same node again.

APPROX The APPROX algorithm has two steps: 1) distributing the pre-
cision requirement down the DAG, and 2) calculating an approximate value
from leaves up to the root. Here we only explain step (1) in details. We refer the
reader to [67] for details on the implementation of multi-precision arithmetic
in our libraries.

By looking at Table 7, we see that, for the purpose of precision propagation,
we do not have to compute the MSB bounds for all the nodes in an expression
DAG. Instead, one can deduce the following from the rules in that table:

Addition and subtraction ¥ = FE; + F5. No MSB bounds on FE;, Fy are
needed to propagate precision bounds.

Multiplication E = E; x Fy. Only the put’s of E;, Fy are needed.

Division ¥ = E; + E,. Only the bounds pgl and pp, are needed.

Root extraction E = {/E;. Only py is needed.

ComputeMSB Before precision requirements can be distributed based on Ta-
ble 7, the necessary MSB bounds, as discussed above, must be first computed.
We now develop a more sophisticated ComputeMSB algorithm to compute
only the required upper and lower MSB bounds. Let the refined algorithm
take two additional arguments: ComputeMSB(E, needUMSB, needLMSB)
where needUMSB and needLMSB are Boolean flags. The needUMSB (resp.,
needLMSB) flag says that an upper (resp., lower) bound on MSB(FE) is needed.

The lower and upper MSB bounds are needed in three places:

(1) in propagating absolute precisions from the root of the expression DAG;

24

(2) in the “relative-to-absolute” precision conversion at the root, when a
finite relative precision requirement r is present. Note that this is not an
issue in sign determination, in which we only use absolute precision;

(3) in the inductive rules to compute MSB bounds from (see Table 8).

Remember that APPROX is called in computing exact MSB’s for the “special
entry” in Table 7. However, this does not require extra MSB bounds to be
computed, since all bounds for distributing precisions have already been cov-
ered by the above item (1). Although all the MSB bounds can be computed in
a single top-down traversal of the DAG, for clarity, we compute them through
the mutual recursion of the ComputeMSB and APPROX algorithms. In the
algorithm, we prevent repeated computation of each bound by first checking
whether it has been computed when visiting a node. We simply present a
self-explanatory ComputeMSB algorithm here in a C++-like syntax:

Algorithm
ComputeMSB(E, needUMSB, needLMSB) {
if (E.umsb was computed) needUMSB = false;
if (E.1lmsb was computed) needLMSB = false;

if (both needUMSB and needLMSB are false) return;

switch (E.operation_type) {
case ’constant’:
if (needUMSB) E.umsb = ceillog(E.value));
// ceillog is ceiling of log_2
if (needLMSB) E.lmsb = floorLog(E.value));
// floorLog is floor of log_2
break;
case '+’ or ’-’:
if (needUMSB and (not needLMSB)) {
ComputeMSB(E.first, true, false);
ComputeMSB(E.second, true, false);
E.umsb = max{E.first.umsb, E.second.umsb} + 1;
}
if (needLMSB) {
APPROX(E, E.root_bound);
E.umsb = ceilLog(E.value);
E.1msb = floorLog(E.value);
}
break;
case ’x’:
ComputeMSB(E.first, needUMSB, needLMSB);
ComputeMSB(E.second, needUMSB, needLMSB);
if (needUMSB) E.umsb = E.first.umsb + E.second.umsb;
if (needlLMSB) E.lmsb = E.first.lmsb + E.second.lmsb;

25

break;

case ’/’:
ComputeMSB(E.first, needUMSB, needLMSB);
ComputeMSB(E.second, needLMSB, needUMSB);
if (needUMSB) E.umsb = E.first.umsb - E.second.lmsb;
if (needLMSB) E.lmsb = E.first.lmsb - E.second.umsb;
break;

case ’k-th root extraction’:
ComputeMSB(E.first, needUMSB, needLMSB)
if (needUMSB) E.umsb = E.first.umsb / k;
if (needLMSB) E.lmsb = E.first.lmsb / k;
break;

} //switch

} //ComputeMSB

5 Numerical Filters and Certification

In the EGC techniques of the previous sections, the use of multi-precision
arithmetic is essential. Another avenue to gain efficiency is to exploit machine
floating-point arithmetic which is fast and highly optimized on current hard-
ware. The basic idea is simple: we must “check” or “certify” the output of
machine evaluation of predicates, and only go for the slower exact methods
when this fails.

Model for checking and filtering. We give a simple formal model for
checking and filtering (certifying). Assume I and O are some sets called the
input and output spaces. In numerical problems, it is often possible to
identify I and O with R" for some n. A computational problem is simply a
subset 7 C I x O. A program is simply a partial function P : I — O. So P(z)
may be undefined for some z, denoted P(xz) 1; if P(z) is defined, then we write
P(z) |. We say P is a partial algorithm for 7 if for all z € I, if P(z) | then
(z, P(z)) € m. An algorithm A for 7 is a partial algorithm that happens to be
a total function. A filter for 7 is a total program F' : I x O — {0, 1} such that
F(z,y) = 1 implies (z,y) € m. A checker C for 7 is a filter for = such that
if C(z,y) = 0 then (z,y) ¢ m. Thus, a checker is a filter, but not necessarily
vice-versa. Finally, a filtered program for 7 is a pair (P, F') such that P
is a total program and F is a filter for 7. We view (P, F') as a new program
Pg, such that on input z, if F(z, P(z)) = 1 then Pp(z) = P(x); otherwise
Pp(x) 1. Thus Py is a partial algorithm for 7. We want to “anchor” a filtered
program (P, F') for 7 with an algorithm A for 7. The triple (P, F, A) would
constitute a program Pp 4 for m: on any input z, we define Pp 4(z) = Pp(x)
if Pr(x) |, otherwise Pr 4(z) = A(z).

