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ABSTRACT 

In this work, we present a new method for generating a threshold structure. This kind of structure can be advantageously 
used in various halftoning algorithms such as clustered-dot or dispersed-dot dithering, error diffusion with threshold 
modulation, etc. The proposed method is based on rectifiable polyominoes -- a non-periodic hierarchical structure, which 
tiles the Euclidean plane with no gaps. Each polyomino contains a fixed number of discrete threshold values. Thanks to 
its inherent non-periodic nature combined with off-line optimization of threshold values, our polyomino-based threshold 
structure shows blue-noise spectral properties. The halftone images produced with this threshold structure have high 
visual quality. Although the proposed method is general, and can be applied on any polyomino tiling, we consider one 
particular case: tiling with G-hexominoes. We compare our polyomino-based threshold structure with the best known 
state-of-the-art methods for generation threshold matrices, and conclude considerable improvement achieved with our 
method. 
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1. INTRODUCTION 

Digital halftoning is a well-established technique for visualization of continuous tone or rich multiple-
tone images on visualization devices having very limited range of available tones. Driving printing devices is 
a typical application for digital halftoning algorithms. Many halftoning algorithms have been proposed in the 
past forty years. Nowadays, digital halftoning is considered as a mature topic. Nevertheless, as the 
technology of visualization devices undergoes continuous and steady progress, several algorithmic challenges 
in digital halftoning persist, as attest recent work in this field (Pang et al. 2008). 

Most of the current halftoning algorithms produce printable images, adapted for a specific device. For 
example, error-diffusion algorithms perform well on ink-jet printers, where individual addressable dots 
(droplets of ink) are well-printed. However, the same algorithms perform rather poorly on laser or offset 
printers, where isolated dots may disappear completely (Kang 1999, Sharma 2002, Gupta & Bowen 2007). In 
addition, because of very non-linear behavior of electrostatic devices, inherent noise of error-diffusion may 
be greatly amplified by laser printers. Clustered-dot dithering produces excellent, stable and visually pleasant 
images on laser printers, but it performs rather poorly on ink-jet printers: the images appear too coarse and 
high-frequency low-contrast details may disappear. Offset printing or visualization of low-cost displays with 
limited number of available colors impose other constraints, and therefore require a very specific one-
purpose halftoning algorithm. We concentrate in this work on dithering. The common practice when doing 
dithering is to use threshold matrices. Matrices are used essentially for commodity: matrices are simple to 
store and to manipulate. Figure 1 illustrates usage of threshold matrices for clustered-dot and dispersed-dot 
dithering. At the same time, rigid alignment of dither matrices can be rather harmful, as illustrated in Figure 
6. Even tiny imperfections in spatial distribution of printed marks are immediately detected by our visual 
system. These artifacts are greatly amplified by non-linear behavior of conventional printing devices 
(namely, by dot gain in ink-jet or laser printing). 



 

Figure 1. Illustration of halftoning using threshold matrices for both clustered (center) and dispersed (right) dot. The input 
image is shown on the left. A pre-computed matrix is tiled on the image plane, and input value are compared to each 

threshold matrix element to decide weather the output value is black or white 

We propose to demonstrate that dither structures other than matrices can be advantageously used for the 
tasks where threshold matrices are usually employed. The structure we use is rectifiable polyominoes, a 
choice inspired by (Ostromoukhov 2007). Here the author convincingly has convincingly demonstrated the 
advantages of usage of non-periodic non-square structures instead of periodic square ones, and we take 
advantage of the same non-repetitive structure for our dithering method. A second important source of 
inspiration is the void-and-cluster method (Ulichney 1993), we use the simple and tractable optimization 
process describe by Ulichney. The main idea of this paper is rather simple: to replace square matrix of 
threshold values by a non-rectangle structure, which contains approximatively the same number of threshold 
values that as dither matrix. We propose to use rectifiable polyominoes: simple non-square figures which tile 
the Euclidean plane without gaps. The threshold values associated with the polyominoes can be optimized 
once forever, exactly as people do for building square blue-noise dither matrix (Kang 1999, Sharma 2002, 
Mitsa & Parker 1991, Lieberman & Allebach 2000). The optimized threshold values can be stored in lookup 
tables and inexpensively used during the image generation. 

