Markov Models and Extensions for Land Cover Mapping in Aerial Imagery

Mohamed El Yazid Boudaren 1 Abdel Belaïd 2
2 READ - READ
LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Markov models are well-established stochastic models for image analysis and processing since they allow one to take into account the contextual relationships between image pixels. In this paper, we attempt to methodically review the use of Markov models and their extensions for Land Cover mapping problem in aerial imagery according to available literature and previous research works. A new Markov model combining Markov random fields and hidden Markov models and inspired from the NSHP-HMM model, initially introduced for Handwritten Words Recognition is defined. New learning and labeling procedures are derived.
Type de document :
Communication dans un congrès
International Conference of Signal and Image Engineering - ICSIE 2009, Jul 2009, London, United Kingdom. 2009
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00346632
Contributeur : Abdel Belaid <>
Soumis le : lundi 15 décembre 2008 - 10:30:34
Dernière modification le : mardi 24 avril 2018 - 13:37:23
Document(s) archivé(s) le : mardi 8 juin 2010 - 16:06:17

Fichier

boudaren-ICSIE.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00346632, version 1

Collections

Citation

Mohamed El Yazid Boudaren, Abdel Belaïd. Markov Models and Extensions for Land Cover Mapping in Aerial Imagery. International Conference of Signal and Image Engineering - ICSIE 2009, Jul 2009, London, United Kingdom. 2009. 〈inria-00346632〉

Partager

Métriques

Consultations de la notice

186

Téléchargements de fichiers

309