26

Logically, the algorithm (P, F, A) is no different from A alone. It is the com-
plexity considerations that motivates (P, F, A). For, if C'4(x) denotes the com-
plexity of the algorithm A on input x, we have

Cipra)(z) = Cp(z) + Cr(z, P(z)) + 0
where
0 if F(z,P(z))=1,
Ca(x) else.

The algorithm (P, F, A) may be more efficient than A especially if Cy(z) is
expensive, and the filter is so efficacious that most of the time, § = 0.

5=

We consider the filtered program (P, F') for = because P is presumably some
useful program for 7. We can consider filter cascades: let F' be a sequence

F=(FR,...,F,) (8)

where each F; is a filter for 7. We call I a (n-level) filter cascade for 7. We
view F as a filter for = by defining F'(z,y) = max? ; F;(z,y). Thus F(z,y) =1
iff some Fj(z,y) = 1. In practice, we evaluate F'(z,y) by searching for the first
i such that F;(x,y) = 1; and otherwise output 0. Funke, et al [30,15] are among
the first to exploit multi-level filter cascades. A filter cascade (8) in practice
would have the property that each F; is more “effective” but less efficient than
Fiy.

In EGC, the filters are usually numerical filters. These filters certify some
property of a computed numerical value, typically its sign. This often amounts
to computing some error bound, and comparing the computed value with this
bound. When such filters aim to certifying machine floating-point arithmetic,
we call them floating-point filters. Ultimately, filters are used for efficiency
purposes in EGC, not for correctness purposes.

There are two main classifications of numerical filters: static or dynamic. Static
filters are those that can be computed at compile time for the most part,
and they incur a low overhead at runtime. However, static error bounds may
be overly pessimistic and thus less effective. Dynamic filters exhibit opposite
characteristics: they have higher runtime cost but are much more effective
(i.e., fewer false rejections). We can have semi-static filters which combine
both features.

Filters can be used at different levels of granularity: from individual machine
operations (e.g., arithmetic operations for dynamic filters), to subroutines
(e.g., geometric primitives) to algorithms (e.g. convex hull or meshing algo-
rithm).

27

Computing upper bounds in machine arithmetic. In the implementa-
tion of numerical filters, we need to compute sharp upper bounds on numerical
expressions. To be specific, suppose you have IEEE double values x and y and
you want to compute an upper bound on |z| where z = zy. How can you do
this? We can compute

Z |zl oyl (9)

Here, |- | is done exactly by the IEEE arithmetic, but the multiplication ® is
not exact. One aspect of IEEE arithmetic is that we can change the rounding
modes [89]. So if we change the rounding mode to round towards +oc, we will
have Z > |z|. Otherwise, we only know that zZ = |z|(1 +) where |[0| < u. Here
u = 279 is the “unit of rounding” for the arithmetic. We will describe the
way to use the rounding modes later, in the interval arithmetic section. So
here, instead of relying on rounding modes, we further compute w as follows:

W+ 20O (1+4u). (10)

It is assumed that overflow and underflow do not occur during the computation
of w.

Note that 1+4u = 1+ 2 °! is exactly representable. Therefore, we know that
@ = Z(1 4+ 4u)(1 4 ¢') for some ¢ satisfying |§'| < u. Hence,

W=2z(1+06)(1+¢)(1+ 4u)
> 2(1 — 2u + u?)(1 + 4u)
=2(1 + 2u — Tu® + 4u®)

vV
N

Note that if any of the operations @, © or @ is used in place of ® in (9), the
same argument still shows that @ is an upper bound on the actual value.

We summarize this result:

LEMMA 1 Let E be any rational numerical expression and let E be the ap-
proximation to E evaluated using IEEE double precision arithmetic. Assume
the input numbers in FE are IEEE doubles and E has k > 1 operations.

(i) We can compute an IEEE double value MaxAbs(FE) satisfying the inequality
|E| < MaxAbs(FE), in 3k machine operations.

(i) If all the inpul values are positive, 2k machine operations suffice.

(i1i) The value E is available as a side effect of computing MaxAbs(E), at the
cost of storing the result.

28

PROOF. In proof, we simply replace each rational operation in F by at
most 3 machine operations: we count 2 flops to compute Z in equations (9),
and 1 flop to compute @ in (10). In case the input numbers are non-negative,
z needs only 1 machine operation.

5.1 Static Filters

Fortune and Van Wyk [29] were the first to implement and quantify the efficacy
of filters for exact geometric computation. Their filter was implemented via
the LN preprocessor system. We now look at the simple filter they implemented
(which we dub the “FvW Filter”), and some of their experimental results.

The FvW filter. Static error bounds are easily maintained for a polyno-
mial expression E with integer values at the leaves. Let E denote the IEEE
double value obtained by direct evaluation of E using IEEE double operations.
Fortune and Van Wyk compute a bound MaxErr(F) on the absolute error,

|E — E| < MaxErr(E). (11)

It is easy to use this bound as a filter to certify the sign of E: if |F| >
MaxErr(F) then sign(FE) = sign(E). Otherwise, we must resort to some fall
back action. Unless we specify otherwise, the default action is to immedi-
ately use an infallible method, namely computing exactly using a Big Number

package.

Let us now see how to compute MaxErr(F). It turns out that we also need
the magnitude of E. The base-2 logarithm of the magnitude is bounded by
MaxLen(E). Thus, we say that the FvW filter has two filter parameters,

MaxErr(E), MaxLen(FE). (12)

We assume that each input variable z is assigned an upper bound MaxLen(z)
on its bit length. Inductively, if F' and G are polynomial expressions, then
MaxLen(FE) and MaxErr(F) are defined using the rules in Table 9.

Observe that the formulas in Table 9 assume exact arithmetic. In implemen-
tations, we have to be careful to compute upper bounds on these formulas. We
assume that the filter has failed in case of an overflow; it is easy to see that
no underflow occurs when evaluating these formulas. Checking for exceptions
has an extra overhead. Since MaxLen(FE) is an integer, we can evaluate the
corresponding formulas using IEEE arithmetic exactly. But the formulas for
MaxErr(FE) will incur error, and we need to use some form of lemma 1.

