N

HAL

open science

Towards an Open Curved Kernel

loannis Z. Emiris, Athanasios Kakargias, Sylvain Pion, Monique Teillaud,
Elias P. P. Tsigaridas

» To cite this version:

Ioannis Z. Emiris, Athanasios Kakargias, Sylvain Pion, Monique Teillaud, Elias P. P. Tsigaridas.
Towards an Open Curved Kernel. ACM Symposium on Computational Geometry, Jun 2004, New

York, United States. pp.438-446. inria-00344433

HAL 1d: inria-00344433
https://inria.hal.science/inria-00344433
Submitted on 4 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00344433
https://hal.archives-ouvertes.fr

Towards an Open Curved Kernel *

Ioannis Z. Emiris | Athanasios Kakargias Sylvain Pion
1
Monique Teillaud Y Elias P. Tsigaridas |
Abstract

Our work goes towards answering the growing need for the robust and efficient manipu-
lation of curved objects in numerous applications. The kernel of the CGAL library provides
several functionalities which are, however, mostly restricted to linear objects.

We focus here on the arrangement of conic arcs in the plane. Our first contribution is the
design, implementation and testing of a kernel for computing arrangements of circular arcs.
A preliminary C++ implementation exists also for arbitrary conic curves. We discuss the
representation and predicates of the geometric objects. Our implementation is targeted for
inclusion in the CGAL library.

Our second contribution concerns exact and efficient algebraic algorithms for the case of
conics. They treat all inputs, including degeneracies, and they are implemented as part of
the library synaps 2.1. Our tools include Sturm sequences, resultants, Descartes’ rule, and
isolating points.

Thirdly, our experiments on circular arcs show that our methods compare favorably to
existing alternatives using CORE 1.6x and LEDA 4.5.

1 Introduction

Curved objects are becoming increasingly important in computational geometry; one reason, is
their wide range of applications, including those in solid modeling, CAD, molecular biology, GIS.
Our work is inscribed in a general effort to extend current geometric software from linear to
non-linear geometric objects. In particular, this paper describes our work in extending the CGAL
! library with a kernel for curved objects and the related operations. It is clear that such a
kernel relies heavily on real algebraic numbers, polynomial equations and systems of polynomials
of bounded degree.

Our ultimate goal is to propose a modular and efficient approach to extend the CGAL library to
manipulate curved objects. The CGAL Kernel provides the user mainly with linear objects: points,
line segments, triangles...and basic operations on them. Circles and spheres are also defined but
with very few functionalities. Curves are already present in the so called traits classes of certain

*Work partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project
under Contract No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces),
www-sop.inria.fr/prisme/ECG/. Also partially supported by INRIA’s project “Calamata”, a Team Association
between the GALAAD group of INRIA and the Department of Informatics & Telecommunications, National Univer-
sity of Athens.

Thttp://www.di.uoa.gr/~emiris/index—eng.html, Dept. Informatics & Telecoms, National University of
Athens, Greece, emiris@di.uoa.gr.

TDept. Informatics & Telecoms, National University of Athens, Greece, grad0460@di.uoa.gr.

$http://www-sop.inria.fr/geometrica/team/Sylvain.Pion/, Part of this work was conducted while the author
was working at the Max Planck Institut fiir Informatik, Saarbriicken, Germany. INRIA Sophia Antipolis, France,
Sylvain.Pion@inria.fr.

ﬂhttp://www—sop.inria.fr/galaad/teillaud/, INRIA Sophia Antipolis, France, Monique.Teillaud@inria.fr.

Hhttp://theta.di.uoa.gr/"et/, Dept. Informatics & Telecoms, National University of Athens, Greece,
et@di.uoa.gr.

Thttp://wuw.cgal.org

specific packages of the CGAL Basic library: the arrangement package provides the user with a
traits class for conic arcs, the optimization package comes with conics and basic operations on
them needed for computing minimum enclosing ellipses, whereas the Apollonius graph package
computes the Voronoi diagram of circles.

Our first contribution is the design and implementation of an open kernel for conics and related
computations, that we aim at extending towards a more general curved kernel in the future. We
show how it may represent the relevant geometric objects and how it can be interfaced with an
algebraic module. The design and its implementation have striven for modularity and generality,
and are thus parameterized by a geometric linear kernel (ie., for linear objects) and an algebraic
kernel. Models (in the C++ Standard Template Library sense [1]) for these parameters are
provided by CGAL and based on SYNAPS? respectively.

Existing work on arrangements of curves includes work related to the library Exacus?® [3, 6, 21]
as well as work on the CGAL arrangement package [19]. Both of these compute arrangements of
arbitrary conics, but only the second software is publicly available. Related work on surface
arrangements includes [11, 16]. Another platform for curves and surfaces, with an emphasis
towards geometric modeling, is being prepared [10].

Usually, the main issue is the implementation of the geometric primitives: predicates and
constructions. They reduce to manipulations of roots of polynomials or polynomial systems. Ex-
isting libraries such as CORE* or LEDA® propose types that support ezact comparisons of algebraic
numbers of arbitrary degree, provided that they are specified by an explicit expression containing
radicals or, more recently, as the root of a univariate polynomial (named the rootOf or diamond
operator, respectively). These comparisons rely on lazy refinement of multi-precision approxima-
tions and separation bounds [4, 15]. The CGAL traits class for conic arcs of the arrangement package
[19, 20] depends on such number types. Existing software by the computer algebra community
(such as Maple or Axiom) offer generality but lack the efficiency required in our applications.

