An identification problem in an urn and ball model with heavy tailed distributions

Abstract : We consider in this paper an urn and ball problem with replacement, where balls are with different colors and are drawn uniformly from a unique urn. The numbers of balls with a given color are i.i.d. random variables with a heavy tailed probability distribution, for instance a Pareto or a Weibull distribution. We draw a small fraction $p\ll 1$ of the total number of balls. The basic problem addressed in this paper is to know to which extent we can infer the total number of colors and the distribution of the number of balls with a given color. By means of Le Cam's inequality and Chen-Stein method, bounds for the total variation norm between the distribution of the number of balls drawn with a given color and the Poisson distribution with the same mean are obtained. We then show that the distribution of the number of balls drawn with a given color has the same tail as that of the original number of balls. We finally establish explicit bounds between the two distributions when each ball is drawn with fixed probability $p$.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [10 references]  Display  Hide  Download

https://hal.inria.fr/inria-00347012
Contributor : Philippe Robert <>
Submitted on : Saturday, June 20, 2009 - 11:39:21 AM
Last modification on : Friday, May 25, 2018 - 12:02:03 PM
Long-term archiving on : Wednesday, September 22, 2010 - 1:05:47 PM

Files

Hal.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00347012, version 2
  • ARXIV : 0812.2546

Collections

Citation

Christine Fricker, Fabrice Guillemin, Philippe Robert. An identification problem in an urn and ball model with heavy tailed distributions. 2009. ⟨inria-00347012v2⟩

Share

Metrics

Record views

266

Files downloads

237