29

Expr E MaxLen(E) MaxErr(E)

Var z MaxLen(z) given max{0, 2MaxLen(E)_53}

F+G |1+ max{MaxLen(F),MaxLen(G)} | MaxErr(F') + MaxErr(G)
+2MaxLen(FiG)—53

FG MaxLen(F') + MaxLen(G) MaxErr(F)2MaxLen(G)

+MaxErr(G)2MaxLen(r)
+2MaxLen(FG) —53

Table 9
Parameters for the FvW filter

Framework for measuring filter efficacy. We want to quantify the ef-
ficacy of the FvW Filter. Consider the primitive of determining the sign of
a 4 X 4 integer determinant. First look at the unfiltered performance of this
primitive. We use the IEEE machine double arithmetic evaluation of this de-
terminant (with possibly incorrect sign) as the base line for speed; this is
standard procedure. This base performance is then compared to the perfor-
mance of some standard (off-the-shelf) Big Integer packages. This serves as
the top line for speed. The numbers cited in the paper are for the Big Integer
package in LEDA (circa 1995), but the general conclusion for other packages
are apparently not much different. For random 31-bit integers, the top line
time yields 60 time increase over the base line. We will say

o = 60 (13)

in this case; the symbol o (or ¢(31)) reminds us that this is the “slowdown”
factor. Clearly, o is a function of the bit length L as well. For instance, with
random 53-bit signed integers, the factor o becomes 100. Next, still with L =
31, but using static filters implemented in LN, the factor ¢ ranges from 13.7
to 21.8, for various platforms and CPU speeds [29, Figure 14]. For simplicity,
we simply say o = 20, for some mythical combination of these platforms and
CPUs. Thus the static filters improve the performance of exact arithmetic by
the factor

¢ =60/20 = 3. (14)
In general, using unfiltered exact integer arithmetic as base line, the symbol

¢ denotes the “filtered improvement”. We use it as a measure of the efficacy
of filtering.

In summary, the above experimental framework is clearly quite general, and
aims to reduce the efficacy of a particular filter by estimating a number ¢. In
general, the framework requires the following choices: (1) a “test algorithm”

30

(we picked one for 4 x 4 determinants), (2) the “base line” (the standard is
IEEE double arithmetic), (3) the “top line” (we picked LEDA’s Big Integer),
(4) the input data (we consider random 31-bit integers). Its simplicity means
that we can extract this ¢ factor from almost any® published experimental
papers. Another measure of efficacy is the fraction p of approximate values
E which fail to pass the filter. In [22], a general technique for assessing the
efficacy of an arithmetic filter is proposed based on an analysis which consists
of evaluating both the threshold value and the probability of failure of the
filter.

For a true complexity model, we need to introduce size parameters. In EGC,
two size parameters are of interest: the combinatorial size n and the bit size
L. Hence all these parameters ought to be written as o(n, L), ¢(n, L), etc.

Realistic versus synthetic problems. Static filters have an efficacy factor
¢ = 3 (see (14)) in evaluating the sign of randomly generated 4-dimensional
matrices (L = 31). Such problems are called “synthetic benchmarks” in [15].
So it would be interesting to see the performance of filters using “realistic
benchmarks”, meaning actual algorithms for natural problems that we want
to solve. But even here, there are degrees of realism. Let us’ equate realistic
benchmarks with algorithms for problems such as convex hulls, triangulations,
etc.

The point of realistic benchmarks is that they will generally involve a signifi-
cant amount of non-numeric computation. Hence the ¢-factor in such settings
may look better than our synthetic ones. To quantify this, suppose that a
fraction

B (0<B<1) (15)

of the running time of the algorithm is attributable to numerical computa-
tion. After replacing the machine arithmetic with exact integer arithmetic,
the overall time becomes (1 —)+ o = 1+ (0 —1)[. With filtered arithmetic,
the time becomes 1+ (0 — 1)3¢ 1. Thus efficacy factor ¢’ for the algorithm is
really

o = 1+ (c—1)8
1+ (o—-1)8/¢
It is easy to verify that ¢’ < ¢ (since ¢ > 1).

6 Alternatively, we could require these numbers as the minimum standard for any
experimental paper on filters.
7 While holding on tightly to our theoretician’s hat!

31

Note that our derivation assumes the original time is unit! This normalization
is valid in our derivation because all the factors o, ¢ that we use are ratios and
are not affected by the normalization.

The factor 3 is empirical, of course. But even so, how can we estimate this? For
instance, for 2- and 3-dimensional Delaunay triangulations, Fortune and Van
Wyk [29] noted that 8 € [0.2,0.5]. Burnikel, Funke and Schirra [15] suggest
a very simple idea for obtaining : simply execute the test program in which
each arithmetic operation is repeated ¢ > 1 times. This gives us a new timing
for the test program,
T(c)=(1-p)+cp.
Now, by plotting the running time 7(c) against ¢, we obtain 3 as the slope.

Some detailed experiments on 3D Delaunay triangulations have been made by
Devillers and Pion [21], comparing different filtering strategies, and conclude
that cascading predicates is the best scheme in practice for this problem.
Other experiments on interval arithmetic have been done by Seshia, Blelloch
and Harper [79].

5.2 Dynamic Filters

To improve the quality of the static filters, we can use runtime information
about the actual values of the variables, and dynamically compute the error
bounds. We can again use MaxErr(F) and MaxLen(FE) as found in Table 9 for
static error. The only difference lies in the base case: for each variable z, the
MaxErr(z) and MaxLen(z) can be directly computed from the value of z.