Alternative methods to achieve exact comparisons of algebraic numbers efficiently, by comput-
ing only signs of polynomial expressions in the input data, were studied in [5, 14] for second-degree
polynomials and in [7, 8] for degree up to 4. These methods are based on general algebraic tools
such as Sturm sequences, resultants and Descartes’ rule. Our methods follow this approach and,
in addition, use low-degree algebraic numbers for isolating the real roots of polynomials. In the
case of conic curves, algebraic numbers are of degree at most 4, and the isolating points are always
rational. It is important to note that the same methods should cover a wider class of geometric
problems, ranging from Voronoi diagrams of curved objects [14] to computing with kinetic data
structures [12]. A recent implementation of exact and general algebraic numbers is proposed in
[12].

Our implementations are being made publicly available through CGAL and sYNAPS. We support
our claims of efficiency by experimental evidence on circular arcs in 5 different configurations. We
use the only publicly available implementation of arrangements, which is provided by CGAL, to
compare our implementation with the CGAL traits class for conic arcs that uses LEDA: :real. Our
code is never slower and, on most configurations, much faster. We conclude that our methods
yield efficient implementations and define a very promising approach for computing arrangements
of conics.

The next section discusses the proposed kernel design, and Section 3 outlines the representation
of the geometric objects and the geometric primitives. In Section 4 we discuss the required
algebraic concepts, namely algebraic numbers and polynomials. This is made concrete in Section
5, where different models for the algebraic kernel are described. Our experimental data is presented
in Section 6. We conclude with current and future work.

2http://wuw-sop.inria.fr/galaad/logiciels/synaps/
Shttp://www.mpi-sb.mpg.de/projects/EXACUS
4http://www.cs.nyu.edu/exact/core/
Shttp://www.algorithmic-solutions.com/enleda.htm

2 Curved kernel design

We describe the C++ design chosen for organizing our code, and the kind of interface provided
by our kernel. As in [17], our choices have been heavily inspired by the CGAL kernel design [13]
which is extensible and adaptable. Indeed, one of its features is the ability to apply primitives like
geometric predicates and constructions either to the geometric objects which are provided by our
kernel, or to user-defined objects.

A primary concern is good interoperability with cGAL, and thus one of the goals was to be able
to reuse the CGAL kernel for objects like points, circles and number types. Still, in the philosophy
of generic programming, we do not wish to be limited to a particular implementation of these
objects, so our curved kernel is parameterized by a BasicKernel parameter and derives from it,
in order to include all needed functionality on basic objects, e.g. the number type RT (discussed
in Section 4) and the circle type Circle 2.

As will be clear in the sequel, the predicates and constructions make heavy use of algebraic
operations. We want to be as independent as possible from a particular implementation of the
algebraic operations, so our curved kernel is parameterized by an AlgebraicKernel.

The declaration is the following;:

template < typename BasicKernel,
typename AlgebraicKernel >
class Curved_kernel;

The Curved kernel can be used the following way, for example, in the case when a user wishes
to use the cGAL Cartesian kernel with the double number type as RT, and his own algebraic kernel,
denoted My_Algebraic kernel:

#include <CGAL/Cartesian.h>
#include <My_Algebraic_kernel.h>
#include <ECG/Curved_kernel.h>

typedef CGAL::Cartesian<double> BK;
typedef My_Algebraic_kernel<BK::RT> AK;
typedef ECG::Curved_kernel<AK,BK> CK;

The interface provided at the geometric level is composed of:

e Types defining the objects.

Some of them are inherited from the basic kernel, namely the number type (denoted as RT in
the sequel), and basic geometric types such as points, circles, and conics.

Some other types are inherited from the algebraic kernel. These types are mainly types for
algebraic numbers of degree up to 4 and bivariate polynomials of degree 2.

Finally, some types are defined by the curved kernel itself, mainly: Circular_arc 2, Circul-
ar_arc_endpoint 2,
Conic_arc_2, Conic_arc_endpoint 2.

e Predicates defined on the above objects; their functionality is available through two interfaces:
The first is based on global (non-member) functions. For example, comparing the abscissae of
2 endpoints can be done as follows:

Conic_arc_endpoint_2 p, q;
if (less_x(p, q))
else
The second is a functor which is provided by the kernel (through a member function of the

kernel). Functors are classes providing a function operator : operator(), which can be called
using the calling syntax of normal functions, with the added feature that the functor object can

store a state. Functors are mostly useful in generic implementations of algorithms, such as those
provided by the STL. They can be used as in the following example, for sorting a list of conic arc
endpoints:

CK ck;
std::list<Conic_arc_endpoint_2> L;

// Sorts L according to the x-order :
L.sort(ck.less_x_2_object());

e Constructions are available through the same double interface as the predicates. For example,
the construction that splits an arc at an endpoint (a previously generated intersection) in two arcs
is:

Circular_arc_2 ci;
Circular_arc_endpoint_2 p;

std::pair<Circular_arc_2, Circular_arc_2> result;
result = split(cl, p);

3 Geometric objects

We discuss arcs of conic curves in the plane, since this is what we have currently implemented.
We have thus provided the tools for CGAL to build arrangements, using both the incremental and
the vertical sweep line algorithms. Our choices readily extend to higher degree algebraic curves.
The representations and predicates below rely on the algebraic concepts of Section 4.