Figure 2a shows the basic principle of using of polyominoes in the context of digital halftoning. The 
image is entirely covered by a big polyomino. This polyomino is recursively subdivided until the pixel level 
is reached. At this time, appropriate threshold values are taken from the lookup tables where the optimized 
values of threshold are stored.  

The rest of the paper is organized as follows. In Section 2 we give a short overview of the polyomino 
tiling, then, in Section 3, we describe the process of building and optimization of the polyomino-based 
threshold structure. We show some results in Section 4, and compare them to state-of-the-art methods. We 
draw conclusions in Section 5. 

2. POLYOMINO TILING 

2.1 Basic notions 

We briefly recall here the definition of the polyomino tiling and its main properties, useful for our 
construction. The interested reader can find detailed descriptions in (Golomb 1996, Clarke 2006 
Ostromoukhov 2007). Polyomino or n-omino is a plane topological disc, consisting of n edge-to-edge 
adjacent squares. Figure 2b-top shows a few simple polyominoes. 

Polyominoes and their properties have been extensively studied in mathematics, and more precisely in 
combinatorial geometry (Grünbaum & Shephard 1986). A typical problem related to polyominoes can be 
formulated as follows: determine whether a given planar polygon can be filled, with no gaps, by a given set 
of polyominoes. For example, Figure 2b-bottom-left shows how the rectangle of dimensions 12x9 can be 
filled with 18 identical G-hexominoes. 



 

Figure 2: (a) The target image is entirely covered by a big polyomino, and then a deterministic process of subdivision is 
applied recursively until the pixel level is achieved. (b)-top Some polyomino shapes. (b)-bottom A 12x9 rectangle filled 

with 18 G-hexominoes. Production rule used for generating tiling with 92-rep G-hexominoes 

In this paper, we consider a special class of rectifiable polyominoes. A polyomino is said to be rectifiable 
if several copies of the polyomino form a rectangle. Rectifiable polyominoes can always be presented in 
terms of self-similar L2-rep constructions (also called production rules), where the larger version of the 
polyomino is built out L2 identical copies of the polyomino. Here, L is the linear scaling factor in the L

2-rep 
construction, and A = L2 is the area scaling factor. An example of a production rule for decomposition of the 
92-rep G-hexomino into 92 identical G-hexominoes is shown in Figure 2b-bottom-right (in this case L=9, and 
A = L2 = 92). 

Applying the production rules iteratively, and keeping the size of polyominoes constant, one can fill an 
arbitrarily large planar patch, and, at the limit, the entire plane (Grünbaum & Shephard 1986). For a given 
rectifiable polyomino, L is not unique: a variety of L

2-rep constructions, for different linear scaling factors L, 
can be found. 

As it has been demonstrated in (Ostrmoukhov 2007), polyomino-based tilings show very distinct spectral 
property: the Fourier spectra of the tiles' centers is reasonably close to blue-noise spectra. This property is the 
consequence of the non-periodic, self-similar nature of L2-rep polyominoes. In fact, according to Statement 
10.1.1 in (Grünbaum & Shephard 1986), if a monohedral L2-similarity tiling has a unique production rule, 
then such a tiling is not periodic. This facilitates building of isotropic distributions of points which exhibit 
blue-noise properties. In the context of digital halftoning, and more particularly, during the process of 
building the threshold structure, we shall also benefit from a priori good spectral properties of polyomino-
based tilings which derive from the non-periodic self-similar nature of these tilings. 

In summary, we take advantage of two important properties of rectifiable polyominoes. First, their 
construction is simple and deterministic; their geometrical properties can be exhaustively studied. Second, 
rectifiable polyominoes are fundamentally self-similar. Consequently, we can easily build a blue-noise 
threshold structure, which is inherently better than the square matrix-based Void-and-Cluster (Ulichney 
1993) or Blue Noise Mask (Mitsa & Parker 1991) methods. 