Dynamic version of the FvW filter. It is easy enough to convert the
FvW filter into a dynamic one: looking at Table 9, we see that the only mod-
ification is that in the base case, we can directly compute MaxLen(z) and
MaxErr(z) for a variable z. Let us estimate the cost of this dynamic filter. We
already note that MaxLen(F) can be computed directly using the formula in
Table 9 since they involve integer arithmetic. This takes 1 or 2 operations.
But for MaxErr(E), we need to appeal to lemma 1. It is easy to see that since
the values are all non-negative, we at most double the operation counts in the
formulas of Table 9. The worst case is the formula for £ = F'G:

MaxErr(FE) = MaxErr(F) 2MaXLen(G)+MaxErr(G)2MaXLen(F) poMaxlen(ra)-53

The value 2MaXLen(FG)-53 can he computed exactly in 2 flops. There remain 4
other exact operations, which require 2 x 4 = 8 flops. Hence the bound here is
10 flops. Added to the single operation to compute MaxLen(F') + MaxLen(G),
we obtain 11 flops. A similar analysis for £ = F' + G yields 8 flops.

32

After computing these filter parameters, we need to check if the filter predicate
is satisfied:
|E| > MaxErr(E).

Assuming F is available (this may incur storage costs not counted above), this
check requires up to 2 operations: to compute the absolute value of E and to
perform the comparison. Alternatively, if E is not available, we can replace E
by 2MaxLen(®) [y general, we also need to check for floating-point exceptions
at the end of computing the filter parameters (the filter is assumed to have
failed when an exception occurred). We may be able to avoid the exception
handling, e.g., static analysis may tell us that no exceptions can occur.

Fortune and Van Wyk gave somewhat similar numbers, which we quote: let
fe count the extra runtime operations, including comparisons; let f, count the
runtime operations for storing intermediate results. In the LN implementation,
12 < f, < 14 and 24 < f, < 33. The 36 < f. + f. < 47 overhead is needed
even when the filter successfully certifies the approximate result E; otherwise,
we may have to add the cost of exact computation, etc. Hence f, + f, is a
lower bound on the o-factor when using filtered arithmetic in LN. Roughly the
same bound of 0 = 48 was measured for LEDA’s system.

Other ideas can be brought into play: we need not immediately invoke the
dynamic filter. We still maintain a static filter, and do the more expensive
runtime filter only when the static filter fails. And when the dynamic filter
fails, we may still resort to other less expensive computation instead of jumping
immediately to some failsafe but expensive big Integer/Rational computation.
The layering of these stages of computations is called cascaded filtering
by Burnikel, Funke and Schirra (BFS) [13]. This technique seems to pay off
especially in degenerate situations. We next describe the BF'S filter.

The BFS filter. This is a dynamic filter, but it can also be described as
“semi-static” (or “semi-dynamic”) because one of its two computed param-
eters is statically determined. Let E be a radical expression, i.e., involving
+, —, X, +,4/-. Again, let E be the machine IEEE double value computed
from F in the straightforward manner (this time, with division and square-
roots). In contrast to the FvW Filter, the filter parameters are now

MaxAbs(E), Ind(E).

The first is easy to understand: MaxAbs(F) is simply an upper bound on |E].
The second, called the index of F, is a natural number whose interpretation
can roughly be that its base 2 logarithm is roughly the number of bits of
precision which are lost (i.e. which the filter cannot guarantee) at best in the
evaluation of the expression. Together, they satisfy the following invariant:

|E — E| < MaxAbs(E) - Ind(E) - 27 (16)

33

Of course, the value 27° may be replaced by the unit roundoff error u in
general for other floating-point systems.

Table 10 gives the recursive rules for maintaining MaxAbs(E) and Ind(E). The
base case (E is a variable) is covered by the first two rows: notice that they
distinguish between exact and rounded input variables. A variable z is exact
if its value is representable without error by an IEEE double. In any case, x
is assumed not to lie in the overflow range, so that the following holds

lround(z) — x| < |2[27%.

Also note that the bounds are computed using IEEE machine arithmetic,
denoted

® o, 0 0, v-

The question arises: what happens when the operations lead to over- or un-
derflow in computing the bound parameters? It can be shown that underflows
for ®, © and+/- can be ignored, and in the case of ® and @, we just have to
add a small constant MinDbl = 10719% to MaxAbs(E).

Expression E MaxAbs(E) Ind(FE)
Exact var. x T 0
Approx. var. z | round(z) 1
E=F+G MaxAbs(F') @ MaxAbs(G) 1 + max{Ind(F), Ind(G)}
E=FG MaxAbs(F') ® MaxAbs(G) 1+ Ind(F) + Ind(G)
_ |E|@(MaxAbs(F)oMaxAbs(G))
E=F/G (G oMax hbs(C)oTnd(G) s 1) 1 + max{Ind(F),Ind(G) + 1}
MaxAbs(F) @ F) @ E if F >0
E=+F (~) o F) N 1+ Ind(F)
VMaxAbs(F) ©2% if F =0

Table 10
Parameters of the BFS filter

Under the assumption (16), we can use the following criteria for certifying the
sign of E:

|E| > MaxAbs(FE) - Ind(E) - 27% (17)
Of course, this criteria should be implemented using machine arithmetic (see
(10) and notes there). One can even certify the exactness of E under certain
conditions. If F is a polynomial expression (i.e., involving +, —, x only), then

E=E provided

1 > MaxAbs(FE) - Ind(E) - 272 (18)

34

Finally, we look at some experimental results. Table 11 shows the o-factor
(recall that this is a slowdown factor compared to IEEE machine arithmetic)
for the unfiltered and filtered cases. In both cases, the underlying Big Integer
package is from LEDA. The last column adds compilation to the filtered case.
It is based on an expression compiler, EXPCOMP, somewhat in the spirit
of LN (see 5.3). At L = 32, the ¢-factor (recall this is the speedup due to
filtering) is 65.7/2.9 = 22.7. When compilation is used, it improves to ¢ =
65.7/1.9 = 34.6. [Note: the reader might be tempted to deduce from these
numbers that the BFS filter is more efficacious than the FvW Filter. But the
use of different Big Integer packages, platforms and compilers, etc, does not
justify this conclusion.]