3.1 Representation

A conic curve is a curve, provided by the Curved kernel, represented by a bivariate polynomial
of total degree 2, whose coefficients are of type RT. The current implementation assumes that
this polynomial always contains at least one quadratic term, i.e., 2, y? or zy. Future work shall
extend the implementation in order to include straight lines. On the other hand, curves can be
generalized to algebraic (or implicit) curves of higher degree.

Two kinds of points —intersection points and endpoints— are considered in the same way, thus
allowing us to have a unique representation. We call endpoint indifferently an endpoint of an arc
or an intersection. An endpoint is represented by the two intersecting conics and its coordinates.
In the current implementation, these are algebraic numbers of degree at most 4, represented by
the RootOf-d concept.

This representation is redundant, since the coordinates could be retrieved at any time by a
computation on the input curves, but avoiding to recompute them each time they are needed saves
time. Moreover, keeping the original curves that define the points allows to perform some kind of
elementary geometric filtering of predicates: for instance, to test the equality of two endpoints, we
can first compare the curves defining them; computations on the coordinates will be performed
only if the defining curves are not the same.

A conic arc is represented by a supporting conic, the two delimiting endpoints and a boolean
indicating whether it lies on the upper or lower part of the conic curve. The input of course
allows for full curves as well as arbitrary arcs, including non-monotone arcs. These are broken
into z-monotone arcs (see make_x_monotone below) by the CGAL arrangements algorithms that
fix the choice of axes and orientation.

3.2 Main primitives

We now present the main predicates and constructions for conic arcs that are required by the CGAL
arrangements and that are provided by the curved kernel. In the case of circles, these primitives
are simplified.

As will be clear in the description below, each of these geometric operations of the curved
kernel calls predicates or constructions on purely algebraic objects, namely the algebraic numbers
and the bivariate polynomials of the algebraic kernel. These algebraic primitives are described in
Section 4.

make_x_monotone It subdivides the given arc (which may be an entire curve) into z-monotone
arcs. It calls x_critical_points on the equation of the curve, then creates the correct represen-
tations of all arcs.

nearest_intersection_to_right Given an endpoint p and two z-monotone arcs, find their first
intersection to the right of p. It computes all intersections of the two supporting curves by calling
the function solve on the equations of the curves, then applies the operator< on the algebraic
numbers representing the z-coordinates of the intersection points and of p.

compare_y_to_right Given two z-monotone arcs supported by the conics g1, g2, and one of
their intersection points p = (py,py), such that the arcs are defined to the right of p (i.e. for =
larger than p,), the predicate decides which arc is above immediately to the right of p. If p is
not defined as an intersection of g1, g2, the predicate expresses it as such by calling solve. The
goal is to have a rational isolating interval (¢, s) for p,. If p is not the rightmost intersection of
g1, 92, the predicate compares the y-roots of gi(s,y),g2(s,y) by operator<. Otherwise, it calls
compare_y_at_x on the right endpoint of an input arc with the smallest abscissa and on the
other input arc.
In the case of circles, the predicate is simplified by using the slopes of the tangents at p.

compare_y_at_x It decides whether a given arc is above or below a given endpoint v = (v, vy),
by calling sign_at with arguments the polynomial defining the curve supporting the arc, v,, and
vy- Then, multiply the result by +1 depending on whether the given arc is on the upper or lower
part of its curve. Future optimizations include techniques to use the knowledge of the polynomials
defining the curves intersecting at ~.

In the case of a circular arc, the predicate simplifies by using the center.

4 Algebraic kernel concept

In the C++/STL sense, a concept is a set of requirements that a type must provide in order to
be usable by some template function or class.

The algebraic kernel appearing as template parameter AlgebraicKernel of the curved kernel
Curved kernel (see Section 2) is supposed to provide the latter with algebraic numbers of degree
up to 4 and operations on uni- or bi-variate polynomials of degree 2. The two corresponding
concepts are detailed in this section and our implementation of them discussed in the next section.

4.1 Real algebraic numbers

Most geometric predicates on circular arcs (resp. conic arcs) can be expressed as comparisons
involving roots of degree 2 (resp. 4) polynomials. These polynomials are typically univariate
resultants whose coefficients are themselves polynomials in the coefficients of the equations of the
circles (resp. conics). Since there are several ways to deal with such algebraic numbers, we have
tried to factorize as much code as possible between these alternatives. In C++, this means writing
code that can act generically (through templates) on different types representing the numbers.

