
HAL Id: inria-00346394
https://inria.hal.science/inria-00346394

Submitted on 11 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Allocation of Clients to Multiple Servers on Large Scale
Heterogeneous Platforms

Olivier Beaumont, Lionel Eyraud-Dubois, Hejer Rejeb, Christopher Thraves

To cite this version:
Olivier Beaumont, Lionel Eyraud-Dubois, Hejer Rejeb, Christopher Thraves. Allocation of Clients to
Multiple Servers on Large Scale Heterogeneous Platforms. [Research Report] RR-6767, INRIA. 2008,
pp.17. �inria-00346394�

https://inria.hal.science/inria-00346394
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

6
7

6
6

--
F

R
+

E
N

G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Allocation of Clients to Multiple Servers on Large

Scale Heterogeneous Platforms

Olivier Beaumont — Lionel Eyraud-Dubois — Hejer Rejeb — Christopher Thraves

N° 6766

December 2008

Centre de recherche INRIA Bordeaux – Sud Ouest
Domaine Universitaire - 351, cours de la Libération 33405 Talence Cedex

Téléphone : +33 5 40 00 69 00

Allocation of Clients to Multiple Servers on

Large Scale Heterogeneous Platforms

Olivier Beaumont∗ , Lionel Eyraud-Dubois∗ , Hejer Rejeb∗ ,

Christopher Thraves†

Thème COM — Systèmes communicants
Équipe-Projet Cepage

Rapport de recherche n➦ 6766 — December 2008 — 17 pages

Abstract: In this paper, we consider the problem of allocating a large num-
ber of independent, equal-sized tasks to a heterogeneous large scale computing
platforms, such as BOINC [1] or Folding@home [15]. We model the platform
using a set of servers (masters) that initially hold (or generate) the tasks to
be processed by a set of clients (slaves). All resources have different speeds of
communication and computation and we model contentions using the bounded
multi-port model. Under this model, a processor can be involved simultaneously
in several communications, provided that its incoming and outgoing bandwidths
are not exceeded. This model corresponds well to modern networking technolo-
gies, but for the sake of realism, another parameter needs to be introduced in
order to bound the number of simultaneous connexions that can be opened at
a server node. We prove that unfortunately, this additional parameter makes
the problem of maximizing the overall throughput (i.e. the fractional number
of tasks that can be processed within one time-unit) NP-Complete. This result
is closely related to results on bin packing with splittable items and cardinality
constraints. On the other hand, we also propose a polynomial time algorithm,
based on a slight resource augmentation, to solve this problem. More specif-
ically, we prove that, if dj denotes the maximal number of connexions that
can be opened at node Sj , then the throughput achieved using this algorithm
and dj + 1 is at least the same as the optimal one with dj . We also provide
a dual algorithm for minimizing the maximal number of connexions that need
to be opened in order to achieve a given throughput. Finally, we also propose
extensive simulations to assess the performance of the proposed algorithm.

Key-words: Independent Tasks Scheduling, Bin Packing, Resource Augmen-
tation, Approximation Algorithms, Heterogeneous Computing

∗ LaBRI
† This work was partially suported by French ANR project Alpage

Allocation de Clients à Plusieurs Serveurs sur

des Plates-Formes Hétérogènes à Grande Échelle

Résumé : Cet article s’intéresse à l’allocation d’un grand nombre de tâches
indépendantes et identiques à une plate-forme de calcul hétérogène et à grande
échelle, comme BOINC ou Folding@Home. La plate-forme est modélisée par
un ensemble de serveurs (ou mâıtres) qui détiennent ou génèrent les tâches qui
doivent être effectuées par un ensemble de clients (ou esclaves). Les ressources
ont des capacités de calcul et de communication différentes, et la contention est
modélisée par le modèle multi-port borné. Ce modèle autorise un processeur
à participer à plusieurs communications simultanément, tant que ses bandes
passantes entrantes et sortantes ne sont pas dépassées. Cela correspond bien au
technologies réseau actuelles, mais il faut y ajouter un paramètre supplémentaire
pour borner le nombre de connections qui peuvent être ouvertes sur chaque
serveur. Nous prouvons que ce paramètre supplémentaire rend le problème de
maximisation du débit total (c’est-à-dire the nombre de tâches fractionnaire
qui peuvent être exécutées par unité de temps) NP-Complet. Ce résultat est
proche d’autres résultats précédents à propos de bin packing avec des objets
divisibles et des contraintes de cardinalité. De plus, nous proposons également
un algorithme polynomial qui résoud le problème avec une petite augmentation
de ressources. Plus précisément, si dj est le nombre maximal de connections que
le serveur Sj peut ouvrir, alors notre algorithme atteint le débit d’une solution
optimale en autorisant l’ouverture de dj +1 connections. Cela fournit également
une très bonne approximation au problème dual de minimisation du nombre de
connections nécessaires pour obtenir un débit donné. Enfin, nous fournissons
également des simulations étendues pour montrer la performance de l’algorithme
proposé.

Mots-clés : ordonnancement de tâches indépendantes, bin packing, augmen-
tation de ressources, algorithmes d’approximation, calcul hétérogène

Allocation of Clients to Multiple Servers on Large Scale Heterogeneous Platforms3

1 Introduction

Scheduling computational tasks on a given set of processors is a key issue for
high-performance computing, especially in the context of the emergence of large
scale computing platforms such as BOINC [1] or Folding@home [15]. These
platforms are characterized by their large scale, their heterogeneity and the
variations in the performances of their resources. These characteristics strongly
influence the set of applications that can be executed using these platforms.
First, the running time of the application has to be large enough to benefit
from the platform scale, and to minimize the influence of start-up times due to
sophisticated middleware. Second, an application executed of a such a platform
typically consists of many small independent tasks. This allows to minimize
the influence of variations in resource performances and to limit the impact of
resource failures. From a scheduling point of view, the set of applications that
can be efficiently executed is therefore restricted, and we can concentrate on
”embarrassingly parallel” applications consisting in many independent tasks.