2.2 Structural Indices 

Polyomino-based sampling systems (Grünbaum & Shephard 1986) used the key notion of structural 
index, which designates the local neighborhood of each tile. The idea is quite simple: polyominoes having 
identical neighborhoods, and consequently identical structural indices, will behave similarly in the process of 
optimization described in the following sections. Our goal is to identify geometrically identical 
configurations around each polyomino, and associate these identical configurations with the production rules. 

Polyominoes are built of adjacent squares; the square's vertices form a square lattice. Let us mark each 
individual tile with letters around each lattice point as shown in Figure 3a. To facilitate the implementation, 
we decided to mark differently all four possible orientations of the polyominoes, together with their mirrored 
shapes. All we need is to walk through the tiling, identify all unique combinations of marks, and tabulate 
them.  

(a)                                                                                          (b) 



  
 
Several properties related to structural indices can be proved. First, for a given production rule, the 

number of structural indices is finite. Second, subdivision of a polyomino having a certain structural index 
produces a unique combination of structural indices in the subdivided configuration. We tabulate the set of 
such configurations for all existing structural indices, and we call this table structural indices production 
rules. This table is used in every subdivision, according to the polyomino's attribute structural indices, which 
is an index to the structural indices production rules. Thus, starting with a polyomino having any structural 
index, we can deterministically define all structural indices of all polyominoes, after any number of 
subdivisions. Also, each pair of vertices of any polyomino having a given structural index can be uniquely 
identified by a set of label, as shown in Figure 3b. This facilitates the process of finding the optimal 
distribution of threshold values, as we shall explain in the next section. 

 

Figure 3 (a) All these tiles have the same shape, but we consider them different by assigning them unique vertex 
identifiers. (b) Each border segment is uniquely determined by a combination of labels around each vertex. Here, the 

border segment (A, B) is defined by the labels around the vertices A and B: (t3,I2,a2,s3) and (H2,p4,s2,t2). 

3. OPTIMIZATION OF THE THRESHOLD VALUES DISTRIBUTION 

As we have already mentioned, our goal is to build a good distribution of thresholds values, somehow 
associated with polyominoes. Figure 4b illustrates the case of G-Hexominoes. Each G-Hexomino is formed 
of six squares; each of six squares contains S

2 distinct threshold values (S = 8 in Figure 4a). Every segment of 
polyomino's border has a specific ``border'' set of threshold values, which is at the same time part of the 
threshold structure (Figure 4a shows such 2-pixel-wide borders in red).  

To avoid any ambiguity and duplication of the elements of the borders, we decided to put all border pixels 
left-and-upward with respect to the true polyomino's border (which indeed has no area, shown as blue lines in 
Figure 4b). The idea of dividing the whole set of threshold values into two subsets - polyomino's borders and 
polyomino's interior - is quite simple and efficient in the context of optimization: we first optimize the border 
threshold values, then we optimize the interior ones. 

 

Figure 4: (a) Association of a plurality of threshold values with the G-Hexominoes. Threshold values that belong to the 
border structure are highlighted in red. Please note that our border structure is not rotation-invariant. (b) The resulting 

distribution of borders associated with G-Hexominoes.  

 

                                   (a)                                                                                                         (b) 

(a)                                                                                                          (b) 



Each element or pixel which is part of the threshold structure associated with polyominoes contains a 
unique threshold value, used in the process of conventional dithering. Consequently, the process of finding 
the optimal distribution of the threshold values consists in the ranking of all elements within each polyomino. 
Polyominoes having different structural indices have different distributions of the rank values. During the 
optimization process, we need to find all rank values for all possible geometric combination that may occur 
in the tiling, and to store these ranking values in a lookup table, which can be consulted during the halftoning 
process. 