BitLength L | Unfiltered ¢ | BFS Filter ¢ | BFS Compiled o
8 42.8 2.9 1.9
16 46.2 2.9 1.9
32 65.7 2.9 1.9
40 123.3 2.9 1.8
48 125.1 2.9 1.8

Table 11
Random 3 x 3 determinants

While the above results look good, it is possible to create situations where
filters are ineffective. Instead of using matrices with randomly generated inte-
ger entries, we can use degenerate determinants as input. The results recorded
in Table 12 indicate that filters have very little effect. Indeed, we might have
expected it to slow down the computation, since the filtering effort are strictly
extra overhead. In contrast, for random data, the filter is almost always effec-
tive in avoiding exact computation.

BitLength L | Unfiltered ¢ | BFS Filter ¢ | BFS Compiled o
8 37.9 24 14

16 45.3 24 1.4

32 56.3 56.5 58.4

40 117.4 1194 117.5

48 135.2 136.5 135.1

Table 12
Degenerate 3 x 3 determinants

The original paper [13] describes more experimental results, including the
performance of the BFS filter in the context of algorithms for computing
Voronoi diagrams and triangulation of simple polygons.

35

Dynamic filter using interval arithmetic As mentionned previously, a
simpler and more traditionnal way to control the error made by floating-point
computations is to use interval arithmetic [62,1]. Some work has been done by
Pion et al [69,70,9] in this direction.

The foundation of interval arithmetic is the representation of the error bound
on an expression F at runtime by an interval [E,,; E,| whose bounds are
floating-point values, and which contains E. So, for a given predicate evalua-
tion, intervals start in the form [x;z] when the input is exactly representable
as a double value, and tend to grow after some operations, accounting for the
error.

Each arithmetic operation +, —, X, +, v performed on intervals preserve the
inclusion property, that is, for each real value(s) contained in the operand
interval(s), the real result of the corresponding arithmetic operation will be
certified to belong to the resulting interval. Technically, this is usually achieved
by relying on the IEEE rounding modes.

It is clear that changing the rounding mode has a certain cost (mostly due
to flushing the pipeline of the FPU), but the remark has been made that it
can usually be done only twice per predicate : at the beginning by setting the
rounding mode towards +oo, and at the end to reset it back to the default
mode. This can be achieved by observing that computing a+b rounded towards
—oo can be emulated by computing —((—a) — b) rounded towards +oo. A
similar remark can be done for —, x, +. Therefore it is possible to eliminate
most rounding mode changes, which makes the approach much more efficient.

Most experimental studies (e.g. [21,79]) show that using interval arithmetic im-
plemented this way usually induces a slowdown factor of 3 to 4 on algorithms,
compared to floating-point. It is also to be noted that interval arithmetic is
the most efficacious dynamic filter, failing rarely. This technic is available in
the CGAL library, covering all predicates of the geometry kernel.

5.3 Tools for automatic generation of code for the filters

Given the algebraic formula for a predicate, it is boring and error-prone to
derive the filtered version of this predicate manually, especially when there
are lots of them. Therefore some tools have been developed to help generating
these codes.

We have already mentionned the first one, LN, which targets the FvW filter
[29]. This tool helps generating code, but is limited when trying more complex
predicates, which include divisions, square roots, branches or loops.

36

Another attempt has been made by Funke et al [14] with a tool called EX-
PCOMP (standing for expression compiler), which parses slightly modified
C++ code of the original predicate, and produces static and semi-static BFS
filters for them, as we already mentionned.

The CGAL library implements filtering using interval arithmetic for all the
predicates in its geometry kernel. The filtered versions of these predicates are
generated by a Perl script [69,70], which can be applied by the user to his own
predicates. The advantage of dynamic filters such as this one is that the code
generator does not have to find the structure of the predicate, and so it makes
writing a tool an easier task. The template mecanism of C++ is also used in
this context to prevent too much code duplication.

Most recently, Nanevski, Blelloch and Harper [64] have proposed a tool that
produces filters using Shewchuk’s method [80], for the SML language, from an
SML code of the predicate. They also have the possibility to produce C code
for this method.

Seeing these past and ongoing works, it seems important to have a general tool
to handle this kind of numerical problems, which are connected to compiler
technology and static code analysis.

6 Conclusions

Among existing approaches to non-robustness, Exact Geometric Computation
shows its distinctive advantages in its generality and ease-of-use. The presence
of the major software libraries such as LEDA and CGAL based on EGC, testifies
to its utility. We discussed some key efficiency issues. The sign determination
problem and the role of constructive root bounds is basic. When carefully
combined with techniques such as precision-driven computation and filtering,
the efficiency of EGC can be greatly improved.

Through EGC, numerical non-robustness for a large class of geometric com-
putation (low dimensions and low degree problems) has been brought out of
the realm of “unsolved” to the realm of “solved but practically challenging”.
For these problems, in addition to the above topics, we believe that compiler-
like techniques will help us solve these problems routinely in the future. Filter
technology itself can be developed into a profoundly interesting subject on its
own right, including making connections to program checking.

For high degree problems, efficiency will be a serious challenge. But this seems
inherent rather than a failing of the EGC approach. Here we must rely on
progress in root bounds methods, problem specific techniques, and perhaps

37

completely new ideas. For non-algebraic problems, the fundamental question
whether they even admit EGC solutions is completely open and relates to
some deep questions in mathematics.

Reliable geometric computation can find direct applications in many areas, in-
cluding geometric modeling, CAD and robotics. EGC has so far been applied
at the level of stand-alone algorithms. Applying EGC in a real and complex
application like CAD system would be a challenge. Then the problem of geo-
metric rounding should be addressed in greater earnest.