In this context, makespan minimization, i.e, minimizing the minimal time
to process a given number of tasks, is usually intractable. An idea to cir-
cumvent the difficulty of makespan minimization is to lower the ambition of
the scheduling objective. Instead of aiming at the absolute minimization of
the execution time, why not consider asymptotic optimality and optimize the
throughput (i.e. the fractional number of tasks that can be processed in one
time-unit once steady-state has been reached)? After all, the number of tasks
to be executed in applications such as Seti@home [2] or Folding@home [15] is
huge. This approach has been pioneered by Bertsimas and Gamarnik [5] and
has been extended to task scheduling in [3] and collective communications in [4].
Steady-state scheduling allows to relax the scheduling problem in many ways.
Initialization and clean-up phases are neglected. The precise ordering and al-
location of tasks and messages are not required, at least in the first step. The
main idea is to characterize the activity of each resource during each time-unit:
which rational fraction of time is spent sending and processing tasks and to
which client tasks are delegated?

In this paper, we restrict our attention to steady-state scheduling of indepen-
dent equal-sized tasks. In order to consider a more general model than current
settings where a single server is used, we consider that a set of servers initially
hold (or generate) the tasks to be processed. Each server Sj is characterized
by its outgoing bandwidth bj (i.e. the number of tasks it can send during one
time-unit) and its maximal degree dj (i.e. the number of open connexions that
it can handle simultaneously). On the other hand, each client Ci is charac-
terized by its capacity wi (i.e. the number of tasks it can handle during one
time-unit). wi encompasses both its processing and communication capacities.
More specifically, if compi denotes the number of tasks Ci can processed during
one time-unit, and commi denotes the number of tasks it can receive during one
time-unit, then we set wi = min(compi, commi).

Our goal is to build a bipartite graph between servers and clients. We do
not assume that the underlying network topology is known. Such an assump-
tion would be completely unrealistic for large scale computing platforms such
as BOINC, where Internet is the underlying network. Even for smaller scale
platforms, such as Grids, automatic topology discovery tools, such as [10, 20]
are much too slow for quickly evolving resources. Moreover, the underlying core

RR n➦ 6766

4 Olivier Beaumont , Lionel Eyraud-Dubois , Hejer Rejeb , Christopher Thraves

network is usually over-sized, so that contentions mostly take place at node
networking interfaces.

To model contentions, we rely on the bounded multi-port model, that has
already been advocated by Hong et al. [13] for independent task distribution
on heterogeneous platforms. In this model, server Sj can serve any number
of clients simultaneously, each using a bandwidth w′

i ≤ wi provided that its
outgoing bandwidth is not exceeded, i.e.

∑

i w′
i ≤ bj . This corresponds to

modern network infrastructure, where each communication is associated to a
TCP connexion.

This model strongly differs from the traditional one-port model used in
scheduling literature, where connexions are made in exclusive mode: the server
can communicate with a single client at any time-step. Previous results obtained
in steady-state scheduling of independent tasks [3] have been obtained under this
model, which is easier to implement. For instance, Saif and Parashar [16] report
experimental evidence that achieving the performances of bounded multi-port
model may be difficult, since asynchronous sends become serialized as soon as
message sizes exceed a few megabytes. Their results hold for two popular im-
plementations of the MPI message-passing standard, MPICH on Linux clusters
and IBM MPI on the SP2. Nevertheless, in the context of large scale platforms,
the networking heterogeneity ratio may be high, and it is unrealistic to assume
that a 100MB/s server may be kept busy for 10 seconds while communicating a
1MB data file to a 100kB/s DSL node. Therefore, in our context, all connexions
must directly be handled at TCP level, without using high level communication
libraries.

It is worth noting that at TCP level, several QoS mechanisms enable a
prescribed sharing of the bandwidth [6, 14]. In particular, it is possible to
handle simultaneously several connexions and to fix the bandwidth allocated
to each connexion. In our context, these mechanisms are particularly useful
since wi encompasses both processing and communication capabilities of Ci and
therefore, the bandwidth allocated to the connexion between Sj and Ci may be
lower than both bj and wi. Nevertheless, handling a large number of connexions
at server Sj with prescribed bandwidths consumes a lot of kernel resources,
and it may therefore be difficult to reach bj by aggregating a large number of
connexions. In order to avoid this problem, we introduce another parameter
dj in the bounded multi-port model, that represents the maximal number of
connexions that can simultaneously be opened at server Sj .

The rest of the paper is organized as follows. In Section 2, we present the
communication model we use and formalize the scheduling problem we consider.
We prove that if we introduce a bound on the maximal number of connexions
that can be opened simultaneously at a server, then the problem of maximizing
the overall throughput becomes NP-Complete. We also discuss related works
dealing with the packing of splittable items with cardinality constraints. In
Section 3, we also propose a sophisticated polynomial time algorithm, based
on a slight resource augmentation to solve this problem. More specifically, we
prove that, if dj denotes the maximal number of connexions that can be opened
at node Sj , then the throughput achieved using this algorithm and degree dj +1
is at least the same as the optimal one with degree dj . We also provide a dual
algorithm for minimizing the maximal number of connexions that need to be
opened in order to achieve a given throughput. Section 4 presents extensive

INRIA

Allocation of Clients to Multiple Servers on Large Scale Heterogeneous Platforms5

simulation results comparing greedy based heuristics for our problem. At last,
we provide in Section 5 some future works and concluding remarks.

