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ABSTRACT

In this work, we present a new method for genegatithreshold structure. This kind of structure baradvantageously
used in various halftoning algorithms such as ehest-dot or dispersed-dot dithering, error diffasieith threshold

modulation, etc. The proposed method is based difiable polyominoes -- a non-periodic hierarchistucture, which

tiles the Euclidean plane with no gaps. Each polgonecontains a fixed number of discrete threshalli@s. Thanks to
its inherent non-periodic nature combined with lafé optimization of threshold values, our polyomibased threshold
structure shows blue-noise spectral properties. ffdi#one images produced with this threshold $tmec have high

visual quality. Although the proposed method isegah and can be applied on any polyomino tiling, @nsider one
particular case: tiling with G-hexominoes. We congpaur polyomino-based threshold structure with lilest known

state-of-the-art methods for generation threshoddrices, and conclude considerable improvementegeti with our

method.
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Halftoning, Tiling, Polyomino, Dithering

1. INTRODUCTION

Digital halftoning is a well-established technigfiee visualization of continuous tone or rich muléip
tone images on visualization devices having venjtéd range of available tones. Driving printingrides is
a typical application for digital halftoning algtivins. Many halftoning algorithms have been propadsdtie
past forty years. Nowadays, digital halftoning isnsidered as a mature topic. Nevertheless, as the
technology of visualization devices undergoes cattiis and steady progress, several algorithmidertgds
in digital halftoning persist, as attest recent kvorthis field (Pang et al. 2008).

Most of the current halftoning algorithms produaentable images, adapted for a specific device. For
example, error-diffusion algorithms perform well dmk-jet printers, where individual addressable sdot
(droplets of ink) are well-printed. However, thergaalgorithms perform rather poorly on laser oseff
printers, where isolated dots may disappear coelylékang 1999, Sharma 2002, Gupta & Bowen 200G7). |
addition, because of very non-linear behavior et&bstatic devices, inherent noise of error-difasmay
be greatly amplified by laser printers. Clustered-dithering produces excellent, stable and vigualkasant
images on laser printers, but it performs rathesrlyoon ink-jet printers: the images appear toorseand
high-frequency low-contrast details may disapp@dfset printing or visualization of low-cost disgawith
limited number of available colors impose other staaints, and therefore require a very specific-one
purpose halftoning algorithm. We concentrate irs thork on dithering. The common practice when doing
dithering is to usehreshold matricesMatrices are used essentially for commodity: foa# are simple to
store and to manipulate. Figure 1 illustrates us#gireshold matrices for clustered-dot and dispé+dot
dithering. At the same time, rigid alignment ofhgit matrices can be rather harmful, as illustrateligure
6. Even tiny imperfections in spatial distributiof printed marks are immediately detected by osuai
system. These artifacts are greatly amplified bw-imear behavior of conventional printing devices
(namely, by dot gain in ink-jet or laser printing).
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Figure 1. lllustration of halftoning using threstiohatrices for both clustered (center) and disgkefsght) dot. The input

image is shown on the left. A pre-computed masitiled on the image plane, and input value arepered to each
threshold matrix element to decide weather theudutplue is black or white

We propose to demonstrate that dither structurtesrdhan matrices can be advantageously useddor th
tasks where threshold matrices are usually employéé structure we use is rectifiable polyominces,
choice inspired by (Ostromoukhov 2007). Here théh@uconvincingly has convincingly demonstrated the
advantages of usage of non-periodic non-squaretstes instead of periodic square ones, and we take
advantage of the same non-repetitive structureofor dithering method. A second important source of
inspiration is the void-and-cluster method (UlichrE993), we use the simple and tractable optinorati
process describe by Ulichney. The main idea of gaper is rather simple: to replace square matkix o
threshold values by a non-rectangle structure, lvbantains approximatively the same number of tiokbs
values that as dither matrix. We propose to uskfiedle polyominoes: simple non-square figures ehhiile
the Euclidean plane without gaps. The thresholdeslassociated with the polyominoes can be optinize
once forever, exactly as people do for buildingasgublue-noise dither matrix (Kang 1999, Sharma2200
Mitsa & Parker 1991, Lieberman & Allebach 2000) €Tdptimized threshold values can be stored in Ipoku
tables and inexpensively used during the imagergéoa.

Figure 2a shows the basic principle of using ofypoiinoes in the context of digital halftoning. The
image is entirely covered by a big polyomino. Tipdyomino is recursively subdivided until the pixeVel
is reached. At this time, appropriate thresholdigalare taken from the lookup tables where themigéid
values of threshold are stored.

The rest of the paper is organized as follows. éoti®n 2 we give a short overview of the polyomino
tiling, then, in Section 3, we describe the procetduilding and optimization of the polyomino-bdse
threshold structure. We show some results in Seetjoand compare them to state-of-the-art methiduks.
draw conclusions in Section 5.