We differentiate here on the various categories of numbers using different C++ types, so that
the representation of a number of degree 2, for instance, can be different from that of a number of
degree less than 2 (the original curves’ coefficients as well as quotients of these numbers), hence we
have a set of concepts Root0f_d that describe basically the same requirements, for each degree d
from 1 to 4. The bridge between the number type storing the curves’ coeflicients, supposed to be
a ring type, named RT in the sequel, and the numbers of degree d is the make _root_of_d function
described below.

4.1.1 Approaches.

Dealing with roots of polynomials can be done in several ways that generic code should support:

e approximate handling, using floating point approximation, e.g. C++ double.

e approximate but certified handling using interval arithmetic, for instance CGAL: : Interval nt
or boost: :interval.

For these first two cases, algebraic numbers of degree 2 can be implemented using the sqrt ()
function and the usual formula to produce an approximation. The corresponding RootOf_2 type
is then RT itself. For degrees higher than 2, algebraic numbers could be implemented using the
Newton iteration, for instance.

e exact handling, using number types implementing exact comparisons between numbers built
in the following ways:

— for degree 2: using the square root function sqrt(), e.g. leda: :real or CORE: :Expr.

— for degrees > 2: using the so-called diamond operator of leda::real [4] whose implemen-
tation is in progress, or the CORE: :root0f function of CORE::Expr, which manipulate roots of
(currently only square-free) polynomials.

e polynomial representation of these roots using algebraic methods for comparisons [5, 8, 14].
We provide an implementation of this model, for algebraic numbers of degree up to 4, with the
Root_of class described in Section 5.1, which has been integrated in the SYNAPS library. We also
provide a specialized version, namely Root_of_2, restricted to degree 2, described in Section 5.2.

4.1.2 The RootOf-d concept.

Given a type RT representing the coefficients of the circles or conics equations, there must be a
way to find out the (preferred) type used to store the roots of a degree < 4 polynomial whose
coefficients are of type RT. This type must also be the return type of the make root_of _d function
taking RT as the type of the arguments. This type must be defined in the algebraic kernel as
T_Root0f<d>: :type, ie. the AlgebraicKernel must contain:

typedef T_Root0f<d>::type Root0f._d;

The following functions must be defined:
e Root0f_d make_root_of d(RT a4, ..., RT ag, int i);
which returns an object representing the i" real root of the polynomial P(X) = Z;l:o a; X7,
® bool operator<(RootOf d a, RootOf.d b);
bool operator<(Root0fd a, RT b);
which compare two algebraic numbers, or an algebraic number with a number of the ring type.
Similarly, the other comparison operators (>, <=, >=, ==, =) have to be provided.
For all the possible models of this concept mentioned above, we have written the necessary
functions, and now our kernel can be instantiated with all these number types (see Section 5).

4.2 Polynomials

As can be seen from Section 3.2, operations on bivariate polynomials play a crucial role in the
evaluation of predicates. For now, the polynomials shall be of total degree 2 and denoted by
Pol_2_2, but the concept can be generalized to arbitrary multivariate polynomials. More precisely,
the functionalities required are:

e template <class OutputIterator>

OutputlIterator

x_critical_points(Pol 2.2 f, OutputIterator res);
which computes the pairs of elements of type RootOf_d that are the critical points of a polynomial
f in the z direction, and copies them in an output iterator in lexicographical order.
e template <class OutputIterator>

OutputlIterator

solve(Pol 2.2 f1, Pol 2.2 f2, OutputIterator res);
which computes the pairs of elements of type RootOf_d that are the common roots of two polyno-
mials f1 and f2, and copies them in an output iterator in lexicographical order.
e int sign_at(Pol_2.2 f, RootOf_d v, RootOf_d ~,);
which returns the sign of a bivariate polynomial f(x,y) evaluated at algebraic numbers z = ~,
and y = .

5 Models of the Algebraic kernel

Implementations matching the concepts are called models [1]. This section discusses models of
the concepts related to the algebraic kernel presented above.

5.1 The Root_of class

Each algebraic number is represented by a polynomial and an index. When an algebraic number is
constructed from a polynomial, we compute the discriminant of the polynomial in order to extract
the multiple roots, if any, and to decide an isolating interval for this root. By this approach we
have several advantages. The polynomial that represents an algebraic number is always square
free and, moreover, any multiple root is represented by a lower degree algebraic number, which
is rational in all cases except in the case of quartics with 2 double roots. The computation of
the isolating intervals is achieved by close formulas using Lemma 1 and is independent of the
separating bound of the roots.

Here we discuss polynomials of degree up to 4. Our methods should extend to degree 5
and, eventually, higher degrees. They are based on static, or precomputed, Sturm sequences as
n [14, 7, 8]. Our algorithms test the sign of certain quantities, which are polynomials in the
coeflicients of the input bivariate equations representing the conics. These quantities are compiled
in order to reduce execution time.

From a complexity viewpoint, we wish to minimize the degree of the tested quantities in these
coefficients and, ultimately, the total number of operations as well. One originality of our approach
is based on isolating the real roots by rational numbers, by applying the following fact.

Lemma 1 [18] Given a polynomial P(X) with adjacent real roots v1,7v2, and any two other poly-
nomials B(X),C(X), let A(X) := B(X)P'(X) + C(X)P(X), where P’ is the derivative of P.
Then A or B have at least one real oot in the closed interval [y1,72].

