A Domain Decomposition Method Applied to Large Eigenvalue Problems in Neutron Physics

Maxime Barrault 1 Bruno Lathuilière 1 Pierre Ramet 2, 3 Jean Roman 2, 3
2 SCALAPPLIX - Algorithms and high performance computing for grand challenge applications
Université Bordeaux Segalen - Bordeaux 2, Université Sciences et Technologies - Bordeaux 1, Inria Bordeaux - Sud-Ouest, École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), CNRS - Centre National de la Recherche Scientifique : UMR5800
Abstract : The simulation of the neutron transport inside a nuclear reactor leads to the computation of the lowest eigen pair of a simplified transport operator. This computation is done by a power inverse algorithm accelerated by a Chebyshev polynomials based process. At each iteration, a large linear system is solved inexactly by a block Gauss-Seidel algorithm. For our applications, one Gauss-Seidel iteration is already sufficient to ensure the right convergence of the inverse power algorithm. For the approximate resolution of the linear system at each inverse power iteration, we propose a non overlapping domain decomposition based on the introduction of Lagrange multipliers in order to: - get a parallel algorithm, which allows to circumvent memory consumption problem and to reduce the computational time; - deal with different numerical approximations in each subdomain; - minimize the code modifications in our industrial solver. When the Chebyshev acceleration process is switched off, the method performs well on up to 100 processors for an industrial test case. It exhibits a good efficiency which allows us to realize some computations beyond the reach of standard workstations. Besides, we study the efficiency of the Chebyshev acceleration process in our domain decomposition method.
keyword : DDM
Type de document :
Communication dans un congrès
PMAA'08, 2008, Neuchatel, Switzerland. 2008
Liste complète des métadonnées

https://hal.inria.fr/inria-00346025
Contributeur : Pierre Ramet <>
Soumis le : mercredi 10 décembre 2008 - 18:39:53
Dernière modification le : mardi 6 mars 2018 - 15:55:53

Identifiants

  • HAL Id : inria-00346025, version 1

Collections

Citation

Maxime Barrault, Bruno Lathuilière, Pierre Ramet, Jean Roman. A Domain Decomposition Method Applied to Large Eigenvalue Problems in Neutron Physics. PMAA'08, 2008, Neuchatel, Switzerland. 2008. 〈inria-00346025〉

Partager

Métriques

Consultations de la notice

92