2. POLYOMINO TILING

2.1 Basic notions

We briefly recall here the definition of the polyom tiling and its main properties, useful for our
construction. The interested reader can find deailescriptions in (Golomb 1996, Clarke 2006
Ostromoukhov 2007)Polyomino or n-omino is a plane topological disc, consisting mfedge-to-edge
adjacent squares. Figure 2b-top shows a few sipgdi@minoes.

Polyominoes and their properties have been extelysstudied in mathematics, and more precisely in
combinatorial geometry (Grinbaum & Shephard 1986jypical problem related to polyominoes can be
formulated as follows: determine whether a giveampl polygon can be filled, with no gaps, by a giset
of polyominoes. For example, Figure 2b-bottom-Efows how the rectangle of dimensions 12x9 can be
filled with 18 identical G-hexominoes.
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Figure 2: (a) The target image is entirely covdyga big polyomino, and then a deterministic preagfssubdivision is
applied recursively until the pixel level is achéelv (b)-top Some polyomino shapes. (b)-bottom Adlictangle filled
with 18 G-hexominoes. Production rule used for gatireg tiling with $-rep G-hexominoes

In this paper, we consider a special clasgeofifiable polyominoesA polyomino is said to be rectifiable
if several copies of the polyomino form a rectandtectifiable polyominoes can always be presented i
terms of self-similar *rep constructions (also callggtoduction ruley, where the larger version of the
polyomino is built out ?identical copies of the polyomino. Herejs the linear scaling factor in thé-rep
construction, and = ?is the area scaling factor. An example of a préidnaule for decomposition of the
92-re|o2 G;exomino intoddentical G-hexominoes is shown in Figure 2b-bottaght (in this case =9, and

= ‘= )

Applying the production rules iteratively, and kegpthe size of polyominoes constant, one carafill
arbitrarily large planar patch, and, at the lintite entire plane (Griinbaum & Shephard 1986). Fgiven
rectifiable polyomino, is not unique: a variety of-rep constructions, for different linear scalingttas
can be found.

As it has been demonstrated in (Ostrmoukhov 2083y,omino-based tilings show very distinct spectral
property: the Fourier spectra of the tiles' ceniergeasonably close to blue-noise spectra. Thipgty is the
consequence of the non-periodic, self-similar rabfr >-rep polyominoes. In fact, according to Statement
10.1.1 in (Griinbaum & Shephard 1986), if a monohkedtsimilarity tiling has a unique production rule,
then such a tiling is not periodic. This facilitatbuilding of isotropic distributions of points whi exhibit
blue-noise properties. In the context of digitalfioming, and more particularly, during the process
building the threshold structure, we shall alsodifi¢rirom a priori good spectral properties of polyomino-
based tilings which derive from the non-periodif-semilar nature of these tilings.

In summary, we take advantage of two important ertigs of rectifiable polyominoes. First, their
construction is simple and deterministic; their getrical properties can be exhaustively studieadt.oSe,
rectifiable polyominoes are fundamentally self-¢ami Consequently, we can easily build a blue-noise
threshold structure, which is inherently betterntithe square matrix-based Void-and-Cluster (Ulighne
1993) or Blue Noise Mask (Mitsa & Parker 1991) noelh

2.2 Structural Indices

Polyomino-based sampling systems (Griinbaum & Shdph886) used the key notion efructural
index which designates the local neighborhood of edeh The idea is quite simple: polyominoes having
identical neighborhoods, and consequently idenstraictural indices, will behave similarly in theopess of
optimization described in the following sections.urOgoal is to identify geometrically identical
configurations around each polyomino, and assottigtse identical configurations with the productiales.

Polyominoes are built of adjacent squares; the retgiaertices form a square lattice. Let us madhea
individual tile with letters around each latticeiqtoas shown in Figure 3a. To facilitate the impétation,
we decided to mark differently all four possibléentations of the polyominoes, together with theirrored
shapes. All we need is to walk through the tilirdgntify all unique combinations of marks, and tale
them.



Several properties related to structural indices lba proved. First, for a given production ruleg th
number of structural indices is finite. Second,division of a polyomino having a certain structuiradex
produces a unique combination of structural indicethe subdivided configuration. We tabulate the of
such configurations for all existing structural ices, and we call this tablructural indices production
rules This table is used in every subdivision, accagdimthe polyomino's attributgructural indiceswhich
is an index to the structural indices productiolesuThus, starting with a polyomino having anyestural
index, we can deterministically define all struefuindices of all polyominoes, after any number of
subdivisions. Also, each pair of vertices of anyypmino having a given structural index can be usig
identified by a set of label, as shown in Figure 3his facilitates the process of finding the omtim
distribution of threshold values, as we shall eixpia the next section.
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(@) (b)
Figure 3 (a) All these tiles have the same shapiewb consider them different by assigning thenguaivertex
identifiers. (b) Each border segment is uniquelgdeined by a combination of labels around eactexeHere, the
border segment (A, B) is defined by the labels adaihe vertices A and B: (t3,12,a2,s3) and (H2,p4232,