Considering the polynomial remainder sequence of P and P’, we can obtain, as a corollary,
that deg A + deg B < deg P — 1. The lemma is applied, as in [8], in order to specify several
isolating polynomials, denoted by A or B in the lemma, of degree up to 2, when deg P < 4.
The roots of isolating polynomials constitute isolating points, since they isolate the roots of the
original polynomial P. In the favorable cases, at least one isolating point is rational for every pair
of consecutive real roots.

Even when this is not the case, it is possible to find rational isolating points by considering two
or more isolating quadratic algebraic numbers in the interval defined by two roots. In short, for
every polynomial of degree up to 4, our implementation provides rational isolating points between
any root pair [8].

The maximum algebraic degree of any polynomial in the Sturm sequence is the degree of the
resultant of the two polynomials, which is 8 when the inputs are quartics. In order to bound the

maximum algebraic degree involved in the comparison of the roots of two quartics we must also
consider the evaluation of the Sturm sequences on the endpoints of the isolating intervals of the
roots.

Proposition 1 [8] There is an algorithm that compares any two roots of two quartics using Sturm
sequences and isolating intervals from lemma 1, and the algebraic degree of the quantities involved
is between 8 and 13.

We have implemented static Sturm sequences, including all degenerate cases, i.e. when the
degree of one of the input or intermediate polynomials is smaller than its nominal degree. In
order to simplify this task we consider an evaluation scheme for the complete Sturm sequence. We
can treat all possible evaluations of the Sturm sequence as a binary tree, which has as nodes the
evaluation of a term of the sequence and branches according to the sign of the computed quantity.
This algorithm is automatically generated.

In conclusion we obtain the Root_of class, constructed by a polynomial and an index. It
includes the computation of an isolating interval for the algebraic number. Additionally, we have
implemented the function
sturm(Poly<RT> f, Poly<RT> g, RT a, RT b)
which computes the result of the evaluation of the Sturm sequence of f and g, which are of
arbitrary degree over an interval [a,b]. We do this computation statically for degree up to to 4
and dynamically (using various well known algorithms) for higher degrees.

Based on the aforementioned tools, Sturm theory [22, 8] yields the following functionalities.
They are in the current release of the SYNAPS library.

e compare(Root of a, Root_of [3)

Comparison of 2 algebraic numbers of degree < 4.

e sign at(Poly f, Root_of «)

Determination of the sign of a univariate polynomial of arbitrary degree, evaluated over an
algebraic number of degree up to 4.

5.2 Implementations of the Root_of_2 class

In order to handle circles efficiently, we also provide another concrete model optimized for degree
2 — compared to the more general Root_of — which is using the following internal representation:

e three coefficients of type RT specifying the polynomial of degree 2.

e one boolean value specifying whether the smaller of the roots is considered or the other.

This class uses specific algebraic methods, based on resultants and Descartes’ rule of sign, in
order to handle comparisons [5]. Handling degrees higher than 2 is not implemented in this model,
so it only handles circles. Our experiments below show that the gain of this specific technique is
small. But the main reason for adopting a generic approach in the implementation of root_of
has to do with programming effort: if we had extended the Root_of_2 class and had specialized
classes for every degree, we would have to develop a large amount of code, in order to handle all
the situations efficiently.

Another idea that we have used to speed up computations substantially when RT is a rational
type, such as CGAL::Quotient or multi-precision rational numbers such as those provided by
GMP,% is to consider the polynomials with coefficients over the ring type defining the numerator
and denominator of the rationals, instead of the rationals themselves, by simply multiplying the
polynomial equation by all denominators; there are three denominators, since we are dealing with
quadratic polynomials. This way, when we manipulate the coefficients of the polynomials, we
manipulate multi-precision integers instead of rationals, which prevents the explosion of these
numbers and is faster in general.

Shttp://www.swox.com/gmp/

5.3 The Pol_2_2 class

We describe here the implemented methods which offer the functionalities required on bivariate
polynomials of total degree up to 2. Although our tests in the next section are limited to the
case of circles, we show below that extending them to arbitrary conics is straightforward. Our
algorithms have been integrated, as a separate module, in the library synaps 2.1.

In what follows an algebraic number 7 is of degree up to 4 and it is represented by a polynomial
R, and an isolating interval I, = [a,, b,].

e x critical points(Pol 22 f)

Take the derivatives fy, f, with respect to « and y. In order to specify the abscissae (resp.
ordinates) of the critical points, we take the resultant of f and f, (resp. f;) by eliminating y (resp.
x). To find the correspondence between z and y coordinates, we consider the slope of the line
fy = 0. E.g., if the slope is negative, then the biggest root of R, corresponds to the biggest root
of R,. If the slope is zero, then this means that f, = 0 is a horizontal line and R, has one double
(hence rational) root.

e solve(Pol 2.2 fi, Pol 2.2 f5)

We consider the resultants R;, Ry of fi, f by eliminating y and z respectively, thus obtaining
degree-4 polynomials in « and y. The isolating points of the resultants define a grid of boxes,
where the intersection points are located. The grid has 1 to 4 rows and 1 to 4 columns; each
box contains a simple or multiple root. It remains to decide, for certain boxes, whether they are
empty and, if not, whether they contain a simple or multiple root. All multiple roots of the two
resultants are either rational or quadratic algebraic numbers. Hence, several cases can be decided
by calling sign_at with algebraic numbers of degree up to 2.