2 Model and Related Works

2.1 Problem Modeling

Let us denote by bj the capacity of server Sj and by dj the maximal number of
connexions that it can handle simultaneously. The capacity of client Ci is de-
noted by wi. All capacities are normalized and expressed in terms of (fractional)
number of tasks per time-unit. Moreover, let us denote by wj

i the number of
tasks per time-unit sent from server Sj to client Ci.

A valid solution can be depicted as a weighted bipartite graph between
servers and clients (see Figure 1) where the following conditions are satisfied

∀j,
∑

i wj
i ≤ bj capacity constraint at Sj (1)

∀j, Card{i, wj
i > 0} ≤ dj degree constraint at Sj (2)

∀i,
∑

j wj
i ≤ wi capacity constraint at Ci (3)

C1 C2 C3 C4

S3S2S1

d1 = 2

b1 = 12

d2 = 3

b2 = 6
d3 = 1

b3 = 2

w1 = 8 w2 = 6 w3 = 1 w4 = 5

w
1
2 = 4

w
2
2 = 2 w

2
3 = 1

w
2
4 = 3 w

3
4 = 2w

1
1 = 8

Figure 1: Optimal solution with 3 servers and 4 clients. Throughput=20

Our goal is to maximize the number of tasks that can be processed during
one time-unit by the platform, what corresponds to problem MTBD.

Maximize-Throughput-Bounded-Degree (MTBD):

Maximize
∑

j

∑

i

wj
i under constraints (1),(2) and (3).

The corresponding decision problem TBD-Dec can be formalized as follows.

Throughput-Bounded-Degree-Dec (TBD-Dec):

RR n➦ 6766

6 Olivier Beaumont , Lionel Eyraud-Dubois , Hejer Rejeb , Christopher Thraves

Instance: A set of m servers S1, . . . ,Sm with capacity bj and degree dj , a set
of n clients C1, . . . , Cn with capacity wi and a bound K

Solution: A weighted bipartite graph between servers and clients with weights

wj
i satisfying constraints (1),(2) and (3) and such that

∑

j

∑

i

wj
i ≥ K.

TBD-Dec is clearly NP-Complete in the strong sense. For instance, we
can use a reduction to 3-Partition problem [11]. Indeed, let us consider an
instance of 3-Partition consisting of 3m items ai such that

∑

ai = mB and
∀i, B

4 < ai < B
2 and let us set ∀j, dj = 3, bj = B, n = 3m, ∀i, wi = ai and

K = mB. Since the overall out degree of the servers is at most 3m and that
all clients should be used in order to reach throughput mB, then each server
should be connected to exactly 3 clients and no client should be connected to
more than one server. Since the overall capacity of the server is mB, then each
server should be connected to 3 clients whose aggregated capacity is exactly B,
what achieves the NP-Completeness proof.

We will discuss related works dealing with bin packing of splittable items
that provide more detailed complexity results in Section 2.2. It is worth noting
that the complexity comes from the additional constraint related to the max-
imal number of connexions that a server can handle simultaneously. Indeed,
without this constraint, the corresponding optimization problem becomes Max-

imize
∑

j

∑

i

wj
i under constraints (1) and (3) and can therefore be solved in

polynomial time using a linear program solver in rational numbers [17]. This
situation is particularly annoying since the bound on the number of simultane-
ous connexions is a weak constraint. Indeed, even if it may be impossible for
server Sj to reach bj by aggregating the bandwidths of a large number of connex-
ions, the influence of one extra connexion on the aggregated bandwidth is very
small. Therefore, the parameter dj is mostly introduced to avoid pathological
situations where thousands of nodes would connect to the same server.

In order to deal with this weak constraint, we propose in Section 3 a polyno-
mial time algorithm that finds a solution where the maximal degree of a server
is dj + 1 and whose throughput is at least as much as the optimal one with de-
gree dj . Since the degree constraint is weak, we can consider that, in practice,
our algorithm is optimal. Moreover, the introduction of this extra parameter
enables to avoid those pathological situations where too many clients would
connect to the same server. We believe that this kind of techniques (resource
augmentation on a weak parameter) may be used in many scheduling problems.

Based on the same ideas, the algorithm we propose is also an approximation
algorithm for the following dual problem:

Minimize-Degree-Given-Throughput (MDGT): Minimize α such that

∀j,
∑

i wj
i ≤ bj capacity constraint at Sj

∀j, Card{i, wj
i > 0} ≤ dj + α degree constraint at Sj

∀i,
∑

j wj
i ≤ wi capacity constraint at Ci

∑

i

∑

j wj
i ≥ T throughput larger than T

INRIA

Allocation of Clients to Multiple Servers on Large Scale Heterogeneous Platforms7

In particular, it is worth noting that if we set ∀j, dj = 0, the optimal
solution α∗ of the above optimization provides a solution where the maximal
degree of a server is minimized. The corresponding decision problem is also
trivially NP-Complete (on the previous instance with T = mB, deciding if α∗ =
3 is equivalent to solve 3-Partition), but we provide in Section 3 an algorithm
that outputs a valid solution with α ≤ α∗ + 1.