Another real world issue which we have ignored is how to treat inexact inputs.
For simple applications, we can treat them as “nominally exact”. But if this
can lead to inconsistent inputs, we basically need to treat more complex classes
of geometric objects (e.g., we now think of points as balls) and new semantics.
But research on this topic has not yet begun. We have begun to explore the
notion of robustness as a computational resource [42]. That is, we no longer
view robustness as a 0-1 proposition. Instead, we want to compute at various
points of some implicit speed-robustness tradeoff curve. In some sense, this is
simply acknowledging the lay man’s view of non-robustness. The difficulty lies
in building a model for this.

In conclusion, we have reasons to be optimistic that EGC concepts will become
more and more a part of the computing landscape. The inexorable logic of
Moore’s law implies that more and more applications will no longer be speed-
critical, and thus able to use the robust, if slower, EGC solutions.

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computation. Academic
Press, New York, 1983.

[2] R. L. Ashenhurst and N. Metropolis. Error estimates in computer calculation.
Amer. Math. Monthly, 72(2):47-58, 1965.

[3] M. Benouamer, P. Jaillon, D. Michelucci, and J.-M. Moreau. A lazy arithmetic
library. In Proceedings of the IEEE 11th Symposium on Computer Arithmetic,
pages 242-269, Windsor, Ontario, June 30-July 2, 1993.

[4] M. Benouamer, D. Michelucci, and B. Péroche. Boundary evaluation using a
lazy rational arithmetic. In Proceedings of the 2nd ACM/IEEE Symposium on
Solid Modeling and Applications, pages 115-126, Montréal, Canada, 1993. ACM
Press.

[5] J. Blomer. A probabilistic zero-test for expressions involving roots of rational
numbers. Proc. of the Sizth Annual Furopean Symposium on Algorithms, pages
151-162, 1998. LNCS 1461.

38

[6] J. Blomer. Simplifying Ezpressions Involving Radicals. PhD thesis, Free
University Berlin, Department of Mathematics, October, 1992.

[7] G. Bohlender, C. Ullrich, J. W. von Gudenberg, and L. B. Rall. Pascal-SC,
volume 17 of Perspectives in Computing. Academic Press, Boston-San Diego-
New York, 1990.

[8] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University
Press, 1997. Translated by Hervé Bronnimann.

[9] H. Bronnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient
dynamic filters for computational geometry. Discrete Applied Mathematics,
109:25-47, 2001.

[10] C. Burnikel. Ezact Computation of Voronoi Diagrams and Line Segment
Intersections. Ph.D thesis, Universitit des Saarlandes, March 1996.

[11] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact geometric
computation made easy. In Proc. 15th ACM Symp. Comp. Geom., pages 341—
450, 1999.

[12] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily
computable separation bound for arithmetic expressions involving radicals.
Algorithmica, 27:87-99, 2000.

[13] C. Burnikel, S. Funke, and M. Seel. Exact geometric predicates using cascaded
computation. Proceedings of the 14th Annual Symposium on Computational
Geometry, pages 175-183, 1998.

[14] C. Burnikel, S. Funke, and M. Seel. Exact geometric computation using
cascading. Internat. J. Comput. Geom. Appl., 11:245-266, 2001.

[15] S. Burnikel, Funke. Exact geometric computation using cascading. to appear
in special issue of IJCGA, 2000.

[16] J. F. Canny. The complezity of robot motion planning. ACM Doctoral
Dissertation Award Series. The MIT Press, 1988. PhD thesis, M.I.T.

[17] J. F. Canny. Some algebraic and geometric configurations in PSPACE. In Proc.
20th Annu. ACM Sympos. Theory Comput., pages 460-467, 1988.

[18] B. Chazelle et al. Application challenges to computational geometry.
In Advances in Discrete and Computational Geometry, volume 223 of
Contemporary Mathematics, pages 407-463. AMS, 1999. The Computational
Geometry Impact Task Force Report (1996).

[19] C. Clenshaw, F. Olver, and P. Turner. Level-index arithmetic: an introductory
survey. In P. Turner, editor, Numerical Analysis and Parallel Processing, pages
95-168. Springer-Verlag, 1987. Lecture Notes in Mathematics, No.1397.

[20] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

39

[21] O. Devillers and S. Pion. Efficient exact geometric predicates for Delaunay
triangulations. In Proc. 5th Workshop Algorithm Eng. Ezper., Jan. 2003. To
appear.

[22] O. Devillers and F. P. Preparata. A probabilistic analysis of the power of
arithmetic filters. Discrete Comput. Geom., 20:523-547, 1998.

23] T. Dubé and C. K. Yap. A Dbasis for implementing
exact geometric algorithms (extended abstract), September, 1993. Paper from
ftp://cs.nyu.edu/pub/local/yap/exact/basis.ps.gz.

[24] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
1987.

[25] A. R. Forrest. Computational geometry and software engineering: Towards a
geometric computing environment. In D. F. Rogers and R. A. Earnshaw, editors,
Techniques for Computer Graphics, pages 23—-37. Springer-Verlag, 1987.

[26] S. Fortune. Introduction (editorial for special issue on implementation of
geometric algorithms), 2000.

[27] S. J. Fortune. Stable maintenance of point-set triangulations in two dimensions.
IEEE Foundations of Computer Science, 30:494-499, 1989.

[28] S. J. Fortune and C. J. van Wyk. Efficient exact arithmetic for computational
geometry. In Proc. 9th ACM Symp. on Computational Geom., pages 163-172,
1993.

[29] S. J. Fortune and C. J. van Wyk. Static analysis yields efficient exact
integer arithmetic for computational geometry. ACM Transactions on Graphics,
15(3):223-248, 1996.

[30] S. Funke. Exact arithmetic using cascaded computation. Master’s thesis, Max
Planck Institute for Computer Science, Saarbriicken, Germany, 1997.

[31] D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1):5-48, 1991.

[32] A. J. Goldstein and R. L. Graham. A Hadamard-type bound on the coefficients
of a determinant of polynomials. SIAM Review, 16:394-395, 1974.