Let us now describe in detail the optimization process. We start our optimization from a fixed 
intermediate density d0 in [0, S2], of black dots, separately processing first the border structure, and then the 
interior of each polyomino. Applying Lloyd relaxation, we obtain an excellent distribution of black pixels 
within the whole tiling. Then, we perform consecutive ranking, by either withdrawing pixels, for densities 
going toward 0, or by adding pixels, for densities going toward maximal density. The whole process can be 
subdivided into three stages: (a) initialization of the borders, (b) initial distribution of the interior pixels, and 
(c) consecutive ranking. 

3.1 Initialization of the borders 

The border structure is a well-identified subset of the tiling with G-Hexominoes, as shown in Figure 4b. 
We first optimize the distribution of black dots of the initial density d0 within the border structure. This 
process is conceptually simple: first, we identify all existing border segments by their labels shown in Figure 
3b. The list of all available border segments is tabulated. We process all border segments from this list in 
random order, one-by-one. For each border to be processed, we repeat the same algorithm, which consists in 
the following steps: 

• Take a large area which contains a big number of tiles, e.g. the area shown in Figure 4b ;   
• Put within the already-processed border segments the dots which are marked as ``fixed'';  
• Put within the rest of the large area a certain number of dots, which corresponds (together with 

already-processed border segments) to the initial density d0 ; mark these dots as ``floating'';   
• Perform Lloyd relaxation;  
• Select the dots that are in the current border segment being processed. 

After this iterative relaxation process performed several times, we obtain a set of all border segments, 
with the distribution of dots being a good approximation of a blue-noise distribution and achieving the 
density d0 . 

3.2 Initial distribution of the interior pixels 

Any polyomino which may occur in the tiling is surrounded by a set of border segments, well-identified 
by the combination of labels around each vertex of the polyomino, as explained in Section 2. Consequently, a 
polyomino with a unique combination of labels is necessarily surrounded by a well-determined set of border 
segments, for which the initial distribution of black dots has been already obtained, as explained in Section 
3.1. These border segments have already a good distribution of dots which corresponds to initial density d0. 
Consequently, the interior of each polyomino can be easily optimized under excellent ``border conditions''. 
The process follows these steps:  

• Consider a large area which contains a big number of tiles;  
• Add all border segments with their optimal set of dots, which are marked as ``fixed'';   
• Put within each polyomino a certain number of dots, which corresponds (together with the 

border segments) to the initial density d0 ; mark these dots as ``floating'';   
• Perform Lloyd relaxation;   
• Select the dots within the interior area and tabulate them, taking vertex labels as index. 

Thus, we obtain an optimal distribution of dots of initial density d0, within the whole tiling. Our 
construction is possible thanks to the following key observation: the border pixels are determinant during the 
relaxation process: these borders block the influence of the neighbors' interiors; the polyomino's interior feels 
only its border. Consequently, a unique set of vertex labels of each polyomino determines a unique optimal 
configuration of dots of initial density d0 within the polyomino.  



 

3.3 Consecutive ranking 

Starting from the initial density d0 of dots, we need to find the distribution of dots for all other densities. 
Our method follows the framework defined in (Ulichney 19993), but applied in a very specific context of 
tiling with polyominoes. 

First, we perform ranking from d0 down to 0. The process is as follows: First we choose a large area 
which contains a big number of tiles. For each tile, we consider all dots determined in Section 3.2. Then we 
iterate the following algorithm until all polyominoes have been processed:  

• Pick a random polyomino from the tiling;   
• Determine the pixel which, if withdrawn, forms the smallest ``hole'', by performing Gaussian 

blur  of appropriate kernel size on all possible candidates, and by choosing the best one;   
• Mark the chosen pixel as being of rank d0 -1.  

Thus, we obtain a near-optimal distribution of dots of initial density d0 -1, within the whole tiling. We 
repeat this operation iteratively until the rank 0. Next, we perform ranking from d0 up to S2. This process is 
very similar to that used for down-ranking, with one noticeable difference: instead of withdrawing pixels, we 
set them among available positions within the polyomino. The criterion for selecting is the smallest ``cluster'' 
which is formed. 