2.2 Related Works

A closely related problem is Bin Packing with Splittable Items and Cardinality
Constraints. The goal in this problem is to pack a given set of items in as few
bins as possible. The items may be split, but each bin may contain at most k
items or pieces of items. This is very close to the problem we consider, with two
main differences: in our case the number of servers (corresponding to bins) is
fixed in advance, and the goal is to maximize the total bandwidth throughput
(corresponding to the total packed size), whereas the goal in Bin Packing is
to minimize the number of bins used to pack all the items. Furthermore, we
consider heterogeneous servers.

As far as we know, Bin Packing with splittable items and cardinality con-
straints was introduced in the context of memory allocation in parallel proces-
sors by Chung et al. [7], who considered the special case when k = 2. They
showed that even in that case this problem is NP-Complete, and proposed a
3/2-approximation algorithm. Epstein and van Stee [9] showed that Bin Pack-
ing with splittable items and cardinality constraints is NP-Hard for any fixed
value of k, and that the simple NEXT-FIT algorithm has an approximation ra-
tio of 2− 1/k. They also designed a PTAS and a dual PTAS [8] for the general
case with constant k.

Other related problems were introduced by Shachnai et al. [19], in which the
size of an item increases when it is split, or there is a global bound on the number
of fragmentations. The authors prove that theses two problems do not admit a
PTAS, and provide a dual PTAS and an asymptotic PTAS. In a multiprocessor
scheduling context, another related problem is scheduling with allotment and
parallelism constraints [18], where the goal is to schedule a certain number of
tasks, where each task has a bound on the number of machines that can process
it simultaneously, and another bound on the overall number of machines that
can participate in its execution. This problem can also be seen as a splittable
packing problem, but this time with a bound ki on the number of times an item
can be split. In [18], an approximation algorithm of ratio maxi(1 + 1/ki) is
presented.

3 A Resource Augmentation Greedy Algorithm

In this section we present the algorithm Seq for the problem MTBD, and we
prove a result of optimality under resource augmentation.

3.1 The Seq Algorithm

We present here a resource augmentation algorithm, in the sense that it provides
a solution that slightly breaks one of the constraints of the problem, namely

RR n➦ 6766

8 Olivier Beaumont , Lionel Eyraud-Dubois , Hejer Rejeb , Christopher Thraves

constraint (2) that deals with the maximal degree of the servers. In the output
solution of our Seq algorithm, the number of clients that connect to a server
Sj is at most dj + 1 instead of dj in constraint (2).

In the following, we will consider lists of clients sorted by increasing capaci-
ties, and if C = {Ci} denotes such a list, we will denote by C(l, k) =

∑k
i=l wi the

sum of the capacities of the clients between Cl and Ck, both of them included.
The Seq algorithm maintains an ordered list of remaining clients, and at

each step, picks up a server Sj arbitrarily and goes through the list to find a
suitable set of clients for this server. It only considers consecutive clients in the
list, i.e. whose indexes form an interval of the form [l, l + dj]. This property
both decreases the complexity of the algorithm and ensures its correctness.

In order to avoid to waste connexions out of the server, it tries to allocate as
many complete clients as possible. Thus, the only client that may be partially
allocated to server Sj is the last one in the interval, i.e. client Cl+dj

. At last, we
want to use all of the bandwidth of Sj , so the sum of the capacities of the clients
have to be at least the capacity bj of the server. If such an interval exists (there
may be several, but any of them does the trick), the Seq algorithm allocates
this set of clients to server Sj . Client Cl+dj

is then replaced by a new client
whose capacity is equal to C(l, l + dj)− bj . In that case the client Cl+dj

will be
linked to more than one server in the final solution. The list is then updated
and reordered, and the algorithm goes on with the next server.

It may happen that there exists no interval with the desired properties, for
two reasons. The first one is that dj + 1 clients are not enough to use all the
bandwidth bj (i.e. the overall capacity of the dj + 1 largest clients is not big
enough). In this case, Seq allocates to server Sj the dj + 1 largest clients
(the last ones in the list). On the other hand, if any set of dj + 1 clients has
overall capacity larger than bj (i.e. the overall capacity of the dj + 1 smallest
clients is already too big), then the algorithm simply allocates the d smallest
clients, where d is the smallest index such that C(1, d) ≥ bj . In this case also,
the last client may be split by creating a new client with capacity C(1, d)− bj .
Algorithm 1 gives a more formal description of Seq.

3.2 Approximation Results

In this section, we prove that for all instances I of MTBD, the throughput
of the solution Seq(I) computed by Algorithm Seq is at least as good as any
valid solution A of instance I1. To this end, we first claim that after the j-th
step of Seq, the remaining list of clients is easier to allocate with Seq than the
corresponding remaining clients of solution A obtained by removing the clients
allocated to servers S1, . . . ,Sj . In order to state formally what easier means,
we define a relation � on the (ordered) lists of clients.

Definition 3.1 Let C and R be two lists of clients of same length n, ordered by
increasing capacities. We say that C is easier than R (denoted by C � R), if

∀k ≤ n, C(1, k) ≤ R(1, k)

For the sake of simplicity, we consider that the length of the lists of clients
remain n through all steps of the algorithm. Removed clients will thus be

1Remember that if the maximal degree of server Sj is dj , Seq may use dj + 1 connexions
out of Sj

INRIA

Allocation of Clients to Multiple Servers on Large Scale Heterogeneous Platforms9

Algorithm 1 Algorithm Seq

Set S = {Sj}
m
j=1 and C = sort({Ci}

n
i=1);