[33] J. E. Goodman and J. O’Rourke, editors. Handbook of Discrete and
Computational Geometry. CRC Press LLC, 1997.

[34] M. Goodrich, L. Guibas, J. Hershberger, and P. Tanenbaum. Snap rounding line
segments efficiently in two and three dimensions. In Proc. 13th ACM Symp. on
Computational Geom., pages 284-293, 1997.

[35] D. H. Greene and F. F. Yao. Finite-resolution computational geometry. IEEE
Foundations of Computer Science, 27:143-152, 1986.

[36] L. Guibas and D. Marimont. Rounding arrangements dynamically. In Proc.
11th ACM Symp. Computational Geom., pages 190-199, 1995.

40

[37] L. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: building robust
algorithms from imprecise computations. ACM Symp. on Computational
Geometry, 5:208-217, 1989.

[38] J. Hobby. Practical segment intersection with finite precision output. Technical
report, Bell Labs, 1993. Tech. Report.

[39] J. D. Hobby. Practical segment intersection with finite precision output.
Comput. Geom. Theory Appl., 13(4):199-214, Oct. 1999.

[40] C. Hoffmann, J. Hopcroft, and M. Karasick. Towards implementing robust
geometric computations. ACM Symp. on Computational Geometry, 4:106-117,
1988.

[41] C. M. Hoffmann. The problems of accuracy and robustness in geometric
computation. IEEE Computer, 22(3), March 1989.

[42] Exact Geometric Computation Homepage, 1996.
FAQs, downloads, documentation, and related links available from the URL
http://cs.nyu.edu/exact/.

[43] CGAL Homepage, 1998. Computational Geometry Algorithms Library
(CGAL) Project. A T7-institution European Community effort. See URL
http://www.cgal.org/.

[44] CORE Homepage, 1998. Core Library Project: =~ URL
http://cs.nyu.edu/exact/core/.

[45] LEDA Homepage, 1998. Library of Efficient Data Structures and Algorithms
(LEDA) Project. From the Max Planck Institute of Computer Science. See URL
http://www.mpi-sb.mpg.de/LEDA/.

[46] G. Horng and M. D. Huang. Simplifying nested radicals and solving polynomials
by radicals in minimum depth. Proc. 81st Symp. on Foundations of Computer
Science, pages 847-854, 1990.

[47] T. Hull and M. Cohen. Toward an ideal computer arithmetic. In Proceedings
of the 8th Symposium on Computer Arithmetic, pages 5—48. IEEE, 1987.

[48] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library for
robust numerical and geometric libraries. In 15th ACM Symp. Computational
Geometry, pages 351-359, 1999.

[49] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulation
using rational arithmetic. ACM Trans. on Graphics, 10:71-91, 1991.

[50] S. Landau. Simplification of nested radicals. SIAM Journal of Computing,
21(1):85-110, 1992.

[61] C. Li. Ezact Geometric Computation: Theory and Applications. Ph.d. thesis,
Department of Computer Science, New York University, Jan. 2001. Download
from http://cs.nyu.edu/exact/doc/.

41

[52] C. Li and C. Yap. A new constructive root bound for algebraic expressions.
In Proceedings of the Twelfth ACM-SIAM Symposium on Discrete Algorithms
(SODA 2001), pages 496-505, Jan. 2001.

[63] M. C. Lin and D. Manocha, editors. Proceedings of the First ACM Workshop
on Applied Computational Geometry, 1996.

[64] G. Liotta, F. Preparata, and R. Tamassia. Robust proximity queries: an
illustration of degree-driven algorithm design. ACM Symp. on Computational
Geometry, 13:156-165, 1997.

[65] M. Marden. The geometry of the zeros of a polynomial in a complez variable.
American Mathematical Society, 1949.

[56] S. Matsui and M. Iri. An overflow/underflow-free floating-point representation
of numbers. J. Inform. Process, 4(3):123-133, 1981.

[67] K. Mehlhorn and S. Schirra. A generalized and improved constructive
separation bound for real algebraic expressions. Technical Report MPI-T1-2000-
004, Max-Planck-Institut fiir Informatik, Nov. 2000.

[58] N. Metropolis. Methods of significance arithmetic. In D. A. H. Jacobs, editor,
The State of the Art in Numerical Analysis, pages 179-192. Academic Press,
London, 1977.

[59] M. Mignotte and D. Stefinescu. Polynomials: An Algorithmic Approach.
Springer, 1999.

[60] V. Milenkovic and L. Nackman. Finding compact coordinate representations for
polygons and polyhedra. ACM Symp. on Computational Geometry, 6:244-252,
1990.

[61] V. J. Milenkovic. Verifiable implementations of geometric algorithms using
finite precision arithmetic. Artificial Intelligence, 37:377-401, 1988. An earlier
version appeared in Proceedings, Oxford Workshop on Geometric Reasoning,
(eds. Brady, Hopcroft, Mundy).

[62] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

[63] K. Mulmuley. Computational Geometry: an Introduction through Randomized
Algorithms. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1994.

[64] A. Nanevski, G. Blelloch, and R. Harper. Automatic generation of staged
geometric predicates. In International Conference on Functional Programming,

Florence, Ttaly, 2001. Also Carnegie Mellon CS Tech Report CMU-CS-01-141.

[65] J. O’Rourke. Computational Geometry in C. Cambridge University Press,
second edition edition, 1998.

[66] T. Ottmann, G. Thiemt, and C. Ullrich. Numerical stability of geometric
algorithms. In Proc. 8rd ACM Sympos. Comput. Geom., pages 119-125, 1987.

42

[67] K. Ouchi. Real/Expr:
Implementation of an exact computation package. Master’s thesis, New York
University, Department of Computer Science, Courant Institute, January 1997.
Download from http://cs.nyu.edu/exact/doc/.