4. RESULTS 

The threshold structure obtained during the optimization process described in the previous section 
possesses many important properties: it shows nearly-optimal blue-noise distribution for all gray levels, as 
illustrated in Figure 5. A side-by-side comparison with the void-and-cluster method is quite advantageous for 
us. As expected, our method hides alignments artifact present in traditional matrix-based dithering due to the 
finite size of the threshold matrices. Please notice that we used for our comparison, in Figure 6, the threshold 
structures of approximatively equal size. 

The proposed method can be used in any context where the blue-noise threshold matrices are traditionally 
used for a practical application: in clustered-dot or dispersed-dot dithering, error diffusion with threshold 
modulation, etc. We provide here only one simple illustration, see Figure 7. 

Our implementation is computationally efficient. The optimization process is expensive, but it is 
performed only once. The runtime application of the tiling and selecting appropriate threshold values is truly 
inexpensive. In fact, all production rules used for polyomino generation are tabulated and do not require any 
complicated calculations; the set of threshold valued associated with the polyominoes of different 
combination of labels are equally tabulated. All label calculations are performed during the pre-process; the 
production rules and the threshold value indexing is performed according to these pre-computed and 
tabulated indices (this principle has been introduced in Ostromoukhov 2007).  

 

 

Figure 5: A set of dither ramps from 0 to 1 dithered with our method. We used a base matrix size S = 8 and initial density 
d0 = 1 / S 

 



5. CONCLUSION 

In this paper, we have demonstrated that polyominoes, and more particularly G-Hexominoes, can be 
advantageously used for building threshold structures used in various halftoning algorithms. Compared to the 
matrices produced with previous state-of-the-art algorithms, our threshold structure of comparable size shows 
superior quality. Thanks to inherently non-periodic nature of the polyomino tiling, border-alignment artifacts 
which are slightly visible in concurrent methods becomes completely invisible in our case. Our method is in 
addition computationally inexpensive and relatively easy to implement. 

 

 

Figure 6: Top line shows a sample of level 6/256, bottom is the   corresponding power spectrum (sum of Fourier spectra 
of 10 random   sample of size 256x256, the result is blurred to emphasis high   energy peaks). Left is void-and-cluster, 

right is our method 

  
Figure 7: Two sample images (color and black/white) showing applicability of our method for dispersed-dot dithering. 

 



REFERENCES 

A. L. Clarke, 2006 The Poly Pages http://www.recmath.com/PolyPages. 
S. W. Golomb, 1996 Polyominoes: Puzzles, Patterns, Problems, and Packings. Princeton University Press. 
B. Grünbaum and G. Shephard, 1986. Tilings and Patterns. W.H. Freeman. 
M. R. Gupta and J. Bowen, 2007. Ranked dither for robust color printing. Proceedings of SPIE. San Jose CA, USA. 
H. R. Kang, 1999 Digital Color Halftoning. SPIE, Bellingham, WA, USA. 
D. J. Lieberman and J. P. Allebach, 2000. A dual interpretation for direct binary search and its implications for tone 

reproduction and texture quality. In IEEE Transactions on Image Processing, Vol. 9, No 11, pp 1950--1963. 
T. Mitsa and K. J. Parker, 1991 Digital halftoning using a blue noise mask. ICASSP~91: 1991 International Conference 

on Acoustics, Speech, and Signal Processing, Vol. 2, pp 2809-2812. 
V. Ostromoukhov, 2007. Sampling with polyominoes. ACM Transactions on Graphics (SIGGRAPPH), Vol. 26, No. 3 pp 

78:1-78:6. 
W.-M. Pang, Y. Qu, T.-T. Wong, D. Cohen-Or, and P.-A. Heng. Structure-aware halftoning. ACM Transactions on 

Graphics ( SIGGRAPH). Vol. 27, No 3. 
G. Sharma, 2002. Digital Color Imaging Handbook. CRC Press, Inc., Boca Raton, FL, USA. 
R. Ulichney, 1993. The void-and-cluster method for generating dither arrays. Proceedings of SPIE. pp 332-343. 
 
 
 