Set A = {Aj = {∅}}mj=1 and j = 1;
for j = 1 to m do

if ∃l such that C(l, l + dj − 1) < bj and C(l, l + dj) ≥ bj then
Split Cl+dj

in C′l+dj
and C′′l+dj

with wl+dj
= w′

l+dj
+ w′′

l+dj
and w′′

l+dj
=

bj − C(l, l + dj − 1)
Set Aj = {Cl, Cl+1, . . . , Cl+dj−1, C

′′
l+dj
}

Remove Cl, Cl+1, . . . , Cl+dj
from C

Insert C′l+dj
in C

end if
if C(1, dj) ≥ bj then

Search for the smallest l such that C(1, l) ≥ bj

Split Cl in C′l and C′′l with wl = w′
l + w′′

l and w′′
l = bj − C(1, l − 1)

Set Aj = {C1, C2, . . . , Cl−1, C
′′
l }

Remove C1, C2, . . . , Cl from C
Insert C′l in C

end if
if C(n− dj , n) < bj then

Set Aj = {Cn−dj
, Cn−dj+1, . . . , Cn}

Remove Cn−dj
, Cn−dj+1, . . . , Cn from C

end if
end for
RETURN A = {Aj}

m
j=1

considered as 0-capacity clients (and inserted at the beginning of the lists).
Note that is does not change the behavior of the algorithm.

The following definition formalizes what the constraints of the problem in-
duce on the lists of remaining clients of an arbitrary solution.

Definition 3.2 Let R be a list of clients of length n, in which client i has
capacity ri. We say that a list R′ is obtained from R with degree d and capacity

b (denoted by R
(d,b)
−−−→ R′) if

❼ there exists C ⊆ {1, . . . , n} with Card(C) ≤ d,

❼ there exists (vi)i∈C such that ∀i ∈ C, vi ≤ ri and
∑

i∈C vi ≤ b,

❼ R′ = σ(R/r′i ← ri − vi, i ∈ C) for some sorting permutation σ.

Let us now consider a given step of the algorithm Seq, in which the con-
sidered server has capacity b and degree d. We denote by C and C′ the lists of
remaining clients respectively before and after this step. The central lemma of
our proof is the following.

Lemma 3.3 If C � R and R
(d,b)
−−−→ R′, then C′ � R′.

Proof: We begin by proving two lower bounds for R′(1, k). Let σ be the
permutation of {1, . . . , n} that is used to sort (R/r′i ← ri − vi, i ∈ C) in order
to obtain R′, which means r′σ(i) = ri if i /∈ C, and r′σ(i) = ri−vi if i ∈ C. Then,

RR n➦ 6766

10 Olivier Beaumont , Lionel Eyraud-Dubois , Hejer Rejeb , Christopher Thraves

R′(1, k) =
∑

i:i/∈c∧σ(i)≤k

ri +
∑

i:i∈c∧σ(i)≤k

ri − vi =
∑

i:σ(i)≤k

ri −
∑

i:i∈c∧σ(i)≤k

vi

For k ≥ d, since there are at least k−d indexes i that satisfy i /∈ c∧σ(i) ≤ k,
then

∑

i:i/∈c∧σ(i)≤k ri ≥ R(1, k− d). Together with the fact that ri− vi ≥ 0, we
obtain the first upper bound

R′(1, k) ≥ R(1, k − d) ∀k > d. (4)

Similarly, since there are k indexes i such that σ(i) ≤ k, then
∑

i:σ(i)≤k ri ≥

R(1, k). Together with the fact that
∑

i∈C vi ≤ b, we obtain the second upper
bound

R′(1, k) ≥ R(1, k)− b (5)

To complete the proof, we need to evaluate C′(1, k). Since we identified three
main situations when adding a server, we evaluate C′(1, k) for each possible
situation.

Case 1: ∃l such that A(l, l + d − 1) < b and A(l, l + d) ≥ b. In this case
the algorithm allocates completely clients Cl, Cl+1, . . . , Cl+d−1 to Sj and splits
Cl+d into C′l+d and C′′l+d. The first d clients of the list C′ will thus have zero
capacity, and C′l+d will be reinserted in a position before Cl+d+1, say between Cp
and Cp+1.

Then C′ = {C′l , . . . , C
′
l+d−1, C1, . . . , Cp, C

′
l+d, Cp+1, . . . , Cl−1, Cl+d+1, . . . , Cn},

and therefore

C′(1, k) =















0 for k ≤ d
C(1, k − d) for d < k ≤ p + d

C(1, k − d− 1) + w′
l+d for p + d < k ≤ l + d

C(1, k)− b for l + d < k

(6)

Indeed, for k ≤ d, C′(1, k) is a sum over the completely allocated reinserted
clients, and thus is a sums up to zero. For the second interval d < k ≤ p + d,
C′(1, k) is a sum of the first k − d capacities in C, since they were shifted by
d positions (due to the insertion of d clients at the beginning of the list). In
the third interval p + d < k ≤ l + d, the sum is the same than in the previous
interval, but the last element in the sum is replaced by the size of the split client
that has been inserted. Finally when l + d < k, the sum is equal to the sum in
the original list, decreased by the total capacity allocated to S.

Now, using equations (5) and (4), the fact that C � R and (6), we have

C′(1, k) = 0 ≤ R′(1, k) for k ≤ d

C′(1, k) = C(1, k − d) ≤ R(1, k − d) ≤ R′(1, k) for d < k ≤ p + d

C′(1, k) = C(1, k − d− 1) + w′
l+d

≤ C(1, k − d) ≤ R(1, k − d) ≤ R′(1, k) for p + d < k ≤ l + d

C′(1, k) = C(1, k)− b ≤ R(1, k)− b ≤ R′(1, k) for l + d < k.