The rest of the cases reduce to testing if a box is empty, provided it contains at most one
intersection point. We can decide the if a box is empty or not by calls to the sign_at function.
Notice that the number of intersection points in a column (row) can not exceed the multiplicity
of the algebraic number. Since the edges of the boxes are computed by the isolating points of the
resultants, we can always guarantee that they contain at most one.

Unlike [3], where the boxes cannot contain any critical points of the intersecting conics, our
algorithm does not make any such assumption about the topology of the conics in the boxes, hence
there is no need to refine them.

Our approach can be extended in order to compute intersection points of curves of arbitrary
degree, provided that we obtain isolating points for the roots of the two resultants, either statically
(as above) or dynamically. In generalizing to higher degree, one would compare with existing work,
such as [6].

e sign_at(Pol 22 f, Root_of 7, Root_of =)

We consider f(X,Y) as a univariate polynomial with respect to X, and we compute the Sturm-
Habicht sequence of R, and f. In order to find the sign of f evaluated over the algebraic number
., we have to evaluate the sequence over the endpoints of the isolating interval of v, and count
the modified sign changes [2]. The polynomials in this sequence are in two variables, in general. To
be more precise, they are all in two variables, except the first one which is a univariate polynomial
in X and the last one which is a univariate polynomial in Y. When we evaluate the sequence over
the endpoints of the isolating interval of 7,, the polynomials become either constant numbers (this
is the case of the first polynomial) or univariate polynomials in Y. Therefore, we have to compute
the sign of each polynomial in the sequence, evaluated over the algebraic number ~,. This can
be done by calling sign_at(Poly S;, Root_of +,), where S; is a polynomial in the sequence,
after the evaluation over an endpoint of the isolating interval of ~,. Since the Sturm-Habicht
sequences have nice specialization properties, the above procedure works for every specialization
of the bivariate quadratic function f. The polynomial with the highest degree is the last one in
the sequence, which is of degree 8, with respect to Y.

In order to reduce further the required arithmetic operations, we implemented the
computation of the bivariate Sturm-Habicht sequence in MAPLE and we used package
codegeneration[optimize], so as to identify common subexpressions. By this technique we

reduce the arithmetic operations to 1/3. The entire algorithm for sign_at is sketched, in prelim-
inary form, in [8].

6 Experimental results

6.1 Traits class for CGAL arrangements

The cGAL arrangement package does not use the kernel traits design where predicates and con-
structions are defined as objects. Instead, it requires that the user gives a traits class with member
functions providing the algorithms with those functionalities. Therefore, we wrote a traits class
to interface our curved kernel with the arrangement algorithms. This traits class follows the
requirements presented in [9] for both sweep line and incremental” algorithms.

6.2 Benchmarks

The hardware of our experiments was Pentium 4 at 2.5GHz with 1GB of memory, running Linux
(2.4.20 kernel). The compiler was g++3.3.2; all configurations were compiled with the -DNDEBUG
-03 flags. The versions of the libraries are: CGAL 3.0, CORE 1.6x, GMP 4.1.2, LEDA 4.5.

The package used to compute the arrangement is the only publicly available implementation
of arrangements, namely the CGAL implementation (sweep line version).

The implementation of conic arcs is not finalized, hence not benchmarked. We show tests
with 5 different kinds of inputs of circular arcs: Random full circles (RFC). Circles positioned on
the cross-points and the centers of the cells of a square grid with cell size 10* (G). Configuration
G, with every circle perturbed both in radius and center by a random integer in the range -
100,100) (PG). Random monotone arcs (RMA) generated by triplets of random circles (one is the
supporting circle and the other two define the endpoints of the arc). The same as RMA, except
that arcs may be non-monotone (RNMA). The input size refers to the number of full circles for
RFC, G, and PG, and to arcs for RMA and RNMA. All random inputs were generated using
random integers of 16 bits.

All experimental data are shown in table 1. The output size per data set is given in terms of
endpoints and half-edges, where two half-edges correspond to each arc defined by the arrangement.
“CK?” indicates the use of our Curved kernel. Lines marked “CGAL” correspond to the conic traits
from cGAL. Timings in seconds are given in the last 5 columns.

MP Float is a number type from CGAL which computes polynomial operations (+, —, X, <)
exactly over floating point values, Quotient is a rational template type from CGAL, mpz_class
and mpg_class are GMP types, Lazy is CGAL: :Lazy_exact nt, a template number type doing lazy
evaluation, adapted to wrap our Root_of 2 type. Root_of_2 is the type described in section 5.2,
while Root_0f2 is a specialized version for degree two of the type described in section 5.1. Dashes
indicate that the corresponding test could not be completed mainly due to insufficient memory;
this occurs with CORE and Lazy, the reason being the high precision needed or a large expression
tree constructed in conjunction with the large number of coordinates constructed.