3. OPTIMIZATION OF THE THRESHOLD VALUES DISTRIBUTION

As we have already mentioned, our goal is to bailgood distribution of thresholds values, somehow
associated with polyominoes. Figure 4b illustrates case of G-Hexominoes. Each G-Hexomino is formed
of six squares; each of six squares contafrtistinct threshold values € 8 in Figure 4a). Every segment of
polyomino's border has a specific “border" sethoéshold values, which is at the same time pathe
threshold structure (Figure 4a shows such 2-pixdkworders in red).

To avoid any ambiguity and duplication of the elatseof the borders, we decided to put all bordeelsi
left-and-upward with respect to the true polyonsrmorder (which indeed has no area, shown as ioleg in
Figure 4b). The idea of dividing the whole sethlokshold values into two subsets - polyomino's érénd
polyomino's interior - is quite simple and efficien the context of optimization: we first optimitiee border
threshold values, then we optimize the interiorsone
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Figure 4: (a) Association of a plurality of threghwalues with the G-Hexominoes. Threshold valitres belong to the

border structure are highlighted in red. Please ttwdt our border structure is not rotation-invatiigb) The resulting
distribution of borders associated with G-Hexommoe



Each element or pixel which is part of the thredhstructure associated with polyominoes contains a
unique threshold value, used in the process of @ational dithering. Consequently, the process radifig
the optimal distribution of the threshold valuessists in the ranking of all elements within eackypmino.
Polyominoes having different structural indices énalifferent distributions of the rank values. Dgrithe
optimization process, we need to find all rank ealdor all possible geometric combination that roagur
in the tiling, and to store these ranking valuea Inokup table, which can be consulted duringhidiéoning
process.

Let us now describe in detail the optimization msx We start our optimization from a fixed
intermediate densitg, in [0, 7, of black dots, separately processing first tbeder structure, and then the
interior of each polyomino. Applying Lloyd relaxati, we obtain an excellent distribution of blackets
within the whole tiling. Then, we perform consewstiranking, by either withdrawing pixels, for ddies
going toward 0, or by adding pixels, for densitigsgng toward maximal density. The whole processlman
subdivided into three stages: (a) initializationtlod borders, (b) initial distribution of the initar pixels, and
(c) consecutive ranking.

3.1 Initialization of the borders

The border structure is a well-identified subsethaf tiling with G-Hexominoes, as shown in Figute 4
We first optimize the distribution of black dots tife initial densityd, within the border structure. This
process is conceptually simple: first, we identflyexisting border segments by their labels shawiigure
3b. The list of all available border segments lsutated. We process all border segments from tstisr
random order, one-by-one. For each border to beegsed, we repeat the same algorithm, which cerigist
the followmg steps:

Take a large area which contains a big numbetesf,te.g. the area shown in F|gure 4b ;

Put within the already-processed border segmeatddls which are marked as ™fixed";

Put within the rest of the large area a certain lmemof dots, which corresponds (together with
already-processed border segments) to the iniasitlyd, ; mark these dots as "“floating";
Perform Lloyd relaxation;

Select the dots that are in the current border segiveing processed.

After this iterative relaxation process performeveyal times, we obtain a set of all border segment
with the distribution of dots being a good approaiion of a blue-noise distribution and achieving th
densitydy .

3.2 Initial distribution of the interior pixels

Any polyomino which may occur in the tiling is sounded by a set of border segments, well-identified
by the combination of labels around each vertethefpolyomino, as explained in Section 2. Consetiyiem
polyomino with a unique combination of labels ic@gsarily surrounded by a well-determined set ofiéo
segments, for which the initial distribution of bladots has been already obtained, as explain&kdtion
3.1. These border segments have already a goaibudiiin of dots which corresponds to initial depsi,.
Consequently, the interior of each polyomino carebsily optimized under excellent “"border condisib
The process follows these steps:

- Consider a large area which contains a big numbtles;
Add all border segments with their optimal set ofsg which are marked as "fixed";
Put within each polyomino a certain number of dethjch corresponds (together with the
border segments) to the initial density; mark these dots as "floating";
Perform Lloyd relaxation;
Select the dots within the interior area and taieuffaem, taking vertex labels as index.

Thus we obtain an optimal distribution of dots initial density dy, within the whole tiling. Our
construction is possible thanks to the following kdservation: the border pixels are determinaninduthe
relaxation process: these borders block the inflaef the neighbors' interiors; the polyomino'giidr feels
only its border. Consequently, a unique set ofesetabels of each polyomino determines a uniquéerabt
configuration of dots of initial densitgy within the polyomino.