INRIA

Allocation of Clients to Multiple Servers on Large Scale Heterogeneous Platforms11

Case 2: A(1, d) ≥ b. In this case, since Seq uses the first l ≤ d clients,
there is no reordering of the list. The new list C′ can therefore be written as
{C′1, . . . , C

′
l−1, C

′
l , Cl+1, . . . , Cn}, where C′i has zero capacity for i < l. Moreover,

since the overall allocated capacity is equal to b, we have

C′(1, k) =

{

0 for k ≤ l − 1
C(1, k)− b for k > l − 1

Hence, by equation (5) together with the fact that C � R, we have C′(1, k) ≤
R′(1, k).

Case 3: A(n− d, n) < b. In this case, Seq allocates completely the d + 1 last
clients to S, and therefore all reinserted clients C′i will have zero capacity and
will be reinserted at the beginning of the list. The new list C′ can therefore be
written as {C′n−d, . . . , C

′
n, C1, . . . , Cn−d−1}. Therefore,

C′(1, k) =

{

0 for k ≤ d + 1
C(1, k − (d + 1)) for k > d + 1

Once again, by equation (4) together with C � R, we have C′(1, k) ≤
R′(1, k).

Now we can state and prove our main result.

Theorem 3.4 Let A be any valid solution of an instance I, and Seq(I) be the
solution given by algorithm Seq. Then, the throughput of Seq(I) is at least as
much as the throughput of A.

Proof: Let use denote by LC and LS the lists of clients and servers of instance
I, respectively. Let wj

i be the bandwidth allocated to client Ci on server Sj in the
solution A. For all 0 ≤ j ≤ m, we will denote by LCj the list of remaining clients
using Seq after step j (hence LC0 = LC), and by LRj the list of remaining
clients if we remove servers S1, . . . ,Sj from solution A, i.e. LRj = (wi −
∑j

k=1 wj
i)i≤n.

Since A satisfies the constraints (1), (2) and (3), then LRj−1
(dj ,bj)
−−−−→ LRj .

Lemma 3.3 provides the following implication: LCj � LRj ⇒ LCj+1 � LRj+1

for all j < m. Since LC0 = LR0 = LC, a simple induction proves that LCj �
LRj for all j. In particular,

LCm � LRm, and LCm(1, n) ≤ LRm(1, n). (7)

Remark now that LCm(1, n) is the sum of the capacities of the clients that
have not been allocated (or have been allocated only partially because of split-
tings) using Seq, and so the throughput of Seq(I) is given by

∑

i wi−LCm(1, n).
Similarly, the throughput of A is given by

∑

i wi−LRm(1, n). Therefore, Equa-
tion (7) completes the proof of the theorem.

RR n➦ 6766

12 Olivier Beaumont , Lionel Eyraud-Dubois , Hejer Rejeb , Christopher Thraves

3.3 An Approximation Algorithm for the Dual Problem

This resource augmentation result can also be seen as an approximation for the
problem MDGT (Minimize Degree for a Given Throughput). Indeed, if we are
given a bound B ≤ min(

∑

j bj ,
∑

i wi) on the throughput, a simple dichotomic
search allows to find the minimum value αSeq of α such that the throughput of
Seq(I(α)) is at least B on the modified instance I(α) in which server Sj has
degree dj + α. Theorem 3.4 states that if there is a solution A of throughput B
for instance I(α− 1), then Seq(I(α− 1)) provides a valid solution for instance
I(α) of throughput at least B.

We have thus that αSeq ≤ α∗ + 1, where α∗ is the optimal value of the
problem MDGT for instance I. Since MDGT is NP-complete, this is the best
possible approximation result.

4 Simulation Results

4.1 Heuristics for Comparison

As already mentioned in Section 2.2, related work has been mostly done in
the context of Bin Packing, where there is an infinite amount of identical bins,
and the goal is to pack all items in as few bins as possible2. Interestingly,
in this setting, the Next-Fit algorithm has a worst-case approximation ratio
of 2 − 1/k [9], but it can easily be observed that it does not exhibit a con-
stant approximation ratio for the total packed size when the number of bins is
fixed. Moreover, most of existing algorithms in this context are approximation
schemes, with prohibitive running times. To provide a basis of comparison, we
thus introduce three basic and natural greedy heuristics.

LCLS (Largest Client Largest Server) At each step, the client with
largest wi is associated with the server with largest available capacity b′j = bj −
∑

i wj
i . The client is split if necessary, in which case the remaining w′

i = wi− b′j
is inserted in the ordered list.

LCBC (Largest Client Best Connexion) In this heuristic, we also con-
sider the largest client first, but servers are ordered according to their remaining
capacity per connexion, which is defined as the ratio between the remaining ca-
pacity b′j and the remaining available degree d′j . The server with the largest
capacity per connexion is selected. Here also, the client is split if necessary.

OBC (Online Best Connection) This heuristic is an online version of the
previous one. All the servers are supposed to be known at the beginning of the
execution, but the clients arrive at arbitrary time steps. To model this setting,
the clients are considered in an arbitrary order, and we select the server with
a remaining capacity per connexion as close as possible to the client’s capacity.
More precisely, we select the server with the largest b′j/d′j such that b′j/d′j ≤ wi.

2In our context, servers are bins and clients are items

INRIA

Allocation of Clients to Multiple Servers on Large Scale Heterogeneous Platforms13

4.2 Random Instance Generation

We generate instances randomly, trying to focus at the same time on realistic
scenarios and difficult instances. Instances are more difficult to solve when the
sum of the server capacities is roughly equal to the sum of the client capacities.
Indeed, the minimum of both is a trivial upper bound on the total achievable
throughput, and a large difference between them provides a lot of freedom on
the largest component to reach this upper bound. Based on the same idea, we
generate instances where the sum of the server degrees

∑

j dj is roughly equal
to the number n of clients.