We conclude that Root_of_2 is most efficient with the mpz_class type, however the config-
uration with mpq_class is more general since it can treat rational data. The performance of
Root_of_2 as compared to Root_of2 is the same for all number types tested, hence we do not use
all number types with Root_of2. Our tuned arithmetic performs better than the more general
CORE (that sometimes aborts due to memory consumption) and LEDA arithmetic, except for the
G configuration, where all intersections are integer points.

Compared to the CGAL traits with LEDA arithmetic, our code is much faster except from the
G (grid) configuration, where the two show the same performance. The reason is that the CGAL
traits use bounding boxes around the conic arcs, and this proves particularly useful in the G

7 All predicates in the traits class are taken from the curved kernel except curves_compare_y-at_z_to_right(c1,c2,p)
as used in the incremental setting: the case when p is not a common point of ¢l and ¢2 is not considered in the
kernel, and is currently evaluated approximately in the traits (since it has higher algebraic degree, and we believe
that using it could be avoided).

10

configuration. The CGAL traits can handle conic arcs in general, while our benchmarks currently
handle only circular arcs. Our code for conic arcs is still in preliminary form.

One should note that the G and PG distributions are more easily treated by the algorithm,
due to fewer intersections and, in the case of G, due also to lower arithmetic precision required.
On the other hand, the random cases yield more intersections, hence a larger computational effort
is needed.

6.3 Demo

We implemented a demo that was used to produce both pictures below, the first displaying the
acronym ECG. The demo uses Qt.® It allows to compute an arrangement of elliptic arcs with CGAL,
either incrementally or with the sweep algorithm. Then it displays the computed arrangement
as a set of arcs, together with the endpoints, which are either x-extremal points of each arc, or
intersection points between two arcs, or the endpoints of the original arcs.

7 Future Work

The work described in this paper will be submitted for integration into the CGAL Open Source
Library. Our curved kernel now contains a solid implementation for arrangements of circular arcs.
The polishing of the code for conic arcs is in progress.

The work in [7, 8] is being extended so as to implement algebraic numbers of arbitrary degree
in SYNAPS, which will allow us to deal with implicit curves of arbitrary degree. The algorithms,
based on Sturm sequences, have certain similarities with the corresponding class of algorithms
implemented in [12]. The latter discusses other approaches, as well. We are currently investigating
ways of making our implementations benefit from each other.

Lastly, we are going to study the use of more filtering techniques in the manipulation of
algebraic numbers for geometric predicates, which should lead to an improved efficiency.

8http://www.trolltech.com/

11

Eile Help

12

el

Arcs | Traits NumberType AlgebraicType RFC G PG RMA RNMA
150 CK MP_Float Root_of 2<MP Float> 39 1.4 1.8 2.2 7.0
150 CK CGAL: :Quotient<MP Float> Root_of 2<MP Float> 56 2.0 2.6 3.2 10
150 CK ::mpz_class Root_of 2<::mpz_class> 40 14 1.7 2.3 7.1
150 CK ::mpz_class Root_of2<: :mpz_class> 40 14 1.7 2.2 7.0
150 CK ::mpqg_class Root_of 2<::mpz_class> 61 2.0 2.5 3.5 12
150 CK CGAL: :Lazy<mpz_class> CGAL: :Lazy<Root_of 2<mpz_class>> 73 2.0 2.8 3.5 13
150 CK CORE: :Expr CORE: :Expr 193 5.8 6.0 5.1 28
150 CK LEDA: :real LEDA: :real 98.5 2,59 3.96 4.60 20.5
150 | CGAL LEDA: :real LEDA: :real 56.8 1.32 3.15 2.33 13.4
150 Vertices: 10340 300 572 713 2275

Half-edges: 40760 1148 1688 1952 7868
300 CK MP_Float Root_of 2<MP Float> 137 2 5 10 34
300 CK CGAL: :Quotient<MP_Float> Root_of 2<MP Float> 195 3 7 14 51
300 CK ::mpz_class Root_of 2<::mpz_class> 137 2 5 10 34
300 CK ::mpz_class Root_of2<: :mpz_class> 137 2 5 10 34
300 CK ::mpqg_class Root_of 2<::mpz_class> 216 3 7 15 58
300 CK CGAL: :Lazy<mpz_class> CGAL: :Lazy<Root_of 2<mpz_class>> 275 3 8 15 64
300 CK CORE: :Expr CORE: :Expr - 10 17 20 195
300 CK LEDA: :real LEDA: :real 374 518 114 19.0 104
300 | CGAL LEDA: :real LEDA: :real 410 2.62 8.01 10.1 98.3
300 Vertices: 34890 632 1412 2202 10157

Half-edges: 138360 2360 4448 7008 38218
500 CK MP_Float Root_of 2<MP Float> 374 6 7 20 86
500 CK CGAL: :Quotient<MP Float> Root_of 2<MP Float> 531 8 10 28 128
500 CK ::mpz_class Root_of 2<::mpz_class> 372 5 7 20 87
500 CK ::mpz_class Root_of2<: :mpz_class> 372 5 7 20 87
500 CK ::mpqg_class Root_of 2<::mpz_class> 587 8 10 31 146
500 CK CGAL: :Lazy<mpz_class> CGAL: :Lazy<Root_of 2<mpz_class>> - 8 11 33 167
500 CK CORE: :Expr CORE: :Expr - 23 23 57 -
500 CK LEDA: :real LEDA: :real 1143 10.7 14.9 46.2 257
500 | CGAL LEDA: :real LEDA: :real 2689 5.12 11.8 33.0 395
500 Vertices: 92664 1000 1952 4967 24819

Half-edges: 368656 3908 5808 16868 95276

Table 1: Experimental results

Acknowledgments

The authors acknowledge constructive discussions with Lutz Kettner and Bernard Mourrain. They
are grateful to Radu Ursu for his help on the graphical interface.