[68] N. M. Patrikalakis, W. Cho, C.-Y. Hu, T. Maekawa, E. C. Sherbrooke, and
J. Zhou. Towards robust geometric modelers, 1994 progress report. In Proc.
1995 NSF Design and Manufacturing Grantees Conference, pages 139-140,
1995.

[69] S. Pion. De la géométrie algorithmique au calcul géométrique. These de doctorat
en sciences, Université de Nice-Sophia Antipolis, France, 1999. TU-0619.

[70] S. Pion. Interval arithmetic: An efficient implementation and an application to
computational geometry. In Workshop on Applications of Interval Analysis to
systems and Control, pages 99-110, 1999.

[71] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag,
1985.

[72] S. M. Rump. Polynomial minimum root separation. Math. Comp., 33:327-336,
1979.

[73] E. R. Scheinerman. When close enough is close enough. Amer. Math. Monthly,
107:489-499, 2000.

[74] S. Schirra. Robustness and precision issues in geometric computation. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computational Geometry, chapter 14,
pages 597-632. Elsevier Science Publishers B.V. North-Holland, Amsterdam,
2000.

[75] P. Schorn. An axiomatic approach to robust geometric programs. J. of Symbolic
Computation, 16:155-165, 1993.

[76] J. T. Schwartz. Polynomial minimum root separation (Note to a paper of S.
M. Rump). Technical Report 39, Courant Institute of Mathematical Sciences,
Robotics Laboratory, New York University, Feb. 1985.

[77] M. G. Segal and C. H. Sequin. Consistent calculations for solids modelling. In
Proc. 1st ACM Sympos. Comput. Geom., pages 29-38, 1985.

[78] H. Sekigawa. Using interval computation with the Mahler measure for zero
determination of algebraic numbers. Josai Information Sciences Researches,

9(1):83-99, 1998.

[79] S. A. Seshia, G. E. Blelloch, and R. W. Harper. A performance comparison of
interval arithmetic and error analysis in geometric predicates. Technical Report
CMU-CS-00-172, School of Computer Science, Carnegie-Mellon University,
2000.

[80] J. R. Shewchuk. Robust adaptive floating-point geometric predicates. In
Proc. 12th ACM Symp. on Computational Geom., pages 141-150. Association
for Computing Machinery, May 1996.

43

[81] K. Sugihara. An intersection algorithm based on Delaunay triangulation. IEEE
Computer Graphics Appl., 12(2):59-67, 1992.

[82] K. Sugihara and M. Iri. A solid modeling system free from topological
inconsistency. J.Information Processing, Information Processing Society of
Japan, 12(4):380-393, 1989.

[83] K. Sugihara and M. Iri. Two design principles of geometric algorithms in finite
precision arithmetic. Applied Mathematics Letters, 2:203-206, 1989.

[84] K. Sugihara and M. Iri. Construction of the Voronoi diagram for ‘one million’
generators in single-precision arithmetic. Proc. IEEE, 80(9):1471-1484, Sept.
1992.

[85] K. Sugihara and M. Iri. An approach to the problem of numerical errors in
geometric algorithms. Proc., 87th Convention of the Information Processing
Society of Japan, Kyoto, pages 1665-1666, September 12-14, 1988.

[86] K. Sugihara and M. Iri. Geometric algorithms in finite-precision arithmetic.
Research Memorandum RMI 88-10, Dept. of Math. Engineering and
Instrumentation Physics, Faculty of Engineering, University of Tokyo,
September, 1988. 13th International Symposium on Mathematical
Programming, Tokyo, Aug 29-Sep 2, 1988.

[87] K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-oriented
implementation—an approach to robust geometric algorithms. Algorithmica,
27:5-20, 2000.

[88] R. Tamassia, P. Agarwal, N. Amato, D. Chen, D. Dobkin, R. Drysdal,
S. Fortune, M. Doorich, J. Hershberger, J. O’Rourke, F. Preparata, J.-R.
Sack, S. Suri, I. Tollis, J. Vitter, and S. Whitesides. Strategic directions
in computational geometry working group report. ACM Computing Surveys,
28(4), Dec. 1996.

[89] The Institute of Electrical and Electronic Engineers, Inc. IEEE Standard 754-
1985 for binary floating-point arithmetic, 1985. ANSI/IEEE Std 754-1985.
Reprinted in SIGPLAN 22(2) pp. 9-25.

[90] D. Tulone, C. Yap, and C. Li. Randomized zero testing of radical expressions
and elementary geometry theorem proving. In J. Richter-Gebert and D. Wang,
editors, Proc. 3rd Int’l. Workshop on Automated Deduction in Geometry
(ADG’00), number 2061 in Lecture Notes in Artificial Intelligence, pages 58—82.
Springer, 2001. Zurich, Switzerland.

[91] C. Yap. A new number core for robust numerical and geometric
libraries. In 8d CGC Workshop on Geometric Computing, 1998.
Invited Talk. Brown University, Oct 11-12, 1998. For abstracts, see
http://www.cs.brown.edu/cgc/cgc98/home . html.

[92] C. Yap and C. Li. Core Library Tutorial: a library for robust geometric
computation, 1999. Released with the Core Library software package, 1999-
2001. Download: http://cs.nyu.edu/exact/core/.

44

[93] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’'Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 35, pages
653-668. CRC Press LLC, 1997.

[94] C. K. Yap. Towards exact geometric computation. Computational Geometry:
Theory and Applications, 7:3-23, 1997. Invited talk, Proceed. 5th Canadian
Conference on Comp. Geometry, Waterloo, Aug 5-9, 1993.

[95] C. K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford Univ. Press,
Dec. 1999.

[96] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and
F. K. Hwang, editors, Computing in Euclidean Geometry, pages 452-486. World
Scientific Press, Singapore, 1995. 2nd edition.

[97] J. Yu. Ezact arithmetic solid modeling. Ph.D. dissertation, Department of
Computer Science, Purdue University, West Lafayette, IN 47907, June 1992.
Technical Report No. CSD-TR-92-037.

45