In order to get a realistic distribution of server and client capacities, we have
used information available from the volunteer computing project GIMPS [12]
that provides the average computing power of all its participants. A simple
statistical study shows that the computational power (based on the 7,000 largest
participants) follows a power-law distribution with exponent α̂ ≈ 2.09. We have
thus used this distribution and this exponent to generate the capacities of both
clients and servers. The resulting values are then scaled so that their sums
(
∑

i wi and
∑

j bj) are roughly equal. Furthermore, the degree dj of server Sj

is chosen proportional to its capacity bj (it seems reasonable to assume that
a server with larger capacity can accommodate more clients), with a gaussian
multiplicative factor of mean 1 and variance 0.1.

4.3 Results

In the first set of experiments, we have measured the throughput of the solutions
proposed by each algorithm. All values are normalized against the previously
mentioned upper bound min(

∑

j bj ,
∑

i wi). Figure 2(a) shows the average re-
sults on 250 instances when the number of servers varies from 20 to 140 (the
number of clients is always 10 times the number of servers, and thus the average
degree of the servers is 10), and Figure 2(b) shows the result for all the instances
with 80 servers, which is a typical case. We can already make some remarks:

❼ For these instances, the Seq algorithm performs consistently better than
the others. In fact, it almost always reaches the upper bound.

❼ The performance of the LCBC algorithm is around 4% worse, and LCLS
is around 10-12% worse than Seq.

❼ OBC does not perform too badly on average, but it exhibits a much more
higher dispersion than the others. This can be explained by the fact that
it is an “online” algorithm, and thus its performance highly depends on
the ordering in which clients arrive.

As we tried to investigate the variability of the results obtained, it appeared
that LCBC performance strongly depends on the heterogeneity of the client
capacities. We have thus plotted on Figure 3 the results for 1000 instances with
m = 80 against the relative mean difference3 of the client capacities, which is
a measure of their dispersion. For the sake of readability, we have separated
the plots for LCBC and LCLS (the performance of Seq is not sensitive to this
heterogeneity measure, so the graph is not shown to save space).

3The mean difference of values {yi} is the average absolute difference of all couples of
values. The relative mean difference is the mean difference divided by the arithmetic mean.

RR n➦ 6766

14 Olivier Beaumont , Lionel Eyraud-Dubois , Hejer Rejeb , Christopher Thraves

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 20 40 60 80 100 120 140

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of servers

Seq
LCBC
OBC

LCLS

(a) Average normalized throughput when m

varies.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Instance number

Seq
LCBC
OBC

LCLS

(b) Normalized throughput with m = 80.

Figure 2: Simulation results

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Client capacity dispersion

LCBC

(a) LCBC algorithm

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Client capacity dispersion

LCLS

(b) LCLS algorithm

Figure 3: Normalized throughput against dispersion of client capacities, with
m = 80.

We can observe on these plots that the performance of LCBC gets worse
when the heterogeneity increases, at least up to a certain point. On the other
hand, the performance of LCLS gets better when heterogeneity is high, and at
some point both algorithms perform similarly well. This can be explained by the
fact that when there is a very large client in the instance, it is more important
to assign it to a large server than to the server with the largest capacity per
connexion. Indeed, if the latter is a relatively small server, the large client is
split, and the connexions of the smaller server are wasted.

In a second set of experiments, we have computed for each algorithm A the
minimum value α∗ that needs to be added to the degree of each server so that
algorithm A reaches the upper bound B = min(

∑

j bj ,
∑

i wi). Note that the
results of Section 3 do not imply that α∗ ≤ 1 for algorithm Seq, since it may
well be the case that the upper bound cannot be reached with the original degree
sequence. Average results for all algorithms and for varying m are depicted in
Figure 4(a), and the values of α∗ against the dispersion of client sizes for m = 80
are depicted in Figure 4(b).

INRIA

Allocation of Clients to Multiple Servers on Large Scale Heterogeneous Platforms15

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20 40 60 80 100 120 140

A
ve

ra
ge

 a
lp

ha
*

Number of servers

Seq
LCBC
OBC

LCLS

(a) Average α∗ for 250 instances for varying m

 1

 10

 100

 1 1.2 1.4 1.6 1.8 2

A
lp

ha
*

(lo
gs

ca
le

)

Client capacity dispersion

Seq
LCBC

(b) α∗ values against dispersion for m = 80

Figure 4: Plots of α∗, the smallest value such that A(I/dj ← dj + α) = B.

We can see that as expected, the Seq algorithm makes very good use of
the additional degree, and can almost always reach the upper bound with an
increase of 1 or 2. As expected also, the ranking of algorithms observed for the
total throughput is still the same when considering α∗. We see that with LCBC,
one needs about 4 more connexions to reach the bound, and that this number
becomes 10 with LCLS and 12 with OBC. Remember that in all of the instances
considered, the average degree of the servers is 10. Simply reasoning about the
average values does not give much more information, but the second graph shows
that most of the values for LCBC are between 2 and 5. However, it can be as
high as 80 for instances with large dispersion in client capacities, and these high
values tend to increase the average. Examination of the results for algorithms
LCLS and OBC exhibit the same kind of behaviors, with larger values of α∗

for the most homogeneous instances, and this explains larger average values.
Therefore, for these difficult heterogeneous instances, we can see the benefit of
the guarantee proved in Section 3 for algorithm Seq.