References

1]
2]

3]

M. H. Austern. Generic Programming and the STL. Addison-Wesley, 1998.

S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry. Springer-Verlag,
Berlin, 2003.

E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and E. Schomer. A compu-
tational basis for conic arcs and boolean operations on conic polygons. In Proc. 10th European
Symposium on Algorithms, volume 2461 of Lecture Notes Comput. Sci., pages 174—186, 2002.

C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation bound for real
algebraic expressions. In F. Meyer auf der Heide, editor, Proc. 9th European Symposium on
Algorithms, volume 2161 of Lecture Notes Comput. Sci., pages 254-265, 2001.

O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Algebraic methods and arithmetic
filtering for exact predicates on circle arcs. Comput. Geom. Theory Appl., 22:119-142, 2002.

A. Eigenwillig, L. Kettner, E. Schomer, and N. Wolpert. Complete, exact, and efficient
computations with cubic curves. In Proc. 20th Annu. ACM Sympos. Comput. Geom., 2004.

[.Z. Emiris and E.P. Tsigaridas. Methods to compare real roots of polynomials of small degree.
Technical Report ECG-TR-242200-01, INRIA Sophia-Antipolis, 2003.

[.Z. Emiris and E.P. Tsigaridas. Comparison of fourth-degree algebraic numbers and applica-
tions to geometric predicates. Technical Report ECG-TR-302206-03, INRIA Sophia-Antipolis,
2003. Final version submitted for publication.

E. Fogel, D. Halperin, R. Wein, M. Teillaud, E. Berberich, A. Eigenwillig, S. Hert, and
L. Kettner. Specification of the traits classes for cgal arrangements of curves. Technical
Report ECG-TR-241200-01, INRIA Sophia-Antipolis, 2003.

G. Gatellier, B. Mourrain, and J.-P. Pavone. Axel: Algebraic software component for geo-
metric modeling, 2003. INRIA Sophia-Antipolis, Manuscript.

N. Geismann, M. Hemmer, and E. Schomer. Computing a 3-dimensional cell in an arrange-
ment of quadrics: Exactly and actually! In Proc. 17th Annu. ACM Sympos. Comput. Geom.,
pages 264-273, 2001.

L. Guibas, M. Karavelas, and D. Russel. A computation framework for handling motion. In
Proc. ALENEX, 2004. To appear.

S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. An adaptable and extensible geometry
kernel. In Proc. Workshop on Algorithm Engineering, volume 2141 of Lecture Notes Comput.
Sci., pages 79-90. Springer-Verlag, 2001.

M. I. Karavelas and 1. Z. Emiris. Root comparison techniques applied to computing the
additively weighted Voronoi diagram. In Proc. 14th ACM-SIAM Sympos. Discrete Algorithms
(SODA), pages 320-329, 2003. Final version to appear in Comp. Geometry: Theory € Appl..

C. Li and C. Yap. A new constructive root bound for algebraic expressions. In 12th ACM-
SIAM Symposium on Discrete Algorithms (SODA), Jan. 2001.

14

[16]

[17]

[18]

B. Mourrain, J.-P. Técourt, and M. Teillaud. Predicates for the sweeping of an arrangement
of quadrics in 3d. Technical Report ECG-TR-242205-01, INRIA Sophia-Antipolis, 2003.

S. Pion and M. Teillaud. Towards a cgal-like kernel for curves. Technical Report ECG-TR-
302206-01, MPI Saarbriicken, INRIA Sophia-Antipolis, 2003.

T. Sederberg and G.-Z. Chang. Isolating the real roots of polynomials using isolator poly-
nomials. In C. Bajaj, editor, Algebraic Geometry and Applications, Spec. Issue of Symp. on
occasion of S. Abhyankar’s 60th Birthday. Springer Verlag, 1993.

R. Wein. High-level filtering for arrangements of conic arcs. In Proc. 10th European Sympo-
sium on Algorithms, volume 2461 of Lecture Notes Comput. Sci., pages 884-895, 2002.

R. Wein. Cgal based implementation of arrangements of conic arcs. Technical Report ECG-
TR-241210-01, Tel-Aviv University, 2003.

N. Wolpert. Jacobi curves: Computing the exact topology of non-singular algebraic curves.
In G. D. Battista and U. Zwick, editors, Proc. 11th European Symp. Algorithms, volume 2832
of Lecture Notes Comput. Sci., pages 532543, 2003.

C. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press, New York,
2000.

ECG technical reports can be downloaded from the ECG web site:

http://www-sop.inria.fr/prisme/ECG/

15

