Stability of Curvature Measures

Frédéric Chazal 1 David Cohen-Steiner 1 André Lieutier 2 Boris Thibert 2
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : We address the problem of curvature estimation from sampled compact sets. The main contribution is a stability result: we show that the gaussian, mean or anisotropic curvature measures of the offset of a compact set K with positive $\mu$-reach can be estimated by the same curvature measures of the offset of a compact set K' close to K in the Hausdorff sense. We show how these curvature measures can be computed for finite unions of balls. The curvature measures of the offset of a compact set with positive $\mu$-reach can thus be approximated by the curvature measures of the offset of a point-cloud sample. These results can also be interpreted as a framework for an effective and robust notion of curvature.
Type de document :
Rapport
[Research Report] RR-6756, INRIA. 2008, pp.34
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00344903
Contributeur : Frédéric Chazal <>
Soumis le : samedi 6 décembre 2008 - 15:17:52
Dernière modification le : samedi 27 janvier 2018 - 01:32:09
Document(s) archivé(s) le : lundi 7 juin 2010 - 23:50:39

Fichiers

RR-6756.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00344903, version 1
  • ARXIV : 0812.1390

Collections

Citation

Frédéric Chazal, David Cohen-Steiner, André Lieutier, Boris Thibert. Stability of Curvature Measures. [Research Report] RR-6756, INRIA. 2008, pp.34. 〈inria-00344903〉

Partager

Métriques

Consultations de la notice

380

Téléchargements de fichiers

232