5 Conclusion

We considered the problem of allocating a large set of tasks to a fully heteroge-
neous platform made of servers and clients. We proved that if we add a bound
on the maximal number of open connexions a server can handle simultaneously,
the problem of maximizing the overall throughput becomes NP-Complete in the
strong sense. Nevertheless, we also provided a polynomial time algorithm that
reaches the optimal throughput using a very small resource augmentation on the
number of connexions. More specifically, we proved that, if dj denotes the max-
imal number of connexions that can be opened at node Sj , then the throughput
achieved using this algorithm and degree dj + 1 is at least the same as the op-
timal one with degree dj . Finally, we also proposed extensive simulations to
assess the performance of proposed algorithm.

The approach presented in this paper consists in determining a weak con-
straint that makes an allocation problem NP-Complete and then to perform
resource augmentation on this parameter. We believe that this approach is very
promising in the context of steady state scheduling, because it enables to con-

RR n➦ 6766

16 Olivier Beaumont , Lionel Eyraud-Dubois , Hejer Rejeb , Christopher Thraves

sider more realistic communication models without relying on approximation
algorithms that limit the expected throughput.

A natural extension of the work presented in this paper would consist in
considering the on-line case, where the set of clients is not known in advance4.
Simulations performed with a natural greedy on-line algorithm tend to prove
that the problem is more difficult in this case, but the questions of finding an
appropriate resource augmentation or a satisfying approximation ratio are still
open. Another interesting extension would consist in considering more complex
virtual topologies (overlay networks) to organize the participating clients. In-
deed, the clients have themselves some available outgoing bandwidth and may
therefore be used both for processing tasks and for sending data to other clients.
This is particularly desirable in the context where the number of opened con-
nexions at a node is bounded and therefore where it may not be possible to use
all available resources, even if the overall throughput out of the servers is not
exceeded.

References

[1] D.P. Anderson. BOINC: A System for Public-Resource Computing and Storage. In 5th
IEEE/ACM International Workshop on Grid Computing, pages 365–372, 2004.

[2] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@ home: an
experiment in public-resource computing. Communications of the ACM, 45(11):56–61,
2002.

[3] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Schedul-
ing Strategies for Master-Slave Tasking on Heterogeneous Processor Platforms. IEEE
Transactions on Parallel and Distributed Systems, pages 319–330, 2004.

[4] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Pipelining Broadcasts on Het-
erogeneous Platforms. IEEE Transactions on Parallel and Distributed Systems, pages
300–313, 2005.

[5] D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithm for job shop schedul-
ing and packet routing. Journal of Algorithms, 33(2):296–318, 1999.

[6] Martin A. Brown. Traffic Control HOWTO. Chapter 6. Classless Queuing Disciplines.
http://tldp.org/HOWTO/Traffic-Control-HOWTO/classless-qdiscs.html, 2006.

[7] F. Chung, R. Graham, J. Mao, and G. Varghese. Parallelism versus Memory Allocation
in Pipelined Router Forwarding Engines. Theory of Computing Systems, 39(6):829–849,
2006.

[8] L. Epstein and R. van Stee. Approximation Schemes for Packing Splittable Items with
Cardinality Constraints. Lecture Notes in Computer Science, 4927:232, 2008.

[9] Leah Epstein and Rob van Stee. Improved results for a memory allocation problem. In
Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh, editors, WADS, volume
4619 of Lecture Notes in Computer Science, pages 362–373. Springer, 2007.

[10] L. Eyraud-Dubois, A. Legrand, M. Quinson, and F. Vivien. A First Step Towards
Automatically Building Network Representations. Lecture Notes in Computer Science,
4641:160, 2007.

[11] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. WH Freeman San Francisco, 1979.

[12] The great internet mersenne prime search (gimps). http://www.mersenne.org/.

[13] B. Hong and V.K. Prasanna. Distributed adaptive task allocation in heterogeneous
computing environments to maximize throughput. International Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th International, 2004.

4It is worth noting that the algorithm we propose can be considered as on-line if clients
are known at the beginning of the execution and servers are added on-line, even if it is not
the most reasonable setting for the on line case.

INRIA

Allocation of Clients to Multiple Servers on Large Scale Heterogeneous Platforms17

[14] B. Hubert et al. Linux Advanced Routing & Traffic Control. Chapter 9. Queueing Dis-
ciplines for Bandwidth Management. http://lartc.org/lartc.pdf, 2002.

[15] S.M. Larson, C.D. Snow, M. Shirts, and V.S. Pande. Folding@ Home and Genome@
Home: Using distributed computing to tackle previously intractable problems in compu-
tational biology. Computational Genomics, 2002.

[16] T. Saif and M. Parashar. Understanding the Behavior and Performance of Non-blocking
Communications in MPI. Lecture Notes in Computer Science, pages 173–182, 2004.

[17] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc. New
York, NY, USA, 1986.

[18] H. Shachnai and T. Tamir. Multiprocessor Scheduling with Machine Allotment and
Parallelism Constraints. Algorithmica, 32(4):651–678, 2002.

[19] Hadas Shachnai, Tami Tamir, and Omer Yehezkely. Approximation schemes for packing
with item fragmentation. Theory Comput. Syst., 43(1):81–98, 2008.

[20] G. Shao, F. Berman, and R. Wolski. Using effective network views to promote distributed
application performance. In International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications. CSREA Press, June 1999.

RR n➦ 6766

Centre de recherche INRIA Bordeaux – Sud Ouest
Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex (France)

Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

❤tt♣✿✴✴✇✇✇✳✐♥r✐❛✳❢r

ISSN 0249